![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > zeo3 | GIF version |
Description: An integer is even or odd. (Contributed by AV, 17-Jun-2021.) |
Ref | Expression |
---|---|
zeo3 | ⊢ (𝑁 ∈ ℤ → (2 ∥ 𝑁 ∨ ¬ 2 ∥ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2zm 9293 | . . . 4 ⊢ (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ) | |
2 | zeo 9360 | . . . 4 ⊢ ((𝑁 − 1) ∈ ℤ → (((𝑁 − 1) / 2) ∈ ℤ ∨ (((𝑁 − 1) + 1) / 2) ∈ ℤ)) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (𝑁 ∈ ℤ → (((𝑁 − 1) / 2) ∈ ℤ ∨ (((𝑁 − 1) + 1) / 2) ∈ ℤ)) |
4 | zeo2 9361 | . . . . . 6 ⊢ ((𝑁 − 1) ∈ ℤ → (((𝑁 − 1) / 2) ∈ ℤ ↔ ¬ (((𝑁 − 1) + 1) / 2) ∈ ℤ)) | |
5 | 1, 4 | syl 14 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (((𝑁 − 1) / 2) ∈ ℤ ↔ ¬ (((𝑁 − 1) + 1) / 2) ∈ ℤ)) |
6 | zcn 9260 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
7 | 1cnd 7975 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → 1 ∈ ℂ) | |
8 | 6, 7 | npcand 8274 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℤ → ((𝑁 − 1) + 1) = 𝑁) |
9 | 8 | oveq1d 5892 | . . . . . . . 8 ⊢ (𝑁 ∈ ℤ → (((𝑁 − 1) + 1) / 2) = (𝑁 / 2)) |
10 | 9 | eleq1d 2246 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → ((((𝑁 − 1) + 1) / 2) ∈ ℤ ↔ (𝑁 / 2) ∈ ℤ)) |
11 | 2z 9283 | . . . . . . . 8 ⊢ 2 ∈ ℤ | |
12 | 2ne0 9013 | . . . . . . . 8 ⊢ 2 ≠ 0 | |
13 | dvdsval2 11799 | . . . . . . . 8 ⊢ ((2 ∈ ℤ ∧ 2 ≠ 0 ∧ 𝑁 ∈ ℤ) → (2 ∥ 𝑁 ↔ (𝑁 / 2) ∈ ℤ)) | |
14 | 11, 12, 13 | mp3an12 1327 | . . . . . . 7 ⊢ (𝑁 ∈ ℤ → (2 ∥ 𝑁 ↔ (𝑁 / 2) ∈ ℤ)) |
15 | 10, 14 | bitr4d 191 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → ((((𝑁 − 1) + 1) / 2) ∈ ℤ ↔ 2 ∥ 𝑁)) |
16 | 15 | notbid 667 | . . . . 5 ⊢ (𝑁 ∈ ℤ → (¬ (((𝑁 − 1) + 1) / 2) ∈ ℤ ↔ ¬ 2 ∥ 𝑁)) |
17 | 5, 16 | bitrd 188 | . . . 4 ⊢ (𝑁 ∈ ℤ → (((𝑁 − 1) / 2) ∈ ℤ ↔ ¬ 2 ∥ 𝑁)) |
18 | 17, 15 | orbi12d 793 | . . 3 ⊢ (𝑁 ∈ ℤ → ((((𝑁 − 1) / 2) ∈ ℤ ∨ (((𝑁 − 1) + 1) / 2) ∈ ℤ) ↔ (¬ 2 ∥ 𝑁 ∨ 2 ∥ 𝑁))) |
19 | 3, 18 | mpbid 147 | . 2 ⊢ (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ∨ 2 ∥ 𝑁)) |
20 | 19 | orcomd 729 | 1 ⊢ (𝑁 ∈ ℤ → (2 ∥ 𝑁 ∨ ¬ 2 ∥ 𝑁)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ wo 708 ∈ wcel 2148 ≠ wne 2347 class class class wbr 4005 (class class class)co 5877 0cc0 7813 1c1 7814 + caddc 7816 − cmin 8130 / cdiv 8631 2c2 8972 ℤcz 9255 ∥ cdvds 11796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 ax-pre-mulext 7931 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-id 4295 df-po 4298 df-iso 4299 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-iota 5180 df-fun 5220 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-reap 8534 df-ap 8541 df-div 8632 df-inn 8922 df-2 8980 df-n0 9179 df-z 9256 df-dvds 11797 |
This theorem is referenced by: zeoxor 11876 zeo5 11895 m1exp1 11908 flodddiv4 11941 |
Copyright terms: Public domain | W3C validator |