Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > seqf2 | GIF version |
Description: Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 7-Jul-2023.) |
Ref | Expression |
---|---|
seqcl2.1 | ⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝐶) |
seqcl2.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥 + 𝑦) ∈ 𝐶) |
seqf2.3 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
seqf2.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
seqf2.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑥) ∈ 𝐷) |
Ref | Expression |
---|---|
seqf2 | ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqf2.4 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | seqcl2.1 | . . 3 ⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝐶) | |
3 | ssv 3150 | . . . 4 ⊢ 𝐶 ⊆ V | |
4 | 3 | a1i 9 | . . 3 ⊢ (𝜑 → 𝐶 ⊆ V) |
5 | seqf2.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑥) ∈ 𝐷) | |
6 | seqcl2.2 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥 + 𝑦) ∈ 𝐶) | |
7 | 5, 6 | seqovcd 10371 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝐶)) → (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝐶) |
8 | iseqvalcbv 10365 | . . 3 ⊢ frec((𝑠 ∈ (ℤ≥‘𝑀), 𝑡 ∈ V ↦ 〈(𝑠 + 1), (𝑠(𝑢 ∈ (ℤ≥‘𝑀), 𝑣 ∈ 𝐶 ↦ (𝑣 + (𝐹‘(𝑢 + 1))))𝑡)〉), 〈𝑀, (𝐹‘𝑀)〉) = frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) | |
9 | 1, 8, 2, 6, 5 | seqvalcd 10367 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹) = ran frec((𝑠 ∈ (ℤ≥‘𝑀), 𝑡 ∈ V ↦ 〈(𝑠 + 1), (𝑠(𝑢 ∈ (ℤ≥‘𝑀), 𝑣 ∈ 𝐶 ↦ (𝑣 + (𝐹‘(𝑢 + 1))))𝑡)〉), 〈𝑀, (𝐹‘𝑀)〉)) |
10 | 1, 2, 4, 7, 8, 9 | frecuzrdgtclt 10329 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐹):(ℤ≥‘𝑀)⟶𝐶) |
11 | seqf2.3 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
12 | 11 | a1i 9 | . . 3 ⊢ (𝜑 → 𝑍 = (ℤ≥‘𝑀)) |
13 | 12 | feq2d 5309 | . 2 ⊢ (𝜑 → (seq𝑀( + , 𝐹):𝑍⟶𝐶 ↔ seq𝑀( + , 𝐹):(ℤ≥‘𝑀)⟶𝐶)) |
14 | 10, 13 | mpbird 166 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1335 ∈ wcel 2128 Vcvv 2712 ⊆ wss 3102 〈cop 3564 ⟶wf 5168 ‘cfv 5172 (class class class)co 5826 ∈ cmpo 5828 freccfrec 6339 1c1 7735 + caddc 7737 ℤcz 9172 ℤ≥cuz 9444 seqcseq 10353 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4081 ax-sep 4084 ax-nul 4092 ax-pow 4137 ax-pr 4171 ax-un 4395 ax-setind 4498 ax-iinf 4549 ax-cnex 7825 ax-resscn 7826 ax-1cn 7827 ax-1re 7828 ax-icn 7829 ax-addcl 7830 ax-addrcl 7831 ax-mulcl 7832 ax-addcom 7834 ax-addass 7836 ax-distr 7838 ax-i2m1 7839 ax-0lt1 7840 ax-0id 7842 ax-rnegex 7843 ax-cnre 7845 ax-pre-ltirr 7846 ax-pre-ltwlin 7847 ax-pre-lttrn 7848 ax-pre-ltadd 7850 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3396 df-pw 3546 df-sn 3567 df-pr 3568 df-op 3570 df-uni 3775 df-int 3810 df-iun 3853 df-br 3968 df-opab 4028 df-mpt 4029 df-tr 4065 df-id 4255 df-iord 4328 df-on 4330 df-ilim 4331 df-suc 4333 df-iom 4552 df-xp 4594 df-rel 4595 df-cnv 4596 df-co 4597 df-dm 4598 df-rn 4599 df-res 4600 df-ima 4601 df-iota 5137 df-fun 5174 df-fn 5175 df-f 5176 df-f1 5177 df-fo 5178 df-f1o 5179 df-fv 5180 df-riota 5782 df-ov 5829 df-oprab 5830 df-mpo 5831 df-1st 6090 df-2nd 6091 df-recs 6254 df-frec 6340 df-pnf 7916 df-mnf 7917 df-xr 7918 df-ltxr 7919 df-le 7920 df-sub 8052 df-neg 8053 df-inn 8839 df-n0 9096 df-z 9173 df-uz 9445 df-seqfrec 10354 |
This theorem is referenced by: seqp1cd 10374 ennnfonelemh 12203 ennnfonelemom 12207 |
Copyright terms: Public domain | W3C validator |