ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqf2 GIF version

Theorem seqf2 10372
Description: Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 7-Jul-2023.)
Hypotheses
Ref Expression
seqcl2.1 (𝜑 → (𝐹𝑀) ∈ 𝐶)
seqcl2.2 ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥 + 𝑦) ∈ 𝐶)
seqf2.3 𝑍 = (ℤ𝑀)
seqf2.4 (𝜑𝑀 ∈ ℤ)
seqf2.5 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑥) ∈ 𝐷)
Assertion
Ref Expression
seqf2 (𝜑 → seq𝑀( + , 𝐹):𝑍𝐶)
Distinct variable groups:   𝑥, + ,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑍(𝑥,𝑦)

Proof of Theorem seqf2
Dummy variables 𝑠 𝑡 𝑤 𝑧 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqf2.4 . . 3 (𝜑𝑀 ∈ ℤ)
2 seqcl2.1 . . 3 (𝜑 → (𝐹𝑀) ∈ 𝐶)
3 ssv 3150 . . . 4 𝐶 ⊆ V
43a1i 9 . . 3 (𝜑𝐶 ⊆ V)
5 seqf2.5 . . . 4 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑥) ∈ 𝐷)
6 seqcl2.2 . . . 4 ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥 + 𝑦) ∈ 𝐶)
75, 6seqovcd 10371 . . 3 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝐶)
8 iseqvalcbv 10365 . . 3 frec((𝑠 ∈ (ℤ𝑀), 𝑡 ∈ V ↦ ⟨(𝑠 + 1), (𝑠(𝑢 ∈ (ℤ𝑀), 𝑣𝐶 ↦ (𝑣 + (𝐹‘(𝑢 + 1))))𝑡)⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)
91, 8, 2, 6, 5seqvalcd 10367 . . 3 (𝜑 → seq𝑀( + , 𝐹) = ran frec((𝑠 ∈ (ℤ𝑀), 𝑡 ∈ V ↦ ⟨(𝑠 + 1), (𝑠(𝑢 ∈ (ℤ𝑀), 𝑣𝐶 ↦ (𝑣 + (𝐹‘(𝑢 + 1))))𝑡)⟩), ⟨𝑀, (𝐹𝑀)⟩))
101, 2, 4, 7, 8, 9frecuzrdgtclt 10329 . 2 (𝜑 → seq𝑀( + , 𝐹):(ℤ𝑀)⟶𝐶)
11 seqf2.3 . . . 4 𝑍 = (ℤ𝑀)
1211a1i 9 . . 3 (𝜑𝑍 = (ℤ𝑀))
1312feq2d 5309 . 2 (𝜑 → (seq𝑀( + , 𝐹):𝑍𝐶 ↔ seq𝑀( + , 𝐹):(ℤ𝑀)⟶𝐶))
1410, 13mpbird 166 1 (𝜑 → seq𝑀( + , 𝐹):𝑍𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1335  wcel 2128  Vcvv 2712  wss 3102  cop 3564  wf 5168  cfv 5172  (class class class)co 5826  cmpo 5828  freccfrec 6339  1c1 7735   + caddc 7737  cz 9172  cuz 9444  seqcseq 10353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4081  ax-sep 4084  ax-nul 4092  ax-pow 4137  ax-pr 4171  ax-un 4395  ax-setind 4498  ax-iinf 4549  ax-cnex 7825  ax-resscn 7826  ax-1cn 7827  ax-1re 7828  ax-icn 7829  ax-addcl 7830  ax-addrcl 7831  ax-mulcl 7832  ax-addcom 7834  ax-addass 7836  ax-distr 7838  ax-i2m1 7839  ax-0lt1 7840  ax-0id 7842  ax-rnegex 7843  ax-cnre 7845  ax-pre-ltirr 7846  ax-pre-ltwlin 7847  ax-pre-lttrn 7848  ax-pre-ltadd 7850
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4028  df-mpt 4029  df-tr 4065  df-id 4255  df-iord 4328  df-on 4330  df-ilim 4331  df-suc 4333  df-iom 4552  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-iota 5137  df-fun 5174  df-fn 5175  df-f 5176  df-f1 5177  df-fo 5178  df-f1o 5179  df-fv 5180  df-riota 5782  df-ov 5829  df-oprab 5830  df-mpo 5831  df-1st 6090  df-2nd 6091  df-recs 6254  df-frec 6340  df-pnf 7916  df-mnf 7917  df-xr 7918  df-ltxr 7919  df-le 7920  df-sub 8052  df-neg 8053  df-inn 8839  df-n0 9096  df-z 9173  df-uz 9445  df-seqfrec 10354
This theorem is referenced by:  seqp1cd  10374  ennnfonelemh  12203  ennnfonelemom  12207
  Copyright terms: Public domain W3C validator