Theorem List for Intuitionistic Logic Explorer - 11801-11900 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | fprodsplitsn 11801* |
Separate out a term in a finite product. See also fprodunsn 11772 which is
the same but with a distinct variable condition in place of
Ⅎ𝑘𝜑. (Contributed by Glauco Siliprandi,
5-Apr-2020.)
|
| ⊢ Ⅎ𝑘𝜑
& ⊢ Ⅎ𝑘𝐷
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ 𝑉)
& ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) & ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐷)
& ⊢ (𝜑 → 𝐷 ∈ ℂ)
⇒ ⊢ (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · 𝐷)) |
| |
| Theorem | fprodsplit1f 11802* |
Separate out a term in a finite product. (Contributed by Glauco
Siliprandi, 5-Apr-2020.)
|
| ⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → Ⅎ𝑘𝐷)
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 = 𝐶) → 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = (𝐷 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵)) |
| |
| Theorem | fprodclf 11803* |
Closure of a finite product of complex numbers. A version of fprodcl 11775
using bound-variable hypotheses instead of distinct variable conditions.
(Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
| ⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
| |
| Theorem | fprodap0f 11804* |
A finite product of terms apart from zero is apart from zero. A version
of fprodap0 11789 using bound-variable hypotheses instead of
distinct
variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(Revised by Jim Kingdon, 30-Aug-2024.)
|
| ⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 # 0) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 # 0) |
| |
| Theorem | fprodge0 11805* |
If all the terms of a finite product are nonnegative, so is the product.
(Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
| ⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) ⇒ ⊢ (𝜑 → 0 ≤ ∏𝑘 ∈ 𝐴 𝐵) |
| |
| Theorem | fprodeq0g 11806* |
Any finite product containing a zero term is itself zero. (Contributed
by Glauco Siliprandi, 5-Apr-2020.)
|
| ⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑘 = 𝐶) → 𝐵 = 0) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = 0) |
| |
| Theorem | fprodge1 11807* |
If all of the terms of a finite product are greater than or equal to
1, so is the product. (Contributed by Glauco
Siliprandi,
5-Apr-2020.)
|
| ⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 1 ≤ 𝐵) ⇒ ⊢ (𝜑 → 1 ≤ ∏𝑘 ∈ 𝐴 𝐵) |
| |
| Theorem | fprodle 11808* |
If all the terms of two finite products are nonnegative and compare, so
do the two products. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
|
| ⊢ Ⅎ𝑘𝜑
& ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵)
& ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ≤ ∏𝑘 ∈ 𝐴 𝐶) |
| |
| Theorem | fprodmodd 11809* |
If all factors of two finite products are equal modulo 𝑀, the
products are equal modulo 𝑀. (Contributed by AV, 7-Jul-2021.)
|
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℤ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝐵 mod 𝑀) = (𝐶 mod 𝑀)) ⇒ ⊢ (𝜑 → (∏𝑘 ∈ 𝐴 𝐵 mod 𝑀) = (∏𝑘 ∈ 𝐴 𝐶 mod 𝑀)) |
| |
| 4.10 Elementary
trigonometry
|
| |
| 4.10.1 The exponential, sine, and cosine
functions
|
| |
| Syntax | ce 11810 |
Extend class notation to include the exponential function.
|
| class exp |
| |
| Syntax | ceu 11811 |
Extend class notation to include Euler's constant e =
2.71828....
|
| class e |
| |
| Syntax | csin 11812 |
Extend class notation to include the sine function.
|
| class sin |
| |
| Syntax | ccos 11813 |
Extend class notation to include the cosine function.
|
| class cos |
| |
| Syntax | ctan 11814 |
Extend class notation to include the tangent function.
|
| class tan |
| |
| Syntax | cpi 11815 |
Extend class notation to include the constant pi, π
= 3.14159....
|
| class π |
| |
| Definition | df-ef 11816* |
Define the exponential function. Its value at the complex number 𝐴
is (exp‘𝐴) and is called the "exponential
of 𝐴"; see
efval 11829. (Contributed by NM, 14-Mar-2005.)
|
| ⊢ exp = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ ℕ0
((𝑥↑𝑘) / (!‘𝑘))) |
| |
| Definition | df-e 11817 |
Define Euler's constant e = 2.71828.... (Contributed
by NM,
14-Mar-2005.)
|
| ⊢ e = (exp‘1) |
| |
| Definition | df-sin 11818 |
Define the sine function. (Contributed by NM, 14-Mar-2005.)
|
| ⊢ sin = (𝑥 ∈ ℂ ↦ (((exp‘(i
· 𝑥)) −
(exp‘(-i · 𝑥))) / (2 · i))) |
| |
| Definition | df-cos 11819 |
Define the cosine function. (Contributed by NM, 14-Mar-2005.)
|
| ⊢ cos = (𝑥 ∈ ℂ ↦ (((exp‘(i
· 𝑥)) +
(exp‘(-i · 𝑥))) / 2)) |
| |
| Definition | df-tan 11820 |
Define the tangent function. We define it this way for cmpt 4095,
which
requires the form (𝑥 ∈ 𝐴 ↦ 𝐵). (Contributed by Mario
Carneiro, 14-Mar-2014.)
|
| ⊢ tan = (𝑥 ∈ (◡cos “ (ℂ ∖ {0})) ↦
((sin‘𝑥) /
(cos‘𝑥))) |
| |
| Definition | df-pi 11821 |
Define the constant pi, π = 3.14159..., which is the
smallest
positive number whose sine is zero. Definition of π in [Gleason]
p. 311. (Contributed by Paul Chapman, 23-Jan-2008.) (Revised by AV,
14-Sep-2020.)
|
| ⊢ π = inf((ℝ+ ∩ (◡sin “ {0})), ℝ, <
) |
| |
| Theorem | eftcl 11822 |
Closure of a term in the series expansion of the exponential function.
(Contributed by Paul Chapman, 11-Sep-2007.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) → ((𝐴↑𝐾) / (!‘𝐾)) ∈ ℂ) |
| |
| Theorem | reeftcl 11823 |
The terms of the series expansion of the exponential function at a real
number are real. (Contributed by Paul Chapman, 15-Jan-2008.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐾 ∈ ℕ0) → ((𝐴↑𝐾) / (!‘𝐾)) ∈ ℝ) |
| |
| Theorem | eftabs 11824 |
The absolute value of a term in the series expansion of the exponential
function. (Contributed by Paul Chapman, 23-Nov-2007.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) →
(abs‘((𝐴↑𝐾) / (!‘𝐾))) = (((abs‘𝐴)↑𝐾) / (!‘𝐾))) |
| |
| Theorem | eftvalcn 11825* |
The value of a term in the series expansion of the exponential function.
(Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon,
8-Dec-2022.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐹‘𝑁) = ((𝐴↑𝑁) / (!‘𝑁))) |
| |
| Theorem | efcllemp 11826* |
Lemma for efcl 11832. The series that defines the exponential
function
converges. The ratio test cvgratgt0 11701 is used to show convergence.
(Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon,
8-Dec-2022.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → (2 ·
(abs‘𝐴)) < 𝐾)
⇒ ⊢ (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ ) |
| |
| Theorem | efcllem 11827* |
Lemma for efcl 11832. The series that defines the exponential
function
converges. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon,
8-Dec-2022.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝
) |
| |
| Theorem | ef0lem 11828* |
The series defining the exponential function converges in the (trivial)
case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006.)
(Revised by Mario Carneiro, 28-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 = 0 → seq0( + , 𝐹) ⇝ 1) |
| |
| Theorem | efval 11829* |
Value of the exponential function. (Contributed by NM, 8-Jan-2006.)
(Revised by Mario Carneiro, 10-Nov-2013.)
|
| ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘))) |
| |
| Theorem | esum 11830 |
Value of Euler's constant e = 2.71828.... (Contributed
by Steve
Rodriguez, 5-Mar-2006.)
|
| ⊢ e = Σ𝑘 ∈ ℕ0 (1 /
(!‘𝑘)) |
| |
| Theorem | eff 11831 |
Domain and codomain of the exponential function. (Contributed by Paul
Chapman, 22-Oct-2007.) (Proof shortened by Mario Carneiro,
28-Apr-2014.)
|
| ⊢ exp:ℂ⟶ℂ |
| |
| Theorem | efcl 11832 |
Closure law for the exponential function. (Contributed by NM,
8-Jan-2006.) (Revised by Mario Carneiro, 10-Nov-2013.)
|
| ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ∈
ℂ) |
| |
| Theorem | efval2 11833* |
Value of the exponential function. (Contributed by Mario Carneiro,
29-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹‘𝑘)) |
| |
| Theorem | efcvg 11834* |
The series that defines the exponential function converges to it.
(Contributed by NM, 9-Jan-2006.) (Revised by Mario Carneiro,
28-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → seq0( + , 𝐹) ⇝ (exp‘𝐴)) |
| |
| Theorem | efcvgfsum 11835* |
Exponential function convergence in terms of a sequence of partial
finite sums. (Contributed by NM, 10-Jan-2006.) (Revised by Mario
Carneiro, 28-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦
Σ𝑘 ∈ (0...𝑛)((𝐴↑𝑘) / (!‘𝑘))) ⇒ ⊢ (𝐴 ∈ ℂ → 𝐹 ⇝ (exp‘𝐴)) |
| |
| Theorem | reefcl 11836 |
The exponential function is real if its argument is real. (Contributed
by NM, 27-Apr-2005.) (Revised by Mario Carneiro, 28-Apr-2014.)
|
| ⊢ (𝐴 ∈ ℝ → (exp‘𝐴) ∈
ℝ) |
| |
| Theorem | reefcld 11837 |
The exponential function is real if its argument is real. (Contributed
by Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → (exp‘𝐴) ∈ ℝ) |
| |
| Theorem | ere 11838 |
Euler's constant e = 2.71828... is a real number.
(Contributed by
NM, 19-Mar-2005.) (Revised by Steve Rodriguez, 8-Mar-2006.)
|
| ⊢ e ∈ ℝ |
| |
| Theorem | ege2le3 11839 |
Euler's constant e = 2.71828... is bounded by 2 and 3.
(Contributed by NM, 20-Mar-2005.) (Proof shortened by Mario Carneiro,
28-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (2 · ((1 /
2)↑𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ (1 /
(!‘𝑛))) ⇒ ⊢ (2 ≤ e ∧ e ≤
3) |
| |
| Theorem | ef0 11840 |
Value of the exponential function at 0. Equation 2 of [Gleason] p. 308.
(Contributed by Steve Rodriguez, 27-Jun-2006.) (Revised by Mario
Carneiro, 28-Apr-2014.)
|
| ⊢ (exp‘0) = 1 |
| |
| Theorem | efcj 11841 |
The exponential of a complex conjugate. Equation 3 of [Gleason] p. 308.
(Contributed by NM, 29-Apr-2005.) (Revised by Mario Carneiro,
28-Apr-2014.)
|
| ⊢ (𝐴 ∈ ℂ →
(exp‘(∗‘𝐴)) = (∗‘(exp‘𝐴))) |
| |
| Theorem | efaddlem 11842* |
Lemma for efadd 11843 (exponential function addition law).
(Contributed by
Mario Carneiro, 29-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ ((𝐵↑𝑛) / (!‘𝑛))) & ⊢ 𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝐴 + 𝐵)↑𝑛) / (!‘𝑛))) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵))) |
| |
| Theorem | efadd 11843 |
Sum of exponents law for exponential function. (Contributed by NM,
10-Jan-2006.) (Proof shortened by Mario Carneiro, 29-Apr-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵))) |
| |
| Theorem | efcan 11844 |
Cancellation law for exponential function. Equation 27 of [Rudin] p. 164.
(Contributed by NM, 13-Jan-2006.)
|
| ⊢ (𝐴 ∈ ℂ → ((exp‘𝐴) · (exp‘-𝐴)) = 1) |
| |
| Theorem | efap0 11845 |
The exponential of a complex number is apart from zero. (Contributed by
Jim Kingdon, 12-Dec-2022.)
|
| ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) # 0) |
| |
| Theorem | efne0 11846 |
The exponential of a complex number is nonzero. Corollary 15-4.3 of
[Gleason] p. 309. The same result also
holds with not equal replaced by
apart, as seen at efap0 11845 (which will be more useful in most
contexts).
(Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro,
29-Apr-2014.)
|
| ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ≠ 0) |
| |
| Theorem | efneg 11847 |
The exponential of the opposite is the inverse of the exponential.
(Contributed by Mario Carneiro, 10-May-2014.)
|
| ⊢ (𝐴 ∈ ℂ → (exp‘-𝐴) = (1 / (exp‘𝐴))) |
| |
| Theorem | eff2 11848 |
The exponential function maps the complex numbers to the nonzero complex
numbers. (Contributed by Paul Chapman, 16-Apr-2008.)
|
| ⊢ exp:ℂ⟶(ℂ ∖
{0}) |
| |
| Theorem | efsub 11849 |
Difference of exponents law for exponential function. (Contributed by
Steve Rodriguez, 25-Nov-2007.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 − 𝐵)) = ((exp‘𝐴) / (exp‘𝐵))) |
| |
| Theorem | efexp 11850 |
The exponential of an integer power. Corollary 15-4.4 of [Gleason]
p. 309, restricted to integers. (Contributed by NM, 13-Jan-2006.)
(Revised by Mario Carneiro, 5-Jun-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝑁 · 𝐴)) = ((exp‘𝐴)↑𝑁)) |
| |
| Theorem | efzval 11851 |
Value of the exponential function for integers. Special case of efval 11829.
Equation 30 of [Rudin] p. 164. (Contributed
by Steve Rodriguez,
15-Sep-2006.) (Revised by Mario Carneiro, 5-Jun-2014.)
|
| ⊢ (𝑁 ∈ ℤ → (exp‘𝑁) = (e↑𝑁)) |
| |
| Theorem | efgt0 11852 |
The exponential of a real number is greater than 0. (Contributed by Paul
Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
|
| ⊢ (𝐴 ∈ ℝ → 0 <
(exp‘𝐴)) |
| |
| Theorem | rpefcl 11853 |
The exponential of a real number is a positive real. (Contributed by
Mario Carneiro, 10-Nov-2013.)
|
| ⊢ (𝐴 ∈ ℝ → (exp‘𝐴) ∈
ℝ+) |
| |
| Theorem | rpefcld 11854 |
The exponential of a real number is a positive real. (Contributed by
Mario Carneiro, 29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → (exp‘𝐴) ∈
ℝ+) |
| |
| Theorem | eftlcvg 11855* |
The tail series of the exponential function are convergent.
(Contributed by Mario Carneiro, 29-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) →
seq𝑀( + , 𝐹) ∈ dom ⇝
) |
| |
| Theorem | eftlcl 11856* |
Closure of the sum of an infinite tail of the series defining the
exponential function. (Contributed by Paul Chapman, 17-Jan-2008.)
(Revised by Mario Carneiro, 30-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) →
Σ𝑘 ∈
(ℤ≥‘𝑀)(𝐹‘𝑘) ∈ ℂ) |
| |
| Theorem | reeftlcl 11857* |
Closure of the sum of an infinite tail of the series defining the
exponential function. (Contributed by Paul Chapman, 17-Jan-2008.)
(Revised by Mario Carneiro, 30-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) →
Σ𝑘 ∈
(ℤ≥‘𝑀)(𝐹‘𝑘) ∈ ℝ) |
| |
| Theorem | eftlub 11858* |
An upper bound on the absolute value of the infinite tail of the series
expansion of the exponential function on the closed unit disk.
(Contributed by Paul Chapman, 19-Jan-2008.) (Proof shortened by Mario
Carneiro, 29-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦
(((abs‘𝐴)↑𝑛) / (!‘𝑛))) & ⊢ 𝐻 = (𝑛 ∈ ℕ0 ↦
((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑛))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) ≤
1) ⇒ ⊢ (𝜑 → (abs‘Σ𝑘 ∈
(ℤ≥‘𝑀)(𝐹‘𝑘)) ≤ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀)))) |
| |
| Theorem | efsep 11859* |
Separate out the next term of the power series expansion of the
exponential function. The last hypothesis allows the separated terms to
be rearranged as desired. (Contributed by Paul Chapman, 23-Nov-2007.)
(Revised by Mario Carneiro, 29-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ 𝑁 = (𝑀 + 1) & ⊢ 𝑀 ∈
ℕ0
& ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (exp‘𝐴) = (𝐵 + Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘))) & ⊢ (𝜑 → (𝐵 + ((𝐴↑𝑀) / (!‘𝑀))) = 𝐷) ⇒ ⊢ (𝜑 → (exp‘𝐴) = (𝐷 + Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘))) |
| |
| Theorem | effsumlt 11860* |
The partial sums of the series expansion of the exponential function at
a positive real number are bounded by the value of the function.
(Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro,
29-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈
ℕ0) ⇒ ⊢ (𝜑 → (seq0( + , 𝐹)‘𝑁) < (exp‘𝐴)) |
| |
| Theorem | eft0val 11861 |
The value of the first term of the series expansion of the exponential
function is 1. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by
Mario Carneiro, 29-Apr-2014.)
|
| ⊢ (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) =
1) |
| |
| Theorem | ef4p 11862* |
Separate out the first four terms of the infinite series expansion of
the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.)
(Revised by Mario Carneiro, 29-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) + Σ𝑘 ∈
(ℤ≥‘4)(𝐹‘𝑘))) |
| |
| Theorem | efgt1p2 11863 |
The exponential of a positive real number is greater than the sum of the
first three terms of the series expansion. (Contributed by Mario
Carneiro, 15-Sep-2014.)
|
| ⊢ (𝐴 ∈ ℝ+ → ((1 +
𝐴) + ((𝐴↑2) / 2)) < (exp‘𝐴)) |
| |
| Theorem | efgt1p 11864 |
The exponential of a positive real number is greater than 1 plus that
number. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by
Mario Carneiro, 30-Apr-2014.)
|
| ⊢ (𝐴 ∈ ℝ+ → (1 +
𝐴) < (exp‘𝐴)) |
| |
| Theorem | efgt1 11865 |
The exponential of a positive real number is greater than 1.
(Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro,
30-Apr-2014.)
|
| ⊢ (𝐴 ∈ ℝ+ → 1 <
(exp‘𝐴)) |
| |
| Theorem | efltim 11866 |
The exponential function on the reals is strictly increasing.
(Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon,
20-Dec-2022.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → (exp‘𝐴) < (exp‘𝐵))) |
| |
| Theorem | reef11 11867 |
The exponential function on real numbers is one-to-one. (Contributed by
NM, 21-Aug-2008.) (Revised by Jim Kingdon, 20-Dec-2022.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((exp‘𝐴) = (exp‘𝐵) ↔ 𝐴 = 𝐵)) |
| |
| Theorem | reeff1 11868 |
The exponential function maps real arguments one-to-one to positive
reals. (Contributed by Steve Rodriguez, 25-Aug-2007.) (Revised by
Mario Carneiro, 10-Nov-2013.)
|
| ⊢ (exp ↾ ℝ):ℝ–1-1→ℝ+ |
| |
| Theorem | eflegeo 11869 |
The exponential function on the reals between 0 and 1 lies below the
comparable geometric series sum. (Contributed by Paul Chapman,
11-Sep-2007.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐴 < 1) ⇒ ⊢ (𝜑 → (exp‘𝐴) ≤ (1 / (1 − 𝐴))) |
| |
| Theorem | sinval 11870 |
Value of the sine function. (Contributed by NM, 14-Mar-2005.) (Revised
by Mario Carneiro, 10-Nov-2013.)
|
| ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i ·
𝐴)) − (exp‘(-i
· 𝐴))) / (2
· i))) |
| |
| Theorem | cosval 11871 |
Value of the cosine function. (Contributed by NM, 14-Mar-2005.)
(Revised by Mario Carneiro, 10-Nov-2013.)
|
| ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i ·
𝐴)) + (exp‘(-i
· 𝐴))) /
2)) |
| |
| Theorem | sinf 11872 |
Domain and codomain of the sine function. (Contributed by Paul Chapman,
22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
|
| ⊢ sin:ℂ⟶ℂ |
| |
| Theorem | cosf 11873 |
Domain and codomain of the cosine function. (Contributed by Paul Chapman,
22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
|
| ⊢ cos:ℂ⟶ℂ |
| |
| Theorem | sincl 11874 |
Closure of the sine function. (Contributed by NM, 28-Apr-2005.) (Revised
by Mario Carneiro, 30-Apr-2014.)
|
| ⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈
ℂ) |
| |
| Theorem | coscl 11875 |
Closure of the cosine function with a complex argument. (Contributed by
NM, 28-Apr-2005.) (Revised by Mario Carneiro, 30-Apr-2014.)
|
| ⊢ (𝐴 ∈ ℂ → (cos‘𝐴) ∈
ℂ) |
| |
| Theorem | tanvalap 11876 |
Value of the tangent function. (Contributed by Mario Carneiro,
14-Mar-2014.) (Revised by Jim Kingdon, 21-Dec-2022.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴))) |
| |
| Theorem | tanclap 11877 |
The closure of the tangent function with a complex argument. (Contributed
by David A. Wheeler, 15-Mar-2014.) (Revised by Jim Kingdon,
21-Dec-2022.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) ∈
ℂ) |
| |
| Theorem | sincld 11878 |
Closure of the sine function. (Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (sin‘𝐴) ∈ ℂ) |
| |
| Theorem | coscld 11879 |
Closure of the cosine function. (Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (cos‘𝐴) ∈ ℂ) |
| |
| Theorem | tanclapd 11880 |
Closure of the tangent function. (Contributed by Mario Carneiro,
29-May-2016.) (Revised by Jim Kingdon, 22-Dec-2022.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (cos‘𝐴) # 0)
⇒ ⊢ (𝜑 → (tan‘𝐴) ∈ ℂ) |
| |
| Theorem | tanval2ap 11881 |
Express the tangent function directly in terms of exp.
(Contributed
by Mario Carneiro, 25-Feb-2015.) (Revised by Jim Kingdon,
22-Dec-2022.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) = (((exp‘(i ·
𝐴)) − (exp‘(-i
· 𝐴))) / (i
· ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))) |
| |
| Theorem | tanval3ap 11882 |
Express the tangent function directly in terms of exp.
(Contributed
by Mario Carneiro, 25-Feb-2015.) (Revised by Jim Kingdon,
22-Dec-2022.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ ((exp‘(2
· (i · 𝐴)))
+ 1) # 0) → (tan‘𝐴) = (((exp‘(2 · (i ·
𝐴))) − 1) / (i
· ((exp‘(2 · (i · 𝐴))) + 1)))) |
| |
| Theorem | resinval 11883 |
The sine of a real number in terms of the exponential function.
(Contributed by NM, 30-Apr-2005.)
|
| ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) =
(ℑ‘(exp‘(i · 𝐴)))) |
| |
| Theorem | recosval 11884 |
The cosine of a real number in terms of the exponential function.
(Contributed by NM, 30-Apr-2005.)
|
| ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = (ℜ‘(exp‘(i
· 𝐴)))) |
| |
| Theorem | efi4p 11885* |
Separate out the first four terms of the infinite series expansion of
the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.)
(Revised by Mario Carneiro, 30-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → (exp‘(i
· 𝐴)) = (((1
− ((𝐴↑2) / 2))
+ (i · (𝐴 −
((𝐴↑3) / 6)))) +
Σ𝑘 ∈
(ℤ≥‘4)(𝐹‘𝑘))) |
| |
| Theorem | resin4p 11886* |
Separate out the first four terms of the infinite series expansion of
the sine of a real number. (Contributed by Paul Chapman, 19-Jan-2008.)
(Revised by Mario Carneiro, 30-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) = ((𝐴 − ((𝐴↑3) / 6)) +
(ℑ‘Σ𝑘
∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
| |
| Theorem | recos4p 11887* |
Separate out the first four terms of the infinite series expansion of
the cosine of a real number. (Contributed by Paul Chapman,
19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
|
| ⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = ((1 − ((𝐴↑2) / 2)) +
(ℜ‘Σ𝑘
∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
| |
| Theorem | resincl 11888 |
The sine of a real number is real. (Contributed by NM, 30-Apr-2005.)
|
| ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) ∈
ℝ) |
| |
| Theorem | recoscl 11889 |
The cosine of a real number is real. (Contributed by NM, 30-Apr-2005.)
|
| ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) ∈
ℝ) |
| |
| Theorem | retanclap 11890 |
The closure of the tangent function with a real argument. (Contributed by
David A. Wheeler, 15-Mar-2014.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) ∈
ℝ) |
| |
| Theorem | resincld 11891 |
Closure of the sine function. (Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → (sin‘𝐴) ∈ ℝ) |
| |
| Theorem | recoscld 11892 |
Closure of the cosine function. (Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → (cos‘𝐴) ∈ ℝ) |
| |
| Theorem | retanclapd 11893 |
Closure of the tangent function. (Contributed by Mario Carneiro,
29-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (cos‘𝐴) # 0)
⇒ ⊢ (𝜑 → (tan‘𝐴) ∈ ℝ) |
| |
| Theorem | sinneg 11894 |
The sine of a negative is the negative of the sine. (Contributed by NM,
30-Apr-2005.)
|
| ⊢ (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴)) |
| |
| Theorem | cosneg 11895 |
The cosines of a number and its negative are the same. (Contributed by
NM, 30-Apr-2005.)
|
| ⊢ (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴)) |
| |
| Theorem | tannegap 11896 |
The tangent of a negative is the negative of the tangent. (Contributed by
David A. Wheeler, 23-Mar-2014.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘-𝐴) = -(tan‘𝐴)) |
| |
| Theorem | sin0 11897 |
Value of the sine function at 0. (Contributed by Steve Rodriguez,
14-Mar-2005.)
|
| ⊢ (sin‘0) = 0 |
| |
| Theorem | cos0 11898 |
Value of the cosine function at 0. (Contributed by NM, 30-Apr-2005.)
|
| ⊢ (cos‘0) = 1 |
| |
| Theorem | tan0 11899 |
The value of the tangent function at zero is zero. (Contributed by David
A. Wheeler, 16-Mar-2014.)
|
| ⊢ (tan‘0) = 0 |
| |
| Theorem | efival 11900 |
The exponential function in terms of sine and cosine. (Contributed by NM,
30-Apr-2005.)
|
| ⊢ (𝐴 ∈ ℂ → (exp‘(i
· 𝐴)) =
((cos‘𝐴) + (i
· (sin‘𝐴)))) |