HomeHome Intuitionistic Logic Explorer
Theorem List (p. 119 of 164)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 11801-11900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremclimshft 11801 A shifted function converges iff the original function converges. (Contributed by NM, 16-Aug-2005.) (Revised by Mario Carneiro, 31-Jan-2014.)
((𝑀 ∈ ℤ ∧ 𝐹𝑉) → ((𝐹 shift 𝑀) ⇝ 𝐴𝐹𝐴))
 
Theoremserclim0 11802 The zero series converges to zero. (Contributed by Paul Chapman, 9-Feb-2008.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
(𝑀 ∈ ℤ → seq𝑀( + , ((ℤ𝑀) × {0})) ⇝ 0)
 
Theoremclimshft2 11803* A shifted function converges iff the original function converges. (Contributed by Paul Chapman, 21-Nov-2007.) (Revised by Mario Carneiro, 6-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐾 ∈ ℤ)    &   (𝜑𝐹𝑊)    &   (𝜑𝐺𝑋)    &   ((𝜑𝑘𝑍) → (𝐺‘(𝑘 + 𝐾)) = (𝐹𝑘))       (𝜑 → (𝐹𝐴𝐺𝐴))
 
Theoremclimabs0 11804* Convergence to zero of the absolute value is equivalent to convergence to zero. (Contributed by NM, 8-Jul-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝑉)    &   (𝜑𝐺𝑊)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = (abs‘(𝐹𝑘)))       (𝜑 → (𝐹 ⇝ 0 ↔ 𝐺 ⇝ 0))
 
Theoremclimcn1 11805* Image of a limit under a continuous map. (Contributed by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐴𝐵)    &   ((𝜑𝑧𝐵) → (𝐹𝑧) ∈ ℂ)    &   (𝜑𝐺𝐴)    &   (𝜑𝐻𝑊)    &   ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧𝐵 ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥))    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ 𝐵)    &   ((𝜑𝑘𝑍) → (𝐻𝑘) = (𝐹‘(𝐺𝑘)))       (𝜑𝐻 ⇝ (𝐹𝐴))
 
Theoremclimcn2 11806* Image of a limit under a continuous map, two-arg version. (Contributed by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐴𝐶)    &   (𝜑𝐵𝐷)    &   ((𝜑 ∧ (𝑢𝐶𝑣𝐷)) → (𝑢𝐹𝑣) ∈ ℂ)    &   (𝜑𝐺𝐴)    &   (𝜑𝐻𝐵)    &   (𝜑𝐾𝑊)    &   ((𝜑𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢𝐶𝑣𝐷 (((abs‘(𝑢𝐴)) < 𝑦 ∧ (abs‘(𝑣𝐵)) < 𝑧) → (abs‘((𝑢𝐹𝑣) − (𝐴𝐹𝐵))) < 𝑥))    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ 𝐶)    &   ((𝜑𝑘𝑍) → (𝐻𝑘) ∈ 𝐷)    &   ((𝜑𝑘𝑍) → (𝐾𝑘) = ((𝐺𝑘)𝐹(𝐻𝑘)))       (𝜑𝐾 ⇝ (𝐴𝐹𝐵))
 
Theoremaddcn2 11807* Complex number addition is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (We write out the definition directly because df-cn and df-cncf are not yet available to us. See addcncntop 15221 for the abbreviated version.) (Contributed by Mario Carneiro, 31-Jan-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝐵 + 𝐶))) < 𝐴))
 
Theoremsubcn2 11808* Complex number subtraction is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by Mario Carneiro, 31-Jan-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢𝑣) − (𝐵𝐶))) < 𝐴))
 
Theoremmulcn2 11809* Complex number multiplication is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by Mario Carneiro, 31-Jan-2014.)
((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
 
Theoremreccn2ap 11810* The reciprocal function is continuous. The class 𝑇 is just for convenience in writing the proof and typically would be passed in as an instance of eqid 2229. (Contributed by Mario Carneiro, 9-Feb-2014.) Using apart, infimum of pair. (Revised by Jim Kingdon, 26-May-2023.)
𝑇 = (inf({1, ((abs‘𝐴) · 𝐵)}, ℝ, < ) · ((abs‘𝐴) / 2))       ((𝐴 ∈ ℂ ∧ 𝐴 # 0 ∧ 𝐵 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ {𝑤 ∈ ℂ ∣ 𝑤 # 0} ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((1 / 𝑧) − (1 / 𝐴))) < 𝐵))
 
Theoremcn1lem 11811* A sufficient condition for a function to be continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
𝐹:ℂ⟶ℂ    &   ((𝑧 ∈ ℂ ∧ 𝐴 ∈ ℂ) → (abs‘((𝐹𝑧) − (𝐹𝐴))) ≤ (abs‘(𝑧𝐴)))       ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐹𝑧) − (𝐹𝐴))) < 𝑥))
 
Theoremabscn2 11812* The absolute value function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((abs‘𝑧) − (abs‘𝐴))) < 𝑥))
 
Theoremcjcn2 11813* The complex conjugate function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((∗‘𝑧) − (∗‘𝐴))) < 𝑥))
 
Theoremrecn2 11814* The real part function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((ℜ‘𝑧) − (ℜ‘𝐴))) < 𝑥))
 
Theoremimcn2 11815* The imaginary part function is continuous. (Contributed by Mario Carneiro, 9-Feb-2014.)
((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((ℑ‘𝑧) − (ℑ‘𝐴))) < 𝑥))
 
Theoremclimcn1lem 11816* The limit of a continuous function, theorem form. (Contributed by Mario Carneiro, 9-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝐹𝐴)    &   (𝜑𝐺𝑊)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   𝐻:ℂ⟶ℂ    &   ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℂ ((abs‘(𝑧𝐴)) < 𝑦 → (abs‘((𝐻𝑧) − (𝐻𝐴))) < 𝑥))    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐻‘(𝐹𝑘)))       (𝜑𝐺 ⇝ (𝐻𝐴))
 
Theoremclimabs 11817* Limit of the absolute value of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝐹𝐴)    &   (𝜑𝐺𝑊)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = (abs‘(𝐹𝑘)))       (𝜑𝐺 ⇝ (abs‘𝐴))
 
Theoremclimcj 11818* Limit of the complex conjugate of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝐹𝐴)    &   (𝜑𝐺𝑊)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = (∗‘(𝐹𝑘)))       (𝜑𝐺 ⇝ (∗‘𝐴))
 
Theoremclimre 11819* Limit of the real part of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝐹𝐴)    &   (𝜑𝐺𝑊)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = (ℜ‘(𝐹𝑘)))       (𝜑𝐺 ⇝ (ℜ‘𝐴))
 
Theoremclimim 11820* Limit of the imaginary part of a sequence. Proposition 12-2.4(c) of [Gleason] p. 172. (Contributed by NM, 7-Jun-2006.) (Revised by Mario Carneiro, 9-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝐹𝐴)    &   (𝜑𝐺𝑊)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = (ℑ‘(𝐹𝑘)))       (𝜑𝐺 ⇝ (ℑ‘𝐴))
 
Theoremclimrecl 11821* The limit of a convergent real sequence is real. Corollary 12-2.5 of [Gleason] p. 172. (Contributed by NM, 10-Sep-2005.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)       (𝜑𝐴 ∈ ℝ)
 
Theoremclimge0 11822* A nonnegative sequence converges to a nonnegative number. (Contributed by NM, 11-Sep-2005.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))       (𝜑 → 0 ≤ 𝐴)
 
Theoremclimadd 11823* Limit of the sum of two converging sequences. Proposition 12-2.1(a) of [Gleason] p. 168. (Contributed by NM, 24-Sep-2005.) (Proof shortened by Mario Carneiro, 31-Jan-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   (𝜑𝐻𝑋)    &   (𝜑𝐺𝐵)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) + (𝐺𝑘)))       (𝜑𝐻 ⇝ (𝐴 + 𝐵))
 
Theoremclimmul 11824* Limit of the product of two converging sequences. Proposition 12-2.1(c) of [Gleason] p. 168. (Contributed by NM, 27-Dec-2005.) (Proof shortened by Mario Carneiro, 1-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   (𝜑𝐻𝑋)    &   (𝜑𝐺𝐵)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))       (𝜑𝐻 ⇝ (𝐴 · 𝐵))
 
Theoremclimsub 11825* Limit of the difference of two converging sequences. Proposition 12-2.1(b) of [Gleason] p. 168. (Contributed by NM, 4-Aug-2007.) (Proof shortened by Mario Carneiro, 1-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   (𝜑𝐻𝑋)    &   (𝜑𝐺𝐵)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) − (𝐺𝑘)))       (𝜑𝐻 ⇝ (𝐴𝐵))
 
Theoremclimaddc1 11826* Limit of a constant 𝐶 added to each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐺𝑊)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = ((𝐹𝑘) + 𝐶))       (𝜑𝐺 ⇝ (𝐴 + 𝐶))
 
Theoremclimaddc2 11827* Limit of a constant 𝐶 added to each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐺𝑊)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐶 + (𝐹𝑘)))       (𝜑𝐺 ⇝ (𝐶 + 𝐴))
 
Theoremclimmulc2 11828* Limit of a sequence multiplied by a constant 𝐶. Corollary 12-2.2 of [Gleason] p. 171. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 3-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐺𝑊)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐶 · (𝐹𝑘)))       (𝜑𝐺 ⇝ (𝐶 · 𝐴))
 
Theoremclimsubc1 11829* Limit of a constant 𝐶 subtracted from each term of a sequence. (Contributed by Mario Carneiro, 9-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐺𝑊)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = ((𝐹𝑘) − 𝐶))       (𝜑𝐺 ⇝ (𝐴𝐶))
 
Theoremclimsubc2 11830* Limit of a constant 𝐶 minus each term of a sequence. (Contributed by NM, 24-Sep-2005.) (Revised by Mario Carneiro, 9-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐺𝑊)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐶 − (𝐹𝑘)))       (𝜑𝐺 ⇝ (𝐶𝐴))
 
Theoremclimle 11831* Comparison of the limits of two sequences. (Contributed by Paul Chapman, 10-Sep-2007.) (Revised by Mario Carneiro, 1-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   (𝜑𝐺𝐵)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ (𝐺𝑘))       (𝜑𝐴𝐵)
 
Theoremclimsqz 11832* Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by NM, 6-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   (𝜑𝐺𝑊)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ (𝐺𝑘))    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ≤ 𝐴)       (𝜑𝐺𝐴)
 
Theoremclimsqz2 11833* Convergence of a sequence sandwiched between another converging sequence and its limit. (Contributed by NM, 14-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   (𝜑𝐺𝑊)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ≤ (𝐹𝑘))    &   ((𝜑𝑘𝑍) → 𝐴 ≤ (𝐺𝑘))       (𝜑𝐺𝐴)
 
Theoremclim2ser 11834* The limit of an infinite series with an initial segment removed. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑁𝑍)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)       (𝜑 → seq(𝑁 + 1)( + , 𝐹) ⇝ (𝐴 − (seq𝑀( + , 𝐹)‘𝑁)))
 
Theoremclim2ser2 11835* The limit of an infinite series with an initial segment added. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑁𝑍)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   (𝜑 → seq(𝑁 + 1)( + , 𝐹) ⇝ 𝐴)       (𝜑 → seq𝑀( + , 𝐹) ⇝ (𝐴 + (seq𝑀( + , 𝐹)‘𝑁)))
 
Theoremiserex 11836* An infinite series converges, if and only if the series does with initial terms removed. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 27-Apr-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑁𝑍)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)       (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
 
Theoremisermulc2 11837* Multiplication of an infinite series by a constant. (Contributed by Paul Chapman, 14-Nov-2007.) (Revised by Jim Kingdon, 8-Apr-2023.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐶 · (𝐹𝑘)))       (𝜑 → seq𝑀( + , 𝐺) ⇝ (𝐶 · 𝐴))
 
Theoremclimlec2 11838* Comparison of a constant to the limit of a sequence. (Contributed by NM, 28-Feb-2008.) (Revised by Mario Carneiro, 1-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐹𝐵)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘𝑍) → 𝐴 ≤ (𝐹𝑘))       (𝜑𝐴𝐵)
 
Theoremiserle 11839* Comparison of the limits of two infinite series. (Contributed by Paul Chapman, 12-Nov-2007.) (Revised by Mario Carneiro, 3-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)    &   (𝜑 → seq𝑀( + , 𝐺) ⇝ 𝐵)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℝ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ (𝐺𝑘))       (𝜑𝐴𝐵)
 
Theoremiserge0 11840* The limit of an infinite series of nonnegative reals is nonnegative. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 3-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))       (𝜑 → 0 ≤ 𝐴)
 
Theoremclimub 11841* The limit of a monotonic sequence is an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 10-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑁𝑍)    &   (𝜑𝐹𝐴)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))       (𝜑 → (𝐹𝑁) ≤ 𝐴)
 
Theoremclimserle 11842* The partial sums of a converging infinite series with nonnegative terms are bounded by its limit. (Contributed by NM, 27-Dec-2005.) (Revised by Mario Carneiro, 9-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑁𝑍)    &   (𝜑 → seq𝑀( + , 𝐹) ⇝ 𝐴)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ)    &   ((𝜑𝑘𝑍) → 0 ≤ (𝐹𝑘))       (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) ≤ 𝐴)
 
Theoremiser3shft 11843* Index shift of the limit of an infinite series. (Contributed by Mario Carneiro, 6-Sep-2013.) (Revised by Jim Kingdon, 17-Oct-2022.)
(𝜑𝐹𝑉)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)       (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐴 ↔ seq(𝑀 + 𝑁)( + , (𝐹 shift 𝑁)) ⇝ 𝐴))
 
Theoremclimcau 11844* A converging sequence of complex numbers is a Cauchy sequence. The converse would require excluded middle or a different definition of Cauchy sequence (for example, fixing a rate of convergence as in climcvg1n 11847). Theorem 12-5.3 of [Gleason] p. 180 (necessity part). (Contributed by NM, 16-Apr-2005.) (Revised by Mario Carneiro, 26-Apr-2014.)
𝑍 = (ℤ𝑀)       ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)
 
Theoremclimrecvg1n 11845* A Cauchy sequence of real numbers converges, existence version. The rate of convergence is fixed: all terms after the nth term must be within 𝐶 / 𝑛 of the nth term, where 𝐶 is a constant multiplier. (Contributed by Jim Kingdon, 23-Aug-2021.)
(𝜑𝐹:ℕ⟶ℝ)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))       (𝜑𝐹 ∈ dom ⇝ )
 
Theoremclimcvg1nlem 11846* Lemma for climcvg1n 11847. We construct sequences of the real and imaginary parts of each term of 𝐹, show those converge, and use that to show that 𝐹 converges. (Contributed by Jim Kingdon, 24-Aug-2021.)
(𝜑𝐹:ℕ⟶ℂ)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))    &   𝐺 = (𝑥 ∈ ℕ ↦ (ℜ‘(𝐹𝑥)))    &   𝐻 = (𝑥 ∈ ℕ ↦ (ℑ‘(𝐹𝑥)))    &   𝐽 = (𝑥 ∈ ℕ ↦ (i · (𝐻𝑥)))       (𝜑𝐹 ∈ dom ⇝ )
 
Theoremclimcvg1n 11847* A Cauchy sequence of complex numbers converges, existence version. The rate of convergence is fixed: all terms after the nth term must be within 𝐶 / 𝑛 of the nth term, where 𝐶 is a constant multiplier. (Contributed by Jim Kingdon, 23-Aug-2021.)
(𝜑𝐹:ℕ⟶ℂ)    &   (𝜑𝐶 ∈ ℝ+)    &   (𝜑 → ∀𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)(abs‘((𝐹𝑘) − (𝐹𝑛))) < (𝐶 / 𝑛))       (𝜑𝐹 ∈ dom ⇝ )
 
Theoremclimcaucn 11848* A converging sequence of complex numbers is a Cauchy sequence. This is like climcau 11844 but adds the part that (𝐹𝑘) is complex. (Contributed by Jim Kingdon, 24-Aug-2021.)
𝑍 = (ℤ𝑀)       ((𝑀 ∈ ℤ ∧ 𝐹 ∈ dom ⇝ ) → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
 
Theoremserf0 11849* If an infinite series converges, its underlying sequence converges to zero. (Contributed by NM, 2-Sep-2005.) (Revised by Mario Carneiro, 16-Feb-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝑉)    &   (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)       (𝜑𝐹 ⇝ 0)
 
4.9.2  Finite and infinite sums
 
Syntaxcsu 11850 Extend class notation to include finite summations. (An underscore was added to the ASCII token in order to facilitate set.mm text searches, since "sum" is a commonly used word in comments.)
class Σ𝑘𝐴 𝐵
 
Definitiondf-sumdc 11851* Define the sum of a series with an index set of integers 𝐴. The variable 𝑘 is normally a free variable in 𝐵, i.e., 𝐵 can be thought of as 𝐵(𝑘). This definition is the result of a collection of discussions over the most general definition for a sum that does not need the index set to have a specified ordering. This definition is in two parts, one for finite sums and one for subsets of the upper integers. When summing over a subset of the upper integers, we extend the index set to the upper integers by adding zero outside the domain, and then sum the set in order, setting the result to the limit of the partial sums, if it exists. This means that conditionally convergent sums can be evaluated meaningfully. For finite sums, we are explicitly order-independent, by picking any bijection to a 1-based finite sequence and summing in the induced order. In both cases we have an if expression so that we only need 𝐵 to be defined where 𝑘𝐴. In the infinite case, we also require that the indexing set be a decidable subset of an upperset of integers (that is, membership of integers in it is decidable). These two methods of summation produce the same result on their common region of definition (i.e., finite sets of integers). Examples: Σ𝑘 ∈ {1, 2, 4}𝑘 means 1 + 2 + 4 = 7, and Σ𝑘 ∈ ℕ(1 / (2↑𝑘)) = 1 means 1/2 + 1/4 + 1/8 + ... = 1 (geoihalfsum 12019). (Contributed by NM, 11-Dec-2005.) (Revised by Jim Kingdon, 21-May-2023.)
Σ𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , (𝑛 ∈ ℤ ↦ if(𝑛𝐴, 𝑛 / 𝑘𝐵, 0))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑚, (𝑓𝑛) / 𝑘𝐵, 0)))‘𝑚))))
 
Theoremsumeq1 11852 Equality theorem for a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
(𝐴 = 𝐵 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
 
Theoremnfsum1 11853 Bound-variable hypothesis builder for sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
𝑘𝐴       𝑘Σ𝑘𝐴 𝐵
 
Theoremnfsum 11854 Bound-variable hypothesis builder for sum: if 𝑥 is (effectively) not free in 𝐴 and 𝐵, it is not free in Σ𝑘𝐴𝐵. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
𝑥𝐴    &   𝑥𝐵       𝑥Σ𝑘𝐴 𝐵
 
Theoremsumdc 11855* Decidability of a subset of upper integers. (Contributed by Jim Kingdon, 1-Jan-2022.)
(𝜑𝑀 ∈ ℤ)    &   (𝜑𝐴 ⊆ (ℤ𝑀))    &   (𝜑 → ∀𝑥 ∈ (ℤ𝑀)DECID 𝑥𝐴)    &   (𝜑𝑁 ∈ ℤ)       (𝜑DECID 𝑁𝐴)
 
Theoremsumeq2 11856* Equality theorem for sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.)
(∀𝑘𝐴 𝐵 = 𝐶 → Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 𝐶)
 
Theoremcbvsum 11857 Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jun-2019.)
(𝑗 = 𝑘𝐵 = 𝐶)    &   𝑘𝐴    &   𝑗𝐴    &   𝑘𝐵    &   𝑗𝐶       Σ𝑗𝐴 𝐵 = Σ𝑘𝐴 𝐶
 
Theoremcbvsumv 11858* Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.) (Revised by Mario Carneiro, 13-Jul-2013.)
(𝑗 = 𝑘𝐵 = 𝐶)       Σ𝑗𝐴 𝐵 = Σ𝑘𝐴 𝐶
 
Theoremcbvsumi 11859* Change bound variable in a sum. (Contributed by NM, 11-Dec-2005.)
𝑘𝐵    &   𝑗𝐶    &   (𝑗 = 𝑘𝐵 = 𝐶)       Σ𝑗𝐴 𝐵 = Σ𝑘𝐴 𝐶
 
Theoremsumeq1i 11860* Equality inference for sum. (Contributed by NM, 2-Jan-2006.)
𝐴 = 𝐵       Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶
 
Theoremsumeq2i 11861* Equality inference for sum. (Contributed by NM, 3-Dec-2005.)
(𝑘𝐴𝐵 = 𝐶)       Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 𝐶
 
Theoremsumeq12i 11862* Equality inference for sum. (Contributed by FL, 10-Dec-2006.)
𝐴 = 𝐵    &   (𝑘𝐴𝐶 = 𝐷)       Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐷
 
Theoremsumeq1d 11863* Equality deduction for sum. (Contributed by NM, 1-Nov-2005.)
(𝜑𝐴 = 𝐵)       (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
 
Theoremsumeq2d 11864* Equality deduction for sum. Note that unlike sumeq2dv 11865, 𝑘 may occur in 𝜑. (Contributed by NM, 1-Nov-2005.)
(𝜑 → ∀𝑘𝐴 𝐵 = 𝐶)       (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 𝐶)
 
Theoremsumeq2dv 11865* Equality deduction for sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2014.)
((𝜑𝑘𝐴) → 𝐵 = 𝐶)       (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 𝐶)
 
Theoremsumeq2ad 11866* Equality deduction for sum. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝐵 = 𝐶)       (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 𝐶)
 
Theoremsumeq2sdv 11867* Equality deduction for sum. (Contributed by NM, 3-Jan-2006.)
(𝜑𝐵 = 𝐶)       (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑘𝐴 𝐶)
 
Theorem2sumeq2dv 11868* Equality deduction for double sum. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 31-Jan-2014.)
((𝜑𝑗𝐴𝑘𝐵) → 𝐶 = 𝐷)       (𝜑 → Σ𝑗𝐴 Σ𝑘𝐵 𝐶 = Σ𝑗𝐴 Σ𝑘𝐵 𝐷)
 
Theoremsumeq12dv 11869* Equality deduction for sum. (Contributed by NM, 1-Dec-2005.)
(𝜑𝐴 = 𝐵)    &   ((𝜑𝑘𝐴) → 𝐶 = 𝐷)       (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐷)
 
Theoremsumeq12rdv 11870* Equality deduction for sum. (Contributed by NM, 1-Dec-2005.)
(𝜑𝐴 = 𝐵)    &   ((𝜑𝑘𝐵) → 𝐶 = 𝐷)       (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐷)
 
Theoremsumfct 11871* A lemma to facilitate conversions from the function form to the class-variable form of a sum. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 18-Sep-2022.)
(∀𝑘𝐴 𝐵 ∈ ℂ → Σ𝑗𝐴 ((𝑘𝐴𝐵)‘𝑗) = Σ𝑘𝐴 𝐵)
 
Theoremfz1f1o 11872* A lemma for working with finite sums. (Contributed by Mario Carneiro, 22-Apr-2014.)
(𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
 
Theoremnnf1o 11873 Lemma for sum and product theorems. (Contributed by Jim Kingdon, 15-Aug-2022.)
(𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ))    &   (𝜑𝐹:(1...𝑀)–1-1-onto𝐴)    &   (𝜑𝐺:(1...𝑁)–1-1-onto𝐴)       (𝜑𝑁 = 𝑀)
 
Theoremsumrbdclem 11874* Lemma for sumrbdc 11876. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 8-Apr-2023.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   (𝜑𝑁 ∈ (ℤ𝑀))       ((𝜑𝐴 ⊆ (ℤ𝑁)) → (seq𝑀( + , 𝐹) ↾ (ℤ𝑁)) = seq𝑁( + , 𝐹))
 
Theoremfsum3cvg 11875* The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Jim Kingdon, 12-Nov-2022.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   (𝜑𝐴 ⊆ (𝑀...𝑁))       (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑁))
 
Theoremsumrbdc 11876* Rebase the starting point of a sum. (Contributed by Mario Carneiro, 14-Jul-2013.) (Revised by Jim Kingdon, 9-Apr-2023.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑𝐴 ⊆ (ℤ𝑀))    &   (𝜑𝐴 ⊆ (ℤ𝑁))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   ((𝜑𝑘 ∈ (ℤ𝑁)) → DECID 𝑘𝐴)       (𝜑 → (seq𝑀( + , 𝐹) ⇝ 𝐶 ↔ seq𝑁( + , 𝐹) ⇝ 𝐶))
 
Theoremsummodclem3 11877* Lemma for summodc 11880. (Contributed by Mario Carneiro, 29-Mar-2014.) (Revised by Jim Kingdon, 9-Apr-2023.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   (𝜑 → (𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ))    &   (𝜑𝑓:(1...𝑀)–1-1-onto𝐴)    &   (𝜑𝐾:(1...𝑁)–1-1-onto𝐴)    &   𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝑓𝑛) / 𝑘𝐵, 0))    &   𝐻 = (𝑛 ∈ ℕ ↦ if(𝑛𝑁, (𝐾𝑛) / 𝑘𝐵, 0))       (𝜑 → (seq1( + , 𝐺)‘𝑀) = (seq1( + , 𝐻)‘𝑁))
 
Theoremsummodclem2a 11878* Lemma for summodc 11880. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 9-Apr-2023.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0))    &   𝐻 = (𝑛 ∈ ℕ ↦ if(𝑛𝑁, (𝐾𝑛) / 𝑘𝐵, 0))    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐴 ⊆ (ℤ𝑀))    &   (𝜑𝑓:(1...𝑁)–1-1-onto𝐴)    &   (𝜑𝐾 Isom < , < ((1...(♯‘𝐴)), 𝐴))       (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq1( + , 𝐺)‘𝑁))
 
Theoremsummodclem2 11879* Lemma for summodc 11880. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 4-May-2023.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0))       ((𝜑 ∧ ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥)) → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑦 = (seq1( + , 𝐺)‘𝑚)) → 𝑥 = 𝑦))
 
Theoremsummodc 11880* A sum has at most one limit. (Contributed by Mario Carneiro, 3-Apr-2014.) (Revised by Jim Kingdon, 4-May-2023.)
𝐹 = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 0))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0))    &   𝐺 = (𝑛 ∈ ℕ ↦ if(𝑛 ≤ (♯‘𝐴), (𝑓𝑛) / 𝑘𝐵, 0))       (𝜑 → ∃*𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∀𝑗 ∈ (ℤ𝑚)DECID 𝑗𝐴 ∧ seq𝑚( + , 𝐹) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( + , 𝐺)‘𝑚))))
 
Theoremzsumdc 11881* Series sum with index set a subset of the upper integers. (Contributed by Mario Carneiro, 13-Jun-2019.) (Revised by Jim Kingdon, 8-Apr-2023.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐴𝑍)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))    &   (𝜑 → ∀𝑥𝑍 DECID 𝑥𝐴)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)       (𝜑 → Σ𝑘𝐴 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐹)))
 
Theoremisum 11882* Series sum with an upper integer index set (i.e. an infinite series). (Contributed by Mario Carneiro, 15-Jul-2013.) (Revised by Mario Carneiro, 7-Apr-2014.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐵)    &   ((𝜑𝑘𝑍) → 𝐵 ∈ ℂ)       (𝜑 → Σ𝑘𝑍 𝐵 = ( ⇝ ‘seq𝑀( + , 𝐹)))
 
Theoremfsumgcl 11883* Closure for a function used to describe a sum over a nonempty finite set. (Contributed by Jim Kingdon, 10-Oct-2022.)
(𝑘 = (𝐹𝑛) → 𝐵 = 𝐶)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝐹:(1...𝑀)–1-1-onto𝐴)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑛 ∈ (1...𝑀)) → (𝐺𝑛) = 𝐶)       (𝜑 → ∀𝑛 ∈ (1...𝑀)(𝐺𝑛) ∈ ℂ)
 
Theoremfsum3 11884* The value of a sum over a nonempty finite set. (Contributed by Jim Kingdon, 10-Oct-2022.)
(𝑘 = (𝐹𝑛) → 𝐵 = 𝐶)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝐹:(1...𝑀)–1-1-onto𝐴)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑛 ∈ (1...𝑀)) → (𝐺𝑛) = 𝐶)       (𝜑 → Σ𝑘𝐴 𝐵 = (seq1( + , (𝑛 ∈ ℕ ↦ if(𝑛𝑀, (𝐺𝑛), 0)))‘𝑀))
 
Theoremsum0 11885 Any sum over the empty set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Mario Carneiro, 20-Apr-2014.)
Σ𝑘 ∈ ∅ 𝐴 = 0
 
Theoremisumz 11886* Any sum of zero over a summable set is zero. (Contributed by Mario Carneiro, 12-Aug-2013.) (Revised by Jim Kingdon, 9-Apr-2023.)
(((𝑀 ∈ ℤ ∧ 𝐴 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴) ∨ 𝐴 ∈ Fin) → Σ𝑘𝐴 0 = 0)
 
Theoremfsumf1o 11887* Re-index a finite sum using a bijection. (Contributed by Mario Carneiro, 20-Apr-2014.)
(𝑘 = 𝐺𝐵 = 𝐷)    &   (𝜑𝐶 ∈ Fin)    &   (𝜑𝐹:𝐶1-1-onto𝐴)    &   ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)       (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷)
 
Theoremisumss 11888* Change the index set to a subset in an upper integer sum. (Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 21-Sep-2022.)
(𝜑𝐴𝐵)    &   ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)    &   ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)    &   (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐴)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐵 ⊆ (ℤ𝑀))    &   (𝜑 → ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵)       (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
 
Theoremfisumss 11889* Change the index set to a subset in a finite sum. (Contributed by Mario Carneiro, 21-Apr-2014.) (Revised by Jim Kingdon, 23-Sep-2022.)
(𝜑𝐴𝐵)    &   ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)    &   ((𝜑𝑘 ∈ (𝐵𝐴)) → 𝐶 = 0)    &   (𝜑 → ∀𝑗𝐵 DECID 𝑗𝐴)    &   (𝜑𝐵 ∈ Fin)       (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 𝐶)
 
Theoremisumss2 11890* Change the index set of a sum by adding zeroes. The nonzero elements are in the contained set 𝐴 and the added zeroes compose the rest of the containing set 𝐵 which needs to be summable. (Contributed by Mario Carneiro, 15-Jul-2013.) (Revised by Jim Kingdon, 24-Sep-2022.)
(𝜑𝐴𝐵)    &   (𝜑 → ∀𝑗𝐵 DECID 𝑗𝐴)    &   (𝜑 → ∀𝑘𝐴 𝐶 ∈ ℂ)    &   (𝜑 → ((𝑀 ∈ ℤ ∧ 𝐵 ⊆ (ℤ𝑀) ∧ ∀𝑗 ∈ (ℤ𝑀)DECID 𝑗𝐵) ∨ 𝐵 ∈ Fin))       (𝜑 → Σ𝑘𝐴 𝐶 = Σ𝑘𝐵 if(𝑘𝐴, 𝐶, 0))
 
Theoremfsum3cvg2 11891* The sequence of partial sums of a finite sum converges to the whole sum. (Contributed by Mario Carneiro, 20-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   (𝜑𝐴 ⊆ (𝑀...𝑁))       (𝜑 → seq𝑀( + , 𝐹) ⇝ (seq𝑀( + , 𝐹)‘𝑁))
 
Theoremfsumsersdc 11892* Special case of series sum over a finite upper integer index set. (Contributed by Mario Carneiro, 26-Jul-2013.) (Revised by Jim Kingdon, 5-May-2023.)
((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   (𝜑𝐴 ⊆ (𝑀...𝑁))       (𝜑 → Σ𝑘𝐴 𝐵 = (seq𝑀( + , 𝐹)‘𝑁))
 
Theoremfsum3cvg3 11893* A finite sum is convergent. (Contributed by Mario Carneiro, 24-Apr-2014.) (Revised by Jim Kingdon, 2-Dec-2022.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐴 ∈ Fin)    &   (𝜑𝐴𝑍)    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → DECID 𝑘𝐴)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 0))    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)       (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
 
Theoremfsum3ser 11894* A finite sum expressed in terms of a partial sum of an infinite series. The recursive definition follows as fsum1 11909 and fsump1 11917, which should make our notation clear and from which, along with closure fsumcl 11897, we will derive the basic properties of finite sums. (Contributed by NM, 11-Dec-2005.) (Revised by Jim Kingdon, 1-Oct-2022.)
((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = 𝐴)    &   (𝜑𝑁 ∈ (ℤ𝑀))    &   ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝐴 ∈ ℂ)       (𝜑 → Σ𝑘 ∈ (𝑀...𝑁)𝐴 = (seq𝑀( + , 𝐹)‘𝑁))
 
Theoremfsumcl2lem 11895* - Lemma for finite sum closures. (The "-" before "Lemma" forces the math content to be displayed in the Statement List - NM 11-Feb-2008.) (Contributed by Mario Carneiro, 3-Jun-2014.)
(𝜑𝑆 ⊆ ℂ)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵𝑆)    &   (𝜑𝐴 ≠ ∅)       (𝜑 → Σ𝑘𝐴 𝐵𝑆)
 
Theoremfsumcllem 11896* - Lemma for finite sum closures. (The "-" before "Lemma" forces the math content to be displayed in the Statement List - NM 11-Feb-2008.) (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 3-Jun-2014.)
(𝜑𝑆 ⊆ ℂ)    &   ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵𝑆)    &   (𝜑 → 0 ∈ 𝑆)       (𝜑 → Σ𝑘𝐴 𝐵𝑆)
 
Theoremfsumcl 11897* Closure of a finite sum of complex numbers 𝐴(𝑘). (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)       (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℂ)
 
Theoremfsumrecl 11898* Closure of a finite sum of reals. (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)       (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℝ)
 
Theoremfsumzcl 11899* Closure of a finite sum of integers. (Contributed by NM, 9-Nov-2005.) (Revised by Mario Carneiro, 22-Apr-2014.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℤ)       (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℤ)
 
Theoremfsumnn0cl 11900* Closure of a finite sum of nonnegative integers. (Contributed by Mario Carneiro, 23-Apr-2015.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℕ0)       (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℕ0)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16383
  Copyright terms: Public domain < Previous  Next >