Theorem List for Intuitionistic Logic Explorer - 11801-11900 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | reeftcl 11801 |
The terms of the series expansion of the exponential function at a real
number are real. (Contributed by Paul Chapman, 15-Jan-2008.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐾 ∈ ℕ0) → ((𝐴↑𝐾) / (!‘𝐾)) ∈ ℝ) |
|
Theorem | eftabs 11802 |
The absolute value of a term in the series expansion of the exponential
function. (Contributed by Paul Chapman, 23-Nov-2007.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐾 ∈ ℕ0) →
(abs‘((𝐴↑𝐾) / (!‘𝐾))) = (((abs‘𝐴)↑𝐾) / (!‘𝐾))) |
|
Theorem | eftvalcn 11803* |
The value of a term in the series expansion of the exponential function.
(Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon,
8-Dec-2022.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐹‘𝑁) = ((𝐴↑𝑁) / (!‘𝑁))) |
|
Theorem | efcllemp 11804* |
Lemma for efcl 11810. The series that defines the exponential
function
converges. The ratio test cvgratgt0 11679 is used to show convergence.
(Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon,
8-Dec-2022.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐾 ∈ ℕ) & ⊢ (𝜑 → (2 ·
(abs‘𝐴)) < 𝐾)
⇒ ⊢ (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ ) |
|
Theorem | efcllem 11805* |
Lemma for efcl 11810. The series that defines the exponential
function
converges. (Contributed by NM, 26-Apr-2005.) (Revised by Jim Kingdon,
8-Dec-2022.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝
) |
|
Theorem | ef0lem 11806* |
The series defining the exponential function converges in the (trivial)
case of a zero argument. (Contributed by Steve Rodriguez, 7-Jun-2006.)
(Revised by Mario Carneiro, 28-Apr-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 = 0 → seq0( + , 𝐹) ⇝ 1) |
|
Theorem | efval 11807* |
Value of the exponential function. (Contributed by NM, 8-Jan-2006.)
(Revised by Mario Carneiro, 10-Nov-2013.)
|
⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 ((𝐴↑𝑘) / (!‘𝑘))) |
|
Theorem | esum 11808 |
Value of Euler's constant e = 2.71828.... (Contributed
by Steve
Rodriguez, 5-Mar-2006.)
|
⊢ e = Σ𝑘 ∈ ℕ0 (1 /
(!‘𝑘)) |
|
Theorem | eff 11809 |
Domain and codomain of the exponential function. (Contributed by Paul
Chapman, 22-Oct-2007.) (Proof shortened by Mario Carneiro,
28-Apr-2014.)
|
⊢ exp:ℂ⟶ℂ |
|
Theorem | efcl 11810 |
Closure law for the exponential function. (Contributed by NM,
8-Jan-2006.) (Revised by Mario Carneiro, 10-Nov-2013.)
|
⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ∈
ℂ) |
|
Theorem | efval2 11811* |
Value of the exponential function. (Contributed by Mario Carneiro,
29-Apr-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = Σ𝑘 ∈ ℕ0 (𝐹‘𝑘)) |
|
Theorem | efcvg 11812* |
The series that defines the exponential function converges to it.
(Contributed by NM, 9-Jan-2006.) (Revised by Mario Carneiro,
28-Apr-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → seq0( + , 𝐹) ⇝ (exp‘𝐴)) |
|
Theorem | efcvgfsum 11813* |
Exponential function convergence in terms of a sequence of partial
finite sums. (Contributed by NM, 10-Jan-2006.) (Revised by Mario
Carneiro, 28-Apr-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦
Σ𝑘 ∈ (0...𝑛)((𝐴↑𝑘) / (!‘𝑘))) ⇒ ⊢ (𝐴 ∈ ℂ → 𝐹 ⇝ (exp‘𝐴)) |
|
Theorem | reefcl 11814 |
The exponential function is real if its argument is real. (Contributed
by NM, 27-Apr-2005.) (Revised by Mario Carneiro, 28-Apr-2014.)
|
⊢ (𝐴 ∈ ℝ → (exp‘𝐴) ∈
ℝ) |
|
Theorem | reefcld 11815 |
The exponential function is real if its argument is real. (Contributed
by Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → (exp‘𝐴) ∈ ℝ) |
|
Theorem | ere 11816 |
Euler's constant e = 2.71828... is a real number.
(Contributed by
NM, 19-Mar-2005.) (Revised by Steve Rodriguez, 8-Mar-2006.)
|
⊢ e ∈ ℝ |
|
Theorem | ege2le3 11817 |
Euler's constant e = 2.71828... is bounded by 2 and 3.
(Contributed by NM, 20-Mar-2005.) (Proof shortened by Mario Carneiro,
28-Apr-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ ↦ (2 · ((1 /
2)↑𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ (1 /
(!‘𝑛))) ⇒ ⊢ (2 ≤ e ∧ e ≤
3) |
|
Theorem | ef0 11818 |
Value of the exponential function at 0. Equation 2 of [Gleason] p. 308.
(Contributed by Steve Rodriguez, 27-Jun-2006.) (Revised by Mario
Carneiro, 28-Apr-2014.)
|
⊢ (exp‘0) = 1 |
|
Theorem | efcj 11819 |
The exponential of a complex conjugate. Equation 3 of [Gleason] p. 308.
(Contributed by NM, 29-Apr-2005.) (Revised by Mario Carneiro,
28-Apr-2014.)
|
⊢ (𝐴 ∈ ℂ →
(exp‘(∗‘𝐴)) = (∗‘(exp‘𝐴))) |
|
Theorem | efaddlem 11820* |
Lemma for efadd 11821 (exponential function addition law).
(Contributed by
Mario Carneiro, 29-Apr-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦ ((𝐵↑𝑛) / (!‘𝑛))) & ⊢ 𝐻 = (𝑛 ∈ ℕ0 ↦ (((𝐴 + 𝐵)↑𝑛) / (!‘𝑛))) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵))) |
|
Theorem | efadd 11821 |
Sum of exponents law for exponential function. (Contributed by NM,
10-Jan-2006.) (Proof shortened by Mario Carneiro, 29-Apr-2014.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 + 𝐵)) = ((exp‘𝐴) · (exp‘𝐵))) |
|
Theorem | efcan 11822 |
Cancellation law for exponential function. Equation 27 of [Rudin] p. 164.
(Contributed by NM, 13-Jan-2006.)
|
⊢ (𝐴 ∈ ℂ → ((exp‘𝐴) · (exp‘-𝐴)) = 1) |
|
Theorem | efap0 11823 |
The exponential of a complex number is apart from zero. (Contributed by
Jim Kingdon, 12-Dec-2022.)
|
⊢ (𝐴 ∈ ℂ → (exp‘𝐴) # 0) |
|
Theorem | efne0 11824 |
The exponential of a complex number is nonzero. Corollary 15-4.3 of
[Gleason] p. 309. The same result also
holds with not equal replaced by
apart, as seen at efap0 11823 (which will be more useful in most
contexts).
(Contributed by NM, 13-Jan-2006.) (Revised by Mario Carneiro,
29-Apr-2014.)
|
⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ≠ 0) |
|
Theorem | efneg 11825 |
The exponential of the opposite is the inverse of the exponential.
(Contributed by Mario Carneiro, 10-May-2014.)
|
⊢ (𝐴 ∈ ℂ → (exp‘-𝐴) = (1 / (exp‘𝐴))) |
|
Theorem | eff2 11826 |
The exponential function maps the complex numbers to the nonzero complex
numbers. (Contributed by Paul Chapman, 16-Apr-2008.)
|
⊢ exp:ℂ⟶(ℂ ∖
{0}) |
|
Theorem | efsub 11827 |
Difference of exponents law for exponential function. (Contributed by
Steve Rodriguez, 25-Nov-2007.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 − 𝐵)) = ((exp‘𝐴) / (exp‘𝐵))) |
|
Theorem | efexp 11828 |
The exponential of an integer power. Corollary 15-4.4 of [Gleason]
p. 309, restricted to integers. (Contributed by NM, 13-Jan-2006.)
(Revised by Mario Carneiro, 5-Jun-2014.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℤ) → (exp‘(𝑁 · 𝐴)) = ((exp‘𝐴)↑𝑁)) |
|
Theorem | efzval 11829 |
Value of the exponential function for integers. Special case of efval 11807.
Equation 30 of [Rudin] p. 164. (Contributed
by Steve Rodriguez,
15-Sep-2006.) (Revised by Mario Carneiro, 5-Jun-2014.)
|
⊢ (𝑁 ∈ ℤ → (exp‘𝑁) = (e↑𝑁)) |
|
Theorem | efgt0 11830 |
The exponential of a real number is greater than 0. (Contributed by Paul
Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
|
⊢ (𝐴 ∈ ℝ → 0 <
(exp‘𝐴)) |
|
Theorem | rpefcl 11831 |
The exponential of a real number is a positive real. (Contributed by
Mario Carneiro, 10-Nov-2013.)
|
⊢ (𝐴 ∈ ℝ → (exp‘𝐴) ∈
ℝ+) |
|
Theorem | rpefcld 11832 |
The exponential of a real number is a positive real. (Contributed by
Mario Carneiro, 29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → (exp‘𝐴) ∈
ℝ+) |
|
Theorem | eftlcvg 11833* |
The tail series of the exponential function are convergent.
(Contributed by Mario Carneiro, 29-Apr-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) →
seq𝑀( + , 𝐹) ∈ dom ⇝
) |
|
Theorem | eftlcl 11834* |
Closure of the sum of an infinite tail of the series defining the
exponential function. (Contributed by Paul Chapman, 17-Jan-2008.)
(Revised by Mario Carneiro, 30-Apr-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝑀 ∈ ℕ0) →
Σ𝑘 ∈
(ℤ≥‘𝑀)(𝐹‘𝑘) ∈ ℂ) |
|
Theorem | reeftlcl 11835* |
Closure of the sum of an infinite tail of the series defining the
exponential function. (Contributed by Paul Chapman, 17-Jan-2008.)
(Revised by Mario Carneiro, 30-Apr-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℕ0) →
Σ𝑘 ∈
(ℤ≥‘𝑀)(𝐹‘𝑘) ∈ ℝ) |
|
Theorem | eftlub 11836* |
An upper bound on the absolute value of the infinite tail of the series
expansion of the exponential function on the closed unit disk.
(Contributed by Paul Chapman, 19-Jan-2008.) (Proof shortened by Mario
Carneiro, 29-Apr-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ ℕ0 ↦
(((abs‘𝐴)↑𝑛) / (!‘𝑛))) & ⊢ 𝐻 = (𝑛 ∈ ℕ0 ↦
((((abs‘𝐴)↑𝑀) / (!‘𝑀)) · ((1 / (𝑀 + 1))↑𝑛))) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (abs‘𝐴) ≤
1) ⇒ ⊢ (𝜑 → (abs‘Σ𝑘 ∈
(ℤ≥‘𝑀)(𝐹‘𝑘)) ≤ (((abs‘𝐴)↑𝑀) · ((𝑀 + 1) / ((!‘𝑀) · 𝑀)))) |
|
Theorem | efsep 11837* |
Separate out the next term of the power series expansion of the
exponential function. The last hypothesis allows the separated terms to
be rearranged as desired. (Contributed by Paul Chapman, 23-Nov-2007.)
(Revised by Mario Carneiro, 29-Apr-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ 𝑁 = (𝑀 + 1) & ⊢ 𝑀 ∈
ℕ0
& ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → (exp‘𝐴) = (𝐵 + Σ𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘))) & ⊢ (𝜑 → (𝐵 + ((𝐴↑𝑀) / (!‘𝑀))) = 𝐷) ⇒ ⊢ (𝜑 → (exp‘𝐴) = (𝐷 + Σ𝑘 ∈ (ℤ≥‘𝑁)(𝐹‘𝑘))) |
|
Theorem | effsumlt 11838* |
The partial sums of the series expansion of the exponential function at
a positive real number are bounded by the value of the function.
(Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro,
29-Apr-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) & ⊢ (𝜑 → 𝐴 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈
ℕ0) ⇒ ⊢ (𝜑 → (seq0( + , 𝐹)‘𝑁) < (exp‘𝐴)) |
|
Theorem | eft0val 11839 |
The value of the first term of the series expansion of the exponential
function is 1. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by
Mario Carneiro, 29-Apr-2014.)
|
⊢ (𝐴 ∈ ℂ → ((𝐴↑0) / (!‘0)) =
1) |
|
Theorem | ef4p 11840* |
Separate out the first four terms of the infinite series expansion of
the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.)
(Revised by Mario Carneiro, 29-Apr-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ ((𝐴↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) = ((((1 + 𝐴) + ((𝐴↑2) / 2)) + ((𝐴↑3) / 6)) + Σ𝑘 ∈
(ℤ≥‘4)(𝐹‘𝑘))) |
|
Theorem | efgt1p2 11841 |
The exponential of a positive real number is greater than the sum of the
first three terms of the series expansion. (Contributed by Mario
Carneiro, 15-Sep-2014.)
|
⊢ (𝐴 ∈ ℝ+ → ((1 +
𝐴) + ((𝐴↑2) / 2)) < (exp‘𝐴)) |
|
Theorem | efgt1p 11842 |
The exponential of a positive real number is greater than 1 plus that
number. (Contributed by Mario Carneiro, 14-Mar-2014.) (Revised by
Mario Carneiro, 30-Apr-2014.)
|
⊢ (𝐴 ∈ ℝ+ → (1 +
𝐴) < (exp‘𝐴)) |
|
Theorem | efgt1 11843 |
The exponential of a positive real number is greater than 1.
(Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro,
30-Apr-2014.)
|
⊢ (𝐴 ∈ ℝ+ → 1 <
(exp‘𝐴)) |
|
Theorem | efltim 11844 |
The exponential function on the reals is strictly increasing.
(Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon,
20-Dec-2022.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → (exp‘𝐴) < (exp‘𝐵))) |
|
Theorem | reef11 11845 |
The exponential function on real numbers is one-to-one. (Contributed by
NM, 21-Aug-2008.) (Revised by Jim Kingdon, 20-Dec-2022.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((exp‘𝐴) = (exp‘𝐵) ↔ 𝐴 = 𝐵)) |
|
Theorem | reeff1 11846 |
The exponential function maps real arguments one-to-one to positive
reals. (Contributed by Steve Rodriguez, 25-Aug-2007.) (Revised by
Mario Carneiro, 10-Nov-2013.)
|
⊢ (exp ↾ ℝ):ℝ–1-1→ℝ+ |
|
Theorem | eflegeo 11847 |
The exponential function on the reals between 0 and 1 lies below the
comparable geometric series sum. (Contributed by Paul Chapman,
11-Sep-2007.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 0 ≤ 𝐴)
& ⊢ (𝜑 → 𝐴 < 1) ⇒ ⊢ (𝜑 → (exp‘𝐴) ≤ (1 / (1 − 𝐴))) |
|
Theorem | sinval 11848 |
Value of the sine function. (Contributed by NM, 14-Mar-2005.) (Revised
by Mario Carneiro, 10-Nov-2013.)
|
⊢ (𝐴 ∈ ℂ → (sin‘𝐴) = (((exp‘(i ·
𝐴)) − (exp‘(-i
· 𝐴))) / (2
· i))) |
|
Theorem | cosval 11849 |
Value of the cosine function. (Contributed by NM, 14-Mar-2005.)
(Revised by Mario Carneiro, 10-Nov-2013.)
|
⊢ (𝐴 ∈ ℂ → (cos‘𝐴) = (((exp‘(i ·
𝐴)) + (exp‘(-i
· 𝐴))) /
2)) |
|
Theorem | sinf 11850 |
Domain and codomain of the sine function. (Contributed by Paul Chapman,
22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
|
⊢ sin:ℂ⟶ℂ |
|
Theorem | cosf 11851 |
Domain and codomain of the cosine function. (Contributed by Paul Chapman,
22-Oct-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
|
⊢ cos:ℂ⟶ℂ |
|
Theorem | sincl 11852 |
Closure of the sine function. (Contributed by NM, 28-Apr-2005.) (Revised
by Mario Carneiro, 30-Apr-2014.)
|
⊢ (𝐴 ∈ ℂ → (sin‘𝐴) ∈
ℂ) |
|
Theorem | coscl 11853 |
Closure of the cosine function with a complex argument. (Contributed by
NM, 28-Apr-2005.) (Revised by Mario Carneiro, 30-Apr-2014.)
|
⊢ (𝐴 ∈ ℂ → (cos‘𝐴) ∈
ℂ) |
|
Theorem | tanvalap 11854 |
Value of the tangent function. (Contributed by Mario Carneiro,
14-Mar-2014.) (Revised by Jim Kingdon, 21-Dec-2022.)
|
⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) = ((sin‘𝐴) / (cos‘𝐴))) |
|
Theorem | tanclap 11855 |
The closure of the tangent function with a complex argument. (Contributed
by David A. Wheeler, 15-Mar-2014.) (Revised by Jim Kingdon,
21-Dec-2022.)
|
⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) ∈
ℂ) |
|
Theorem | sincld 11856 |
Closure of the sine function. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (sin‘𝐴) ∈ ℂ) |
|
Theorem | coscld 11857 |
Closure of the cosine function. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (cos‘𝐴) ∈ ℂ) |
|
Theorem | tanclapd 11858 |
Closure of the tangent function. (Contributed by Mario Carneiro,
29-May-2016.) (Revised by Jim Kingdon, 22-Dec-2022.)
|
⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → (cos‘𝐴) # 0)
⇒ ⊢ (𝜑 → (tan‘𝐴) ∈ ℂ) |
|
Theorem | tanval2ap 11859 |
Express the tangent function directly in terms of exp.
(Contributed
by Mario Carneiro, 25-Feb-2015.) (Revised by Jim Kingdon,
22-Dec-2022.)
|
⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) = (((exp‘(i ·
𝐴)) − (exp‘(-i
· 𝐴))) / (i
· ((exp‘(i · 𝐴)) + (exp‘(-i · 𝐴)))))) |
|
Theorem | tanval3ap 11860 |
Express the tangent function directly in terms of exp.
(Contributed
by Mario Carneiro, 25-Feb-2015.) (Revised by Jim Kingdon,
22-Dec-2022.)
|
⊢ ((𝐴 ∈ ℂ ∧ ((exp‘(2
· (i · 𝐴)))
+ 1) # 0) → (tan‘𝐴) = (((exp‘(2 · (i ·
𝐴))) − 1) / (i
· ((exp‘(2 · (i · 𝐴))) + 1)))) |
|
Theorem | resinval 11861 |
The sine of a real number in terms of the exponential function.
(Contributed by NM, 30-Apr-2005.)
|
⊢ (𝐴 ∈ ℝ → (sin‘𝐴) =
(ℑ‘(exp‘(i · 𝐴)))) |
|
Theorem | recosval 11862 |
The cosine of a real number in terms of the exponential function.
(Contributed by NM, 30-Apr-2005.)
|
⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = (ℜ‘(exp‘(i
· 𝐴)))) |
|
Theorem | efi4p 11863* |
Separate out the first four terms of the infinite series expansion of
the exponential function. (Contributed by Paul Chapman, 19-Jan-2008.)
(Revised by Mario Carneiro, 30-Apr-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℂ → (exp‘(i
· 𝐴)) = (((1
− ((𝐴↑2) / 2))
+ (i · (𝐴 −
((𝐴↑3) / 6)))) +
Σ𝑘 ∈
(ℤ≥‘4)(𝐹‘𝑘))) |
|
Theorem | resin4p 11864* |
Separate out the first four terms of the infinite series expansion of
the sine of a real number. (Contributed by Paul Chapman, 19-Jan-2008.)
(Revised by Mario Carneiro, 30-Apr-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℝ → (sin‘𝐴) = ((𝐴 − ((𝐴↑3) / 6)) +
(ℑ‘Σ𝑘
∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
|
Theorem | recos4p 11865* |
Separate out the first four terms of the infinite series expansion of
the cosine of a real number. (Contributed by Paul Chapman,
19-Jan-2008.) (Revised by Mario Carneiro, 30-Apr-2014.)
|
⊢ 𝐹 = (𝑛 ∈ ℕ0 ↦ (((i
· 𝐴)↑𝑛) / (!‘𝑛))) ⇒ ⊢ (𝐴 ∈ ℝ → (cos‘𝐴) = ((1 − ((𝐴↑2) / 2)) +
(ℜ‘Σ𝑘
∈ (ℤ≥‘4)(𝐹‘𝑘)))) |
|
Theorem | resincl 11866 |
The sine of a real number is real. (Contributed by NM, 30-Apr-2005.)
|
⊢ (𝐴 ∈ ℝ → (sin‘𝐴) ∈
ℝ) |
|
Theorem | recoscl 11867 |
The cosine of a real number is real. (Contributed by NM, 30-Apr-2005.)
|
⊢ (𝐴 ∈ ℝ → (cos‘𝐴) ∈
ℝ) |
|
Theorem | retanclap 11868 |
The closure of the tangent function with a real argument. (Contributed by
David A. Wheeler, 15-Mar-2014.)
|
⊢ ((𝐴 ∈ ℝ ∧ (cos‘𝐴) # 0) → (tan‘𝐴) ∈
ℝ) |
|
Theorem | resincld 11869 |
Closure of the sine function. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → (sin‘𝐴) ∈ ℝ) |
|
Theorem | recoscld 11870 |
Closure of the cosine function. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ)
⇒ ⊢ (𝜑 → (cos‘𝐴) ∈ ℝ) |
|
Theorem | retanclapd 11871 |
Closure of the tangent function. (Contributed by Mario Carneiro,
29-May-2016.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (cos‘𝐴) # 0)
⇒ ⊢ (𝜑 → (tan‘𝐴) ∈ ℝ) |
|
Theorem | sinneg 11872 |
The sine of a negative is the negative of the sine. (Contributed by NM,
30-Apr-2005.)
|
⊢ (𝐴 ∈ ℂ → (sin‘-𝐴) = -(sin‘𝐴)) |
|
Theorem | cosneg 11873 |
The cosines of a number and its negative are the same. (Contributed by
NM, 30-Apr-2005.)
|
⊢ (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴)) |
|
Theorem | tannegap 11874 |
The tangent of a negative is the negative of the tangent. (Contributed by
David A. Wheeler, 23-Mar-2014.)
|
⊢ ((𝐴 ∈ ℂ ∧ (cos‘𝐴) # 0) → (tan‘-𝐴) = -(tan‘𝐴)) |
|
Theorem | sin0 11875 |
Value of the sine function at 0. (Contributed by Steve Rodriguez,
14-Mar-2005.)
|
⊢ (sin‘0) = 0 |
|
Theorem | cos0 11876 |
Value of the cosine function at 0. (Contributed by NM, 30-Apr-2005.)
|
⊢ (cos‘0) = 1 |
|
Theorem | tan0 11877 |
The value of the tangent function at zero is zero. (Contributed by David
A. Wheeler, 16-Mar-2014.)
|
⊢ (tan‘0) = 0 |
|
Theorem | efival 11878 |
The exponential function in terms of sine and cosine. (Contributed by NM,
30-Apr-2005.)
|
⊢ (𝐴 ∈ ℂ → (exp‘(i
· 𝐴)) =
((cos‘𝐴) + (i
· (sin‘𝐴)))) |
|
Theorem | efmival 11879 |
The exponential function in terms of sine and cosine. (Contributed by NM,
14-Jan-2006.)
|
⊢ (𝐴 ∈ ℂ → (exp‘(-i
· 𝐴)) =
((cos‘𝐴) − (i
· (sin‘𝐴)))) |
|
Theorem | efeul 11880 |
Eulerian representation of the complex exponential. (Suggested by Jeff
Hankins, 3-Jul-2006.) (Contributed by NM, 4-Jul-2006.)
|
⊢ (𝐴 ∈ ℂ → (exp‘𝐴) =
((exp‘(ℜ‘𝐴)) ·
((cos‘(ℑ‘𝐴)) + (i ·
(sin‘(ℑ‘𝐴)))))) |
|
Theorem | efieq 11881 |
The exponentials of two imaginary numbers are equal iff their sine and
cosine components are equal. (Contributed by Paul Chapman,
15-Mar-2008.)
|
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((exp‘(i
· 𝐴)) =
(exp‘(i · 𝐵))
↔ ((cos‘𝐴) =
(cos‘𝐵) ∧
(sin‘𝐴) =
(sin‘𝐵)))) |
|
Theorem | sinadd 11882 |
Addition formula for sine. Equation 14 of [Gleason] p. 310. (Contributed
by Steve Rodriguez, 10-Nov-2006.) (Revised by Mario Carneiro,
30-Apr-2014.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘(𝐴 + 𝐵)) = (((sin‘𝐴) · (cos‘𝐵)) + ((cos‘𝐴) · (sin‘𝐵)))) |
|
Theorem | cosadd 11883 |
Addition formula for cosine. Equation 15 of [Gleason] p. 310.
(Contributed by NM, 15-Jan-2006.) (Revised by Mario Carneiro,
30-Apr-2014.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 + 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) − ((sin‘𝐴) · (sin‘𝐵)))) |
|
Theorem | tanaddaplem 11884 |
A useful intermediate step in tanaddap 11885 when showing that the addition of
tangents is well-defined. (Contributed by Mario Carneiro, 4-Apr-2015.)
(Revised by Jim Kingdon, 25-Dec-2022.)
|
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0)) →
((cos‘(𝐴 + 𝐵)) # 0 ↔ ((tan‘𝐴) · (tan‘𝐵)) # 1)) |
|
Theorem | tanaddap 11885 |
Addition formula for tangent. (Contributed by Mario Carneiro,
4-Apr-2015.)
|
⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ ((cos‘𝐴) # 0 ∧ (cos‘𝐵) # 0 ∧ (cos‘(𝐴 + 𝐵)) # 0)) → (tan‘(𝐴 + 𝐵)) = (((tan‘𝐴) + (tan‘𝐵)) / (1 − ((tan‘𝐴) · (tan‘𝐵))))) |
|
Theorem | sinsub 11886 |
Sine of difference. (Contributed by Paul Chapman, 12-Oct-2007.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (sin‘(𝐴 − 𝐵)) = (((sin‘𝐴) · (cos‘𝐵)) − ((cos‘𝐴) · (sin‘𝐵)))) |
|
Theorem | cossub 11887 |
Cosine of difference. (Contributed by Paul Chapman, 12-Oct-2007.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (cos‘(𝐴 − 𝐵)) = (((cos‘𝐴) · (cos‘𝐵)) + ((sin‘𝐴) · (sin‘𝐵)))) |
|
Theorem | addsin 11888 |
Sum of sines. (Contributed by Paul Chapman, 12-Oct-2007.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) + (sin‘𝐵)) = (2 ·
((sin‘((𝐴 + 𝐵) / 2)) ·
(cos‘((𝐴 −
𝐵) /
2))))) |
|
Theorem | subsin 11889 |
Difference of sines. (Contributed by Paul Chapman, 12-Oct-2007.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) − (sin‘𝐵)) = (2 ·
((cos‘((𝐴 + 𝐵) / 2)) ·
(sin‘((𝐴 −
𝐵) /
2))))) |
|
Theorem | sinmul 11890 |
Product of sines can be rewritten as half the difference of certain
cosines. This follows from cosadd 11883 and cossub 11887. (Contributed by David
A. Wheeler, 26-May-2015.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((sin‘𝐴) · (sin‘𝐵)) = (((cos‘(𝐴 − 𝐵)) − (cos‘(𝐴 + 𝐵))) / 2)) |
|
Theorem | cosmul 11891 |
Product of cosines can be rewritten as half the sum of certain cosines.
This follows from cosadd 11883 and cossub 11887. (Contributed by David A.
Wheeler, 26-May-2015.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) · (cos‘𝐵)) = (((cos‘(𝐴 − 𝐵)) + (cos‘(𝐴 + 𝐵))) / 2)) |
|
Theorem | addcos 11892 |
Sum of cosines. (Contributed by Paul Chapman, 12-Oct-2007.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐴) + (cos‘𝐵)) = (2 ·
((cos‘((𝐴 + 𝐵) / 2)) ·
(cos‘((𝐴 −
𝐵) /
2))))) |
|
Theorem | subcos 11893 |
Difference of cosines. (Contributed by Paul Chapman, 12-Oct-2007.)
(Revised by Mario Carneiro, 10-May-2014.)
|
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((cos‘𝐵) − (cos‘𝐴)) = (2 ·
((sin‘((𝐴 + 𝐵) / 2)) ·
(sin‘((𝐴 −
𝐵) /
2))))) |
|
Theorem | sincossq 11894 |
Sine squared plus cosine squared is 1. Equation 17 of [Gleason] p. 311.
Note that this holds for non-real arguments, even though individually each
term is unbounded. (Contributed by NM, 15-Jan-2006.)
|
⊢ (𝐴 ∈ ℂ → (((sin‘𝐴)↑2) + ((cos‘𝐴)↑2)) =
1) |
|
Theorem | sin2t 11895 |
Double-angle formula for sine. (Contributed by Paul Chapman,
17-Jan-2008.)
|
⊢ (𝐴 ∈ ℂ → (sin‘(2
· 𝐴)) = (2 ·
((sin‘𝐴) ·
(cos‘𝐴)))) |
|
Theorem | cos2t 11896 |
Double-angle formula for cosine. (Contributed by Paul Chapman,
24-Jan-2008.)
|
⊢ (𝐴 ∈ ℂ → (cos‘(2
· 𝐴)) = ((2
· ((cos‘𝐴)↑2)) − 1)) |
|
Theorem | cos2tsin 11897 |
Double-angle formula for cosine in terms of sine. (Contributed by NM,
12-Sep-2008.)
|
⊢ (𝐴 ∈ ℂ → (cos‘(2
· 𝐴)) = (1 −
(2 · ((sin‘𝐴)↑2)))) |
|
Theorem | sinbnd 11898 |
The sine of a real number lies between -1 and 1. Equation 18 of [Gleason]
p. 311. (Contributed by NM, 16-Jan-2006.)
|
⊢ (𝐴 ∈ ℝ → (-1 ≤
(sin‘𝐴) ∧
(sin‘𝐴) ≤
1)) |
|
Theorem | cosbnd 11899 |
The cosine of a real number lies between -1 and 1. Equation 18 of
[Gleason] p. 311. (Contributed by NM,
16-Jan-2006.)
|
⊢ (𝐴 ∈ ℝ → (-1 ≤
(cos‘𝐴) ∧
(cos‘𝐴) ≤
1)) |
|
Theorem | sinbnd2 11900 |
The sine of a real number is in the closed interval from -1 to 1.
(Contributed by Mario Carneiro, 12-May-2014.)
|
⊢ (𝐴 ∈ ℝ → (sin‘𝐴) ∈
(-1[,]1)) |