ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdszrcl GIF version

Theorem dvdszrcl 11732
Description: Reverse closure for the divisibility relation. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Assertion
Ref Expression
dvdszrcl (𝑋𝑌 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ))

Proof of Theorem dvdszrcl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-dvds 11728 . . 3 ∥ = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)}
2 opabssxp 4678 . . 3 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ ∃𝑧 ∈ ℤ (𝑧 · 𝑥) = 𝑦)} ⊆ (ℤ × ℤ)
31, 2eqsstri 3174 . 2 ∥ ⊆ (ℤ × ℤ)
43brel 4656 1 (𝑋𝑌 → (𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  wrex 2445   class class class wbr 3982  {copab 4042   × cxp 4602  (class class class)co 5842   · cmul 7758  cz 9191  cdvds 11727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-xp 4610  df-dvds 11728
This theorem is referenced by:  dvdsmod0  11733  p1modz1  11734  dvdsmodexp  11735  dvdsabseq  11785  divconjdvds  11787  evenelz  11804  4dvdseven  11854  dfgcd2  11947  dvdsmulgcd  11958  isprm3  12050  dvdsnprmd  12057  pockthg  12287
  Copyright terms: Public domain W3C validator