ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  zeo3 GIF version

Theorem zeo3 11908
Description: An integer is even or odd. (Contributed by AV, 17-Jun-2021.)
Assertion
Ref Expression
zeo3 (𝑁 ∈ ℤ → (2 ∥ 𝑁 ∨ ¬ 2 ∥ 𝑁))

Proof of Theorem zeo3
StepHypRef Expression
1 peano2zm 9322 . . . 4 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
2 zeo 9389 . . . 4 ((𝑁 − 1) ∈ ℤ → (((𝑁 − 1) / 2) ∈ ℤ ∨ (((𝑁 − 1) + 1) / 2) ∈ ℤ))
31, 2syl 14 . . 3 (𝑁 ∈ ℤ → (((𝑁 − 1) / 2) ∈ ℤ ∨ (((𝑁 − 1) + 1) / 2) ∈ ℤ))
4 zeo2 9390 . . . . . 6 ((𝑁 − 1) ∈ ℤ → (((𝑁 − 1) / 2) ∈ ℤ ↔ ¬ (((𝑁 − 1) + 1) / 2) ∈ ℤ))
51, 4syl 14 . . . . 5 (𝑁 ∈ ℤ → (((𝑁 − 1) / 2) ∈ ℤ ↔ ¬ (((𝑁 − 1) + 1) / 2) ∈ ℤ))
6 zcn 9289 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
7 1cnd 8004 . . . . . . . . . 10 (𝑁 ∈ ℤ → 1 ∈ ℂ)
86, 7npcand 8303 . . . . . . . . 9 (𝑁 ∈ ℤ → ((𝑁 − 1) + 1) = 𝑁)
98oveq1d 5912 . . . . . . . 8 (𝑁 ∈ ℤ → (((𝑁 − 1) + 1) / 2) = (𝑁 / 2))
109eleq1d 2258 . . . . . . 7 (𝑁 ∈ ℤ → ((((𝑁 − 1) + 1) / 2) ∈ ℤ ↔ (𝑁 / 2) ∈ ℤ))
11 2z 9312 . . . . . . . 8 2 ∈ ℤ
12 2ne0 9042 . . . . . . . 8 2 ≠ 0
13 dvdsval2 11832 . . . . . . . 8 ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ 𝑁 ∈ ℤ) → (2 ∥ 𝑁 ↔ (𝑁 / 2) ∈ ℤ))
1411, 12, 13mp3an12 1338 . . . . . . 7 (𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ (𝑁 / 2) ∈ ℤ))
1510, 14bitr4d 191 . . . . . 6 (𝑁 ∈ ℤ → ((((𝑁 − 1) + 1) / 2) ∈ ℤ ↔ 2 ∥ 𝑁))
1615notbid 668 . . . . 5 (𝑁 ∈ ℤ → (¬ (((𝑁 − 1) + 1) / 2) ∈ ℤ ↔ ¬ 2 ∥ 𝑁))
175, 16bitrd 188 . . . 4 (𝑁 ∈ ℤ → (((𝑁 − 1) / 2) ∈ ℤ ↔ ¬ 2 ∥ 𝑁))
1817, 15orbi12d 794 . . 3 (𝑁 ∈ ℤ → ((((𝑁 − 1) / 2) ∈ ℤ ∨ (((𝑁 − 1) + 1) / 2) ∈ ℤ) ↔ (¬ 2 ∥ 𝑁 ∨ 2 ∥ 𝑁)))
193, 18mpbid 147 . 2 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ∨ 2 ∥ 𝑁))
2019orcomd 730 1 (𝑁 ∈ ℤ → (2 ∥ 𝑁 ∨ ¬ 2 ∥ 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wo 709  wcel 2160  wne 2360   class class class wbr 4018  (class class class)co 5897  0cc0 7842  1c1 7843   + caddc 7845  cmin 8159   / cdiv 8660  2c2 9001  cz 9284  cdvds 11829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7933  ax-resscn 7934  ax-1cn 7935  ax-1re 7936  ax-icn 7937  ax-addcl 7938  ax-addrcl 7939  ax-mulcl 7940  ax-mulrcl 7941  ax-addcom 7942  ax-mulcom 7943  ax-addass 7944  ax-mulass 7945  ax-distr 7946  ax-i2m1 7947  ax-0lt1 7948  ax-1rid 7949  ax-0id 7950  ax-rnegex 7951  ax-precex 7952  ax-cnre 7953  ax-pre-ltirr 7954  ax-pre-ltwlin 7955  ax-pre-lttrn 7956  ax-pre-apti 7957  ax-pre-ltadd 7958  ax-pre-mulgt0 7959  ax-pre-mulext 7960
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-id 4311  df-po 4314  df-iso 4315  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-iota 5196  df-fun 5237  df-fv 5243  df-riota 5852  df-ov 5900  df-oprab 5901  df-mpo 5902  df-pnf 8025  df-mnf 8026  df-xr 8027  df-ltxr 8028  df-le 8029  df-sub 8161  df-neg 8162  df-reap 8563  df-ap 8570  df-div 8661  df-inn 8951  df-2 9009  df-n0 9208  df-z 9285  df-dvds 11830
This theorem is referenced by:  zeoxor  11909  zeo5  11928  m1exp1  11941  flodddiv4  11974
  Copyright terms: Public domain W3C validator