HomeHome Intuitionistic Logic Explorer
Theorem List (p. 119 of 140)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11801-11900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremzeo3 11801 An integer is even or odd. (Contributed by AV, 17-Jun-2021.)
(𝑁 ∈ ℤ → (2 ∥ 𝑁 ∨ ¬ 2 ∥ 𝑁))
 
Theoremzeoxor 11802 An integer is even or odd but not both. (Contributed by Jim Kingdon, 10-Nov-2021.)
(𝑁 ∈ ℤ → (2 ∥ 𝑁 ⊻ ¬ 2 ∥ 𝑁))
 
Theoremzeo4 11803 An integer is even or odd but not both. (Contributed by AV, 17-Jun-2021.)
(𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ ¬ ¬ 2 ∥ 𝑁))
 
Theoremzeneo 11804 No even integer equals an odd integer (i.e. no integer can be both even and odd). Exercise 10(a) of [Apostol] p. 28. This variant of zneo 9288 follows immediately from the fact that a contradiction implies anything, see pm2.21i 636. (Contributed by AV, 22-Jun-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((2 ∥ 𝐴 ∧ ¬ 2 ∥ 𝐵) → 𝐴𝐵))
 
Theoremodd2np1lem 11805* Lemma for odd2np1 11806. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
(𝑁 ∈ ℕ0 → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 ∨ ∃𝑘 ∈ ℤ (𝑘 · 2) = 𝑁))
 
Theoremodd2np1 11806* An integer is odd iff it is one plus twice another integer. (Contributed by Scott Fenton, 3-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
(𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
 
Theoremeven2n 11807* An integer is even iff it is twice another integer. (Contributed by AV, 25-Jun-2020.)
(2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ (2 · 𝑛) = 𝑁)
 
Theoremoddm1even 11808 An integer is odd iff its predecessor is even. (Contributed by Mario Carneiro, 5-Sep-2016.)
(𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 − 1)))
 
Theoremoddp1even 11809 An integer is odd iff its successor is even. (Contributed by Mario Carneiro, 5-Sep-2016.)
(𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ 2 ∥ (𝑁 + 1)))
 
Theoremoexpneg 11810 The exponential of the negative of a number, when the exponent is odd. (Contributed by Mario Carneiro, 25-Apr-2015.)
((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ∧ ¬ 2 ∥ 𝑁) → (-𝐴𝑁) = -(𝐴𝑁))
 
Theoremmod2eq0even 11811 An integer is 0 modulo 2 iff it is even (i.e. divisible by 2), see example 2 in [ApostolNT] p. 107. (Contributed by AV, 21-Jul-2021.)
(𝑁 ∈ ℤ → ((𝑁 mod 2) = 0 ↔ 2 ∥ 𝑁))
 
Theoremmod2eq1n2dvds 11812 An integer is 1 modulo 2 iff it is odd (i.e. not divisible by 2), see example 3 in [ApostolNT] p. 107. (Contributed by AV, 24-May-2020.)
(𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁))
 
Theoremoddnn02np1 11813* A nonnegative integer is odd iff it is one plus twice another nonnegative integer. (Contributed by AV, 19-Jun-2021.)
(𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 ((2 · 𝑛) + 1) = 𝑁))
 
Theoremoddge22np1 11814* An integer greater than one is odd iff it is one plus twice a positive integer. (Contributed by AV, 16-Aug-2021.)
(𝑁 ∈ (ℤ‘2) → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ ((2 · 𝑛) + 1) = 𝑁))
 
Theoremevennn02n 11815* A nonnegative integer is even iff it is twice another nonnegative integer. (Contributed by AV, 12-Aug-2021.)
(𝑁 ∈ ℕ0 → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ0 (2 · 𝑛) = 𝑁))
 
Theoremevennn2n 11816* A positive integer is even iff it is twice another positive integer. (Contributed by AV, 12-Aug-2021.)
(𝑁 ∈ ℕ → (2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℕ (2 · 𝑛) = 𝑁))
 
Theorem2tp1odd 11817 A number which is twice an integer increased by 1 is odd. (Contributed by AV, 16-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 = ((2 · 𝐴) + 1)) → ¬ 2 ∥ 𝐵)
 
Theoremmulsucdiv2z 11818 An integer multiplied with its successor divided by 2 yields an integer, i.e. an integer multiplied with its successor is even. (Contributed by AV, 19-Jul-2021.)
(𝑁 ∈ ℤ → ((𝑁 · (𝑁 + 1)) / 2) ∈ ℤ)
 
Theoremsqoddm1div8z 11819 A squared odd number minus 1 divided by 8 is an integer. (Contributed by AV, 19-Jul-2021.)
((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (((𝑁↑2) − 1) / 8) ∈ ℤ)
 
Theorem2teven 11820 A number which is twice an integer is even. (Contributed by AV, 16-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 = (2 · 𝐴)) → 2 ∥ 𝐵)
 
Theoremzeo5 11821 An integer is either even or odd, version of zeo3 11801 avoiding the negation of the representation of an odd number. (Proposed by BJ, 21-Jun-2021.) (Contributed by AV, 26-Jun-2020.)
(𝑁 ∈ ℤ → (2 ∥ 𝑁 ∨ 2 ∥ (𝑁 + 1)))
 
Theoremevend2 11822 An integer is even iff its quotient with 2 is an integer. This is a representation of even numbers without using the divides relation, see zeo 9292 and zeo2 9293. (Contributed by AV, 22-Jun-2021.)
(𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ (𝑁 / 2) ∈ ℤ))
 
Theoremoddp1d2 11823 An integer is odd iff its successor divided by 2 is an integer. This is a representation of odd numbers without using the divides relation, see zeo 9292 and zeo2 9293. (Contributed by AV, 22-Jun-2021.)
(𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℤ))
 
Theoremzob 11824 Alternate characterizations of an odd number. (Contributed by AV, 7-Jun-2020.)
(𝑁 ∈ ℤ → (((𝑁 + 1) / 2) ∈ ℤ ↔ ((𝑁 − 1) / 2) ∈ ℤ))
 
Theoremoddm1d2 11825 An integer is odd iff its predecessor divided by 2 is an integer. This is another representation of odd numbers without using the divides relation. (Contributed by AV, 18-Jun-2021.) (Proof shortened by AV, 22-Jun-2021.)
(𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 − 1) / 2) ∈ ℤ))
 
Theoremltoddhalfle 11826 An integer is less than half of an odd number iff it is less than or equal to the half of the predecessor of the odd number (which is an even number). (Contributed by AV, 29-Jun-2021.)
((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑀 ∈ ℤ) → (𝑀 < (𝑁 / 2) ↔ 𝑀 ≤ ((𝑁 − 1) / 2)))
 
Theoremhalfleoddlt 11827 An integer is greater than half of an odd number iff it is greater than or equal to the half of the odd number. (Contributed by AV, 1-Jul-2021.)
((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁𝑀 ∈ ℤ) → ((𝑁 / 2) ≤ 𝑀 ↔ (𝑁 / 2) < 𝑀))
 
Theoremopoe 11828 The sum of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
(((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵)) → 2 ∥ (𝐴 + 𝐵))
 
Theoremomoe 11829 The difference of two odds is even. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
(((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ ¬ 2 ∥ 𝐵)) → 2 ∥ (𝐴𝐵))
 
Theoremopeo 11830 The sum of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
(((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → ¬ 2 ∥ (𝐴 + 𝐵))
 
Theoremomeo 11831 The difference of an odd and an even is odd. (Contributed by Scott Fenton, 7-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
(((𝐴 ∈ ℤ ∧ ¬ 2 ∥ 𝐴) ∧ (𝐵 ∈ ℤ ∧ 2 ∥ 𝐵)) → ¬ 2 ∥ (𝐴𝐵))
 
Theoremm1expe 11832 Exponentiation of -1 by an even power. Variant of m1expeven 10498. (Contributed by AV, 25-Jun-2021.)
(2 ∥ 𝑁 → (-1↑𝑁) = 1)
 
Theoremm1expo 11833 Exponentiation of -1 by an odd power. (Contributed by AV, 26-Jun-2021.)
((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (-1↑𝑁) = -1)
 
Theoremm1exp1 11834 Exponentiation of negative one is one iff the exponent is even. (Contributed by AV, 20-Jun-2021.)
(𝑁 ∈ ℤ → ((-1↑𝑁) = 1 ↔ 2 ∥ 𝑁))
 
Theoremnn0enne 11835 A positive integer is an even nonnegative integer iff it is an even positive integer. (Contributed by AV, 30-May-2020.)
(𝑁 ∈ ℕ → ((𝑁 / 2) ∈ ℕ0 ↔ (𝑁 / 2) ∈ ℕ))
 
Theoremnn0ehalf 11836 The half of an even nonnegative integer is a nonnegative integer. (Contributed by AV, 22-Jun-2020.) (Revised by AV, 28-Jun-2021.)
((𝑁 ∈ ℕ0 ∧ 2 ∥ 𝑁) → (𝑁 / 2) ∈ ℕ0)
 
Theoremnnehalf 11837 The half of an even positive integer is a positive integer. (Contributed by AV, 28-Jun-2021.)
((𝑁 ∈ ℕ ∧ 2 ∥ 𝑁) → (𝑁 / 2) ∈ ℕ)
 
Theoremnn0o1gt2 11838 An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020.)
((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 = 1 ∨ 2 < 𝑁))
 
Theoremnno 11839 An alternate characterization of an odd integer greater than 1. (Contributed by AV, 2-Jun-2020.)
((𝑁 ∈ (ℤ‘2) ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ)
 
Theoremnn0o 11840 An alternate characterization of an odd nonnegative integer. (Contributed by AV, 28-May-2020.) (Proof shortened by AV, 2-Jun-2020.)
((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → ((𝑁 − 1) / 2) ∈ ℕ0)
 
Theoremnn0ob 11841 Alternate characterizations of an odd nonnegative integer. (Contributed by AV, 4-Jun-2020.)
(𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 ↔ ((𝑁 − 1) / 2) ∈ ℕ0))
 
Theoremnn0oddm1d2 11842 A positive integer is odd iff its predecessor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.)
(𝑁 ∈ ℕ0 → (¬ 2 ∥ 𝑁 ↔ ((𝑁 − 1) / 2) ∈ ℕ0))
 
Theoremnnoddm1d2 11843 A positive integer is odd iff its successor divided by 2 is a positive integer. (Contributed by AV, 28-Jun-2021.)
(𝑁 ∈ ℕ → (¬ 2 ∥ 𝑁 ↔ ((𝑁 + 1) / 2) ∈ ℕ))
 
Theoremz0even 11844 0 is even. (Contributed by AV, 11-Feb-2020.) (Revised by AV, 23-Jun-2021.)
2 ∥ 0
 
Theoremn2dvds1 11845 2 does not divide 1 (common case). That means 1 is odd. (Contributed by David A. Wheeler, 8-Dec-2018.)
¬ 2 ∥ 1
 
Theoremn2dvdsm1 11846 2 does not divide -1. That means -1 is odd. (Contributed by AV, 15-Aug-2021.)
¬ 2 ∥ -1
 
Theoremz2even 11847 2 is even. (Contributed by AV, 12-Feb-2020.) (Revised by AV, 23-Jun-2021.)
2 ∥ 2
 
Theoremn2dvds3 11848 2 does not divide 3, i.e. 3 is an odd number. (Contributed by AV, 28-Feb-2021.)
¬ 2 ∥ 3
 
Theoremz4even 11849 4 is an even number. (Contributed by AV, 23-Jul-2020.) (Revised by AV, 4-Jul-2021.)
2 ∥ 4
 
Theorem4dvdseven 11850 An integer which is divisible by 4 is an even integer. (Contributed by AV, 4-Jul-2021.)
(4 ∥ 𝑁 → 2 ∥ 𝑁)
 
5.1.3  The division algorithm
 
Theoremdivalglemnn 11851* Lemma for divalg 11857. Existence for a positive denominator. (Contributed by Jim Kingdon, 30-Nov-2021.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
 
Theoremdivalglemqt 11852 Lemma for divalg 11857. The 𝑄 = 𝑇 case involved in showing uniqueness. (Contributed by Jim Kingdon, 5-Dec-2021.)
(𝜑𝐷 ∈ ℤ)    &   (𝜑𝑅 ∈ ℤ)    &   (𝜑𝑆 ∈ ℤ)    &   (𝜑𝑄 ∈ ℤ)    &   (𝜑𝑇 ∈ ℤ)    &   (𝜑𝑄 = 𝑇)    &   (𝜑 → ((𝑄 · 𝐷) + 𝑅) = ((𝑇 · 𝐷) + 𝑆))       (𝜑𝑅 = 𝑆)
 
Theoremdivalglemnqt 11853 Lemma for divalg 11857. The 𝑄 < 𝑇 case involved in showing uniqueness. (Contributed by Jim Kingdon, 4-Dec-2021.)
(𝜑𝐷 ∈ ℕ)    &   (𝜑𝑅 ∈ ℤ)    &   (𝜑𝑆 ∈ ℤ)    &   (𝜑𝑄 ∈ ℤ)    &   (𝜑𝑇 ∈ ℤ)    &   (𝜑 → 0 ≤ 𝑆)    &   (𝜑𝑅 < 𝐷)    &   (𝜑 → ((𝑄 · 𝐷) + 𝑅) = ((𝑇 · 𝐷) + 𝑆))       (𝜑 → ¬ 𝑄 < 𝑇)
 
Theoremdivalglemeunn 11854* Lemma for divalg 11857. Uniqueness for a positive denominator. (Contributed by Jim Kingdon, 4-Dec-2021.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
 
Theoremdivalglemex 11855* Lemma for divalg 11857. The quotient and remainder exist. (Contributed by Jim Kingdon, 30-Nov-2021.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → ∃𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
 
Theoremdivalglemeuneg 11856* Lemma for divalg 11857. Uniqueness for a negative denominator. (Contributed by Jim Kingdon, 4-Dec-2021.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 < 0) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
 
Theoremdivalg 11857* The division algorithm (theorem). Dividing an integer 𝑁 by a nonzero integer 𝐷 produces a (unique) quotient 𝑞 and a unique remainder 0 ≤ 𝑟 < (abs‘𝐷). Theorem 1.14 in [ApostolNT] p. 19. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → ∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)))
 
Theoremdivalgb 11858* Express the division algorithm as stated in divalg 11857 in terms of . (Contributed by Paul Chapman, 31-Mar-2011.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℤ ∧ 𝐷 ≠ 0) → (∃!𝑟 ∈ ℤ ∃𝑞 ∈ ℤ (0 ≤ 𝑟𝑟 < (abs‘𝐷) ∧ 𝑁 = ((𝑞 · 𝐷) + 𝑟)) ↔ ∃!𝑟 ∈ ℕ0 (𝑟 < (abs‘𝐷) ∧ 𝐷 ∥ (𝑁𝑟))))
 
Theoremdivalg2 11859* The division algorithm (theorem) for a positive divisor. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → ∃!𝑟 ∈ ℕ0 (𝑟 < 𝐷𝐷 ∥ (𝑁𝑟)))
 
Theoremdivalgmod 11860 The result of the mod operator satisfies the requirements for the remainder 𝑅 in the division algorithm for a positive divisor (compare divalg2 11859 and divalgb 11858). This demonstration theorem justifies the use of mod to yield an explicit remainder from this point forward. (Contributed by Paul Chapman, 31-Mar-2011.) (Revised by AV, 21-Aug-2021.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 ∈ ℕ0 ∧ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅)))))
 
Theoremdivalgmodcl 11861 The result of the mod operator satisfies the requirements for the remainder 𝑅 in the division algorithm for a positive divisor. Variant of divalgmod 11860. (Contributed by Stefan O'Rear, 17-Oct-2014.) (Proof shortened by AV, 21-Aug-2021.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 𝑅 ∈ ℕ0) → (𝑅 = (𝑁 mod 𝐷) ↔ (𝑅 < 𝐷𝐷 ∥ (𝑁𝑅))))
 
Theoremmodremain 11862* The result of the modulo operation is the remainder of the division algorithm. (Contributed by AV, 19-Aug-2021.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝑅 ∈ ℕ0𝑅 < 𝐷)) → ((𝑁 mod 𝐷) = 𝑅 ↔ ∃𝑧 ∈ ℤ ((𝑧 · 𝐷) + 𝑅) = 𝑁))
 
Theoremndvdssub 11863 Corollary of the division algorithm. If an integer 𝐷 greater than 1 divides 𝑁, then it does not divide any of 𝑁 − 1, 𝑁 − 2... 𝑁 − (𝐷 − 1). (Contributed by Paul Chapman, 31-Mar-2011.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁𝐾)))
 
Theoremndvdsadd 11864 Corollary of the division algorithm. If an integer 𝐷 greater than 1 divides 𝑁, then it does not divide any of 𝑁 + 1, 𝑁 + 2... 𝑁 + (𝐷 − 1). (Contributed by Paul Chapman, 31-Mar-2011.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ (𝐾 ∈ ℕ ∧ 𝐾 < 𝐷)) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁 + 𝐾)))
 
Theoremndvdsp1 11865 Special case of ndvdsadd 11864. If an integer 𝐷 greater than 1 divides 𝑁, it does not divide 𝑁 + 1. (Contributed by Paul Chapman, 31-Mar-2011.)
((𝑁 ∈ ℤ ∧ 𝐷 ∈ ℕ ∧ 1 < 𝐷) → (𝐷𝑁 → ¬ 𝐷 ∥ (𝑁 + 1)))
 
Theoremndvdsi 11866 A quick test for non-divisibility. (Contributed by Mario Carneiro, 18-Feb-2014.)
𝐴 ∈ ℕ    &   𝑄 ∈ ℕ0    &   𝑅 ∈ ℕ    &   ((𝐴 · 𝑄) + 𝑅) = 𝐵    &   𝑅 < 𝐴        ¬ 𝐴𝐵
 
Theoremflodddiv4 11867 The floor of an odd integer divided by 4. (Contributed by AV, 17-Jun-2021.)
((𝑀 ∈ ℤ ∧ 𝑁 = ((2 · 𝑀) + 1)) → (⌊‘(𝑁 / 4)) = if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)))
 
Theoremfldivndvdslt 11868 The floor of an integer divided by a nonzero integer not dividing the first integer is less than the integer divided by the positive integer. (Contributed by AV, 4-Jul-2021.)
((𝐾 ∈ ℤ ∧ (𝐿 ∈ ℤ ∧ 𝐿 ≠ 0) ∧ ¬ 𝐿𝐾) → (⌊‘(𝐾 / 𝐿)) < (𝐾 / 𝐿))
 
Theoremflodddiv4lt 11869 The floor of an odd number divided by 4 is less than the odd number divided by 4. (Contributed by AV, 4-Jul-2021.)
((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → (⌊‘(𝑁 / 4)) < (𝑁 / 4))
 
Theoremflodddiv4t2lthalf 11870 The floor of an odd number divided by 4, multiplied by 2 is less than the half of the odd number. (Contributed by AV, 4-Jul-2021.)
((𝑁 ∈ ℤ ∧ ¬ 2 ∥ 𝑁) → ((⌊‘(𝑁 / 4)) · 2) < (𝑁 / 2))
 
5.1.4  The greatest common divisor operator
 
Syntaxcgcd 11871 Extend the definition of a class to include the greatest common divisor operator.
class gcd
 
Definitiondf-gcd 11872* Define the gcd operator. For example, (-6 gcd 9) = 3 (ex-gcd 13572). (Contributed by Paul Chapman, 21-Mar-2011.)
gcd = (𝑥 ∈ ℤ, 𝑦 ∈ ℤ ↦ if((𝑥 = 0 ∧ 𝑦 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑥𝑛𝑦)}, ℝ, < )))
 
Theoremgcdmndc 11873 Decidablity lemma used in various proofs related to gcd. (Contributed by Jim Kingdon, 12-Dec-2021.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → DECID (𝑀 = 0 ∧ 𝑁 = 0))
 
Theoremzsupcllemstep 11874* Lemma for zsupcl 11876. Induction step. (Contributed by Jim Kingdon, 7-Dec-2021.)
((𝜑𝑛 ∈ (ℤ𝑀)) → DECID 𝜓)       (𝐾 ∈ (ℤ𝑀) → (((𝜑 ∧ ∀𝑛 ∈ (ℤ𝐾) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧))) → ((𝜑 ∧ ∀𝑛 ∈ (ℤ‘(𝐾 + 1)) ¬ 𝜓) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))))
 
Theoremzsupcllemex 11875* Lemma for zsupcl 11876. Existence of the supremum. (Contributed by Jim Kingdon, 7-Dec-2021.)
(𝜑𝑀 ∈ ℤ)    &   (𝑛 = 𝑀 → (𝜓𝜒))    &   (𝜑𝜒)    &   ((𝜑𝑛 ∈ (ℤ𝑀)) → DECID 𝜓)    &   (𝜑 → ∃𝑗 ∈ (ℤ𝑀)∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)       (𝜑 → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ 𝜓} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ 𝜓}𝑦 < 𝑧)))
 
Theoremzsupcl 11876* Closure of supremum for decidable integer properties. The property which defines the set we are taking the supremum of must (a) be true at 𝑀 (which corresponds to the nonempty condition of classical supremum theorems), (b) decidable at each value after 𝑀, and (c) be false after 𝑗 (which corresponds to the upper bound condition found in classical supremum theorems). (Contributed by Jim Kingdon, 7-Dec-2021.)
(𝜑𝑀 ∈ ℤ)    &   (𝑛 = 𝑀 → (𝜓𝜒))    &   (𝜑𝜒)    &   ((𝜑𝑛 ∈ (ℤ𝑀)) → DECID 𝜓)    &   (𝜑 → ∃𝑗 ∈ (ℤ𝑀)∀𝑛 ∈ (ℤ𝑗) ¬ 𝜓)       (𝜑 → sup({𝑛 ∈ ℤ ∣ 𝜓}, ℝ, < ) ∈ (ℤ𝑀))
 
Theoremzssinfcl 11877* The infimum of a set of integers is an element of the set. (Contributed by Jim Kingdon, 16-Jan-2022.)
(𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐵 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐵 𝑧 < 𝑦)))    &   (𝜑𝐵 ⊆ ℤ)    &   (𝜑 → inf(𝐵, ℝ, < ) ∈ ℤ)       (𝜑 → inf(𝐵, ℝ, < ) ∈ 𝐵)
 
Theoreminfssuzex 11878* Existence of the infimum of a subset of an upper set of integers. (Contributed by Jim Kingdon, 13-Jan-2022.)
(𝜑𝑀 ∈ ℤ)    &   𝑆 = {𝑛 ∈ (ℤ𝑀) ∣ 𝜓}    &   (𝜑𝐴𝑆)    &   ((𝜑𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓)       (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝑆 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝑆 𝑧 < 𝑦)))
 
Theoreminfssuzledc 11879* The infimum of a subset of an upper set of integers is less than or equal to all members of the subset. (Contributed by Jim Kingdon, 13-Jan-2022.)
(𝜑𝑀 ∈ ℤ)    &   𝑆 = {𝑛 ∈ (ℤ𝑀) ∣ 𝜓}    &   (𝜑𝐴𝑆)    &   ((𝜑𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓)       (𝜑 → inf(𝑆, ℝ, < ) ≤ 𝐴)
 
Theoreminfssuzcldc 11880* The infimum of a subset of an upper set of integers belongs to the subset. (Contributed by Jim Kingdon, 20-Jan-2022.)
(𝜑𝑀 ∈ ℤ)    &   𝑆 = {𝑛 ∈ (ℤ𝑀) ∣ 𝜓}    &   (𝜑𝐴𝑆)    &   ((𝜑𝑛 ∈ (𝑀...𝐴)) → DECID 𝜓)       (𝜑 → inf(𝑆, ℝ, < ) ∈ 𝑆)
 
Theoremsuprzubdc 11881* The supremum of a bounded-above decidable set of integers is greater than any member of the set. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 5-Oct-2024.)
(𝜑𝐴 ⊆ ℤ)    &   (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥𝐴)    &   (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥)    &   (𝜑𝐵𝐴)       (𝜑𝐵 ≤ sup(𝐴, ℝ, < ))
 
Theoremnninfdcex 11882* A decidable set of natural numbers has an infimum. (Contributed by Jim Kingdon, 28-Sep-2024.)
(𝜑𝐴 ⊆ ℕ)    &   (𝜑 → ∀𝑥 ∈ ℕ DECID 𝑥𝐴)    &   (𝜑 → ∃𝑦 𝑦𝐴)       (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
 
Theoremzsupssdc 11883* An inhabited decidable bounded subset of integers has a supremum in the set. (The proof does not use ax-pre-suploc 7870.) (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 5-Oct-2024.)
(𝜑𝐴 ⊆ ℤ)    &   (𝜑 → ∃𝑥 𝑥𝐴)    &   (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥𝐴)    &   (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥)       (𝜑 → ∃𝑥𝐴 (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦𝐵 (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
 
Theoremsuprzcl2dc 11884* The supremum of a bounded-above decidable set of integers is a member of the set. (This theorem avoids ax-pre-suploc 7870.) (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by Jim Kingdon, 6-Oct-2024.)
(𝜑𝐴 ⊆ ℤ)    &   (𝜑 → ∀𝑥 ∈ ℤ DECID 𝑥𝐴)    &   (𝜑 → ∃𝑥 ∈ ℤ ∀𝑦𝐴 𝑦𝑥)    &   (𝜑 → ∃𝑥 𝑥𝐴)       (𝜑 → sup(𝐴, ℝ, < ) ∈ 𝐴)
 
Theoremdvdsbnd 11885* There is an upper bound to the divisors of a nonzero integer. (Contributed by Jim Kingdon, 11-Dec-2021.)
((𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) → ∃𝑛 ∈ ℕ ∀𝑚 ∈ (ℤ𝑛) ¬ 𝑚𝐴)
 
Theoremgcdsupex 11886* Existence of the supremum used in defining gcd. (Contributed by Jim Kingdon, 12-Dec-2021.)
(((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → ∃𝑥 ∈ ℤ (∀𝑦 ∈ {𝑛 ∈ ℤ ∣ (𝑛𝑋𝑛𝑌)} ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ {𝑛 ∈ ℤ ∣ (𝑛𝑋𝑛𝑌)}𝑦 < 𝑧)))
 
Theoremgcdsupcl 11887* Closure of the supremum used in defining gcd. A lemma for gcdval 11888 and gcdn0cl 11891. (Contributed by Jim Kingdon, 11-Dec-2021.)
(((𝑋 ∈ ℤ ∧ 𝑌 ∈ ℤ) ∧ ¬ (𝑋 = 0 ∧ 𝑌 = 0)) → sup({𝑛 ∈ ℤ ∣ (𝑛𝑋𝑛𝑌)}, ℝ, < ) ∈ ℕ)
 
Theoremgcdval 11888* The value of the gcd operator. (𝑀 gcd 𝑁) is the greatest common divisor of 𝑀 and 𝑁. If 𝑀 and 𝑁 are both 0, the result is defined conventionally as 0. (Contributed by Paul Chapman, 21-Mar-2011.) (Revised by Mario Carneiro, 10-Nov-2013.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) = if((𝑀 = 0 ∧ 𝑁 = 0), 0, sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < )))
 
Theoremgcd0val 11889 The value, by convention, of the gcd operator when both operands are 0. (Contributed by Paul Chapman, 21-Mar-2011.)
(0 gcd 0) = 0
 
Theoremgcdn0val 11890* The value of the gcd operator when at least one operand is nonzero. (Contributed by Paul Chapman, 21-Mar-2011.)
(((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) = sup({𝑛 ∈ ℤ ∣ (𝑛𝑀𝑛𝑁)}, ℝ, < ))
 
Theoremgcdn0cl 11891 Closure of the gcd operator. (Contributed by Paul Chapman, 21-Mar-2011.)
(((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → (𝑀 gcd 𝑁) ∈ ℕ)
 
Theoremgcddvds 11892 The gcd of two integers divides each of them. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
 
Theoremdvdslegcd 11893 An integer which divides both operands of the gcd operator is bounded by it. (Contributed by Paul Chapman, 21-Mar-2011.)
(((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑀 = 0 ∧ 𝑁 = 0)) → ((𝐾𝑀𝐾𝑁) → 𝐾 ≤ (𝑀 gcd 𝑁)))
 
Theoremnndvdslegcd 11894 A positive integer which divides both positive operands of the gcd operator is bounded by it. (Contributed by AV, 9-Aug-2020.)
((𝐾 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → ((𝐾𝑀𝐾𝑁) → 𝐾 ≤ (𝑀 gcd 𝑁)))
 
Theoremgcdcl 11895 Closure of the gcd operator. (Contributed by Paul Chapman, 21-Mar-2011.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∈ ℕ0)
 
Theoremgcdnncl 11896 Closure of the gcd operator. (Contributed by Thierry Arnoux, 2-Feb-2020.)
((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 gcd 𝑁) ∈ ℕ)
 
Theoremgcdcld 11897 Closure of the gcd operator. (Contributed by Mario Carneiro, 29-May-2016.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)       (𝜑 → (𝑀 gcd 𝑁) ∈ ℕ0)
 
Theoremgcd2n0cl 11898 Closure of the gcd operator if the second operand is not 0. (Contributed by AV, 10-Jul-2021.)
((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0) → (𝑀 gcd 𝑁) ∈ ℕ)
 
Theoremzeqzmulgcd 11899* An integer is the product of an integer and the gcd of it and another integer. (Contributed by AV, 11-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ∃𝑛 ∈ ℤ 𝐴 = (𝑛 · (𝐴 gcd 𝐵)))
 
Theoremdivgcdz 11900 An integer divided by the gcd of it and a nonzero integer is an integer. (Contributed by AV, 11-Jul-2021.)
((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-13920
  Copyright terms: Public domain < Previous  Next >