Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > zeo3 | GIF version |
Description: An integer is even or odd. (Contributed by AV, 17-Jun-2021.) |
Ref | Expression |
---|---|
zeo3 | ⊢ (𝑁 ∈ ℤ → (2 ∥ 𝑁 ∨ ¬ 2 ∥ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2zm 9264 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
2 | zeo 9331 | . . . 4 ⊢ ((𝑁 − 1) ∈ ℤ → (((𝑁 − 1) / 2) ∈ ℤ ∨ (((𝑁 − 1) + 1) / 2) ∈ ℤ)) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (𝑁 ∈ ℤ → (((𝑁 − 1) / 2) ∈ ℤ ∨ (((𝑁 − 1) + 1) / 2) ∈ ℤ)) |
4 | zeo2 9332 | . . . . . 6 ⊢ ((𝑁 − 1) ∈ ℤ → (((𝑁 − 1) / 2) ∈ ℤ ↔ ¬ (((𝑁 − 1) + 1) / 2) ∈ ℤ)) | |
5 | 1, 4 | syl 14 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (((𝑁 − 1) / 2) ∈ ℤ ↔ ¬ (((𝑁 − 1) + 1) / 2) ∈ ℤ)) |
6 | zcn 9231 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
7 | 1cnd 7948 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℂ) | |
8 | 6, 7 | npcand 8246 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → ((𝑁 − 1) + 1) = 𝑁) |
9 | 8 | oveq1d 5880 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (((𝑁 − 1) + 1) / 2) = (𝑁 / 2)) |
10 | 9 | eleq1d 2244 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → ((((𝑁 − 1) + 1) / 2) ∈ ℤ ↔ (𝑁 / 2) ∈ ℤ)) |
11 | 2z 9254 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
12 | 2ne0 8984 | . . . . . . . 8 ⊢ 2 ≠ 0 | |
13 | dvdsval2 11765 | . . . . . . . 8 ⊢ ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ 𝑁 ∈ ℤ) → (2 ∥ 𝑁 ↔ (𝑁 / 2) ∈ ℤ)) | |
14 | 11, 12, 13 | mp3an12 1327 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ (𝑁 / 2) ∈ ℤ)) |
15 | 10, 14 | bitr4d 191 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → ((((𝑁 − 1) + 1) / 2) ∈ ℤ ↔ 2 ∥ 𝑁)) |
16 | 15 | notbid 667 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (¬ (((𝑁 − 1) + 1) / 2) ∈ ℤ ↔ ¬ 2 ∥ 𝑁)) |
17 | 5, 16 | bitrd 188 | . . . 4 ⊢ (𝑁 ∈ ℤ → (((𝑁 − 1) / 2) ∈ ℤ ↔ ¬ 2 ∥ 𝑁)) |
18 | 17, 15 | orbi12d 793 | . . 3 ⊢ (𝑁 ∈ ℤ → ((((𝑁 − 1) / 2) ∈ ℤ ∨ (((𝑁 − 1) + 1) / 2) ∈ ℤ) ↔ (¬ 2 ∥ 𝑁 ∨ 2 ∥ 𝑁))) |
19 | 3, 18 | mpbid 147 | . 2 ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ∨ 2 ∥ 𝑁)) |
20 | 19 | orcomd 729 | 1 ⊢ (𝑁 ∈ ℤ → (2 ∥ 𝑁 ∨ ¬ 2 ∥ 𝑁)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ wo 708 ∈ wcel 2146 ≠ wne 2345 class class class wbr 3998 (class class class)co 5865 0cc0 7786 1c1 7787 + caddc 7789 − cmin 8102 / cdiv 8602 2c2 8943 ℤcz 9226 ∥ cdvds 11762 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-mulrcl 7885 ax-addcom 7886 ax-mulcom 7887 ax-addass 7888 ax-mulass 7889 ax-distr 7890 ax-i2m1 7891 ax-0lt1 7892 ax-1rid 7893 ax-0id 7894 ax-rnegex 7895 ax-precex 7896 ax-cnre 7897 ax-pre-ltirr 7898 ax-pre-ltwlin 7899 ax-pre-lttrn 7900 ax-pre-apti 7901 ax-pre-ltadd 7902 ax-pre-mulgt0 7903 ax-pre-mulext 7904 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-reu 2460 df-rmo 2461 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-id 4287 df-po 4290 df-iso 4291 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-iota 5170 df-fun 5210 df-fv 5216 df-riota 5821 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-xr 7970 df-ltxr 7971 df-le 7972 df-sub 8104 df-neg 8105 df-reap 8506 df-ap 8513 df-div 8603 df-inn 8893 df-2 8951 df-n0 9150 df-z 9227 df-dvds 11763 |
This theorem is referenced by: zeoxor 11841 zeo5 11860 m1exp1 11873 flodddiv4 11906 |
Copyright terms: Public domain | W3C validator |