![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dvdszrcl | GIF version |
Description: Reverse closure for the divisibility relation. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
Ref | Expression |
---|---|
dvdszrcl | ⊢ (𝑋 ∥ 𝑌 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dvds 11830 | . . 3 ⊢ ∥ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} | |
2 | opabssxp 4718 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} ⊆ (ℤ × ℤ) | |
3 | 1, 2 | eqsstri 3202 | . 2 ⊢ ∥ ⊆ (ℤ × ℤ) |
4 | 3 | brel 4696 | 1 ⊢ (𝑋 ∥ 𝑌 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2160 ∃wrex 2469 class class class wbr 4018 {copab 4078 × cxp 4642 (class class class)co 5897 · cmul 7847 ℤcz 9284 ∥ cdvds 11829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4192 ax-pr 4227 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-br 4019 df-opab 4080 df-xp 4650 df-dvds 11830 |
This theorem is referenced by: dvdsmod0 11835 p1modz1 11836 dvdsmodexp 11837 dvdsaddre2b 11883 dvdsabseq 11888 divconjdvds 11890 evenelz 11907 4dvdseven 11957 dfgcd2 12050 dvdsmulgcd 12061 isprm3 12153 dvdsnprmd 12160 pockthg 12392 |
Copyright terms: Public domain | W3C validator |