ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqf2 GIF version

Theorem seqf2 10466
Description: Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 7-Jul-2023.)
Hypotheses
Ref Expression
seqcl2.1 (𝜑 → (𝐹𝑀) ∈ 𝐶)
seqcl2.2 ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥 + 𝑦) ∈ 𝐶)
seqf2.3 𝑍 = (ℤ𝑀)
seqf2.4 (𝜑𝑀 ∈ ℤ)
seqf2.5 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑥) ∈ 𝐷)
Assertion
Ref Expression
seqf2 (𝜑 → seq𝑀( + , 𝐹):𝑍𝐶)
Distinct variable groups:   𝑥, + ,𝑦   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑍(𝑥,𝑦)

Proof of Theorem seqf2
Dummy variables 𝑠 𝑡 𝑤 𝑧 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqf2.4 . . 3 (𝜑𝑀 ∈ ℤ)
2 seqcl2.1 . . 3 (𝜑 → (𝐹𝑀) ∈ 𝐶)
3 ssv 3179 . . . 4 𝐶 ⊆ V
43a1i 9 . . 3 (𝜑𝐶 ⊆ V)
5 seqf2.5 . . . 4 ((𝜑𝑥 ∈ (ℤ‘(𝑀 + 1))) → (𝐹𝑥) ∈ 𝐷)
6 seqcl2.2 . . . 4 ((𝜑 ∧ (𝑥𝐶𝑦𝐷)) → (𝑥 + 𝑦) ∈ 𝐶)
75, 6seqovcd 10465 . . 3 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝐶)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝐶)
8 iseqvalcbv 10459 . . 3 frec((𝑠 ∈ (ℤ𝑀), 𝑡 ∈ V ↦ ⟨(𝑠 + 1), (𝑠(𝑢 ∈ (ℤ𝑀), 𝑣𝐶 ↦ (𝑣 + (𝐹‘(𝑢 + 1))))𝑡)⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)
91, 8, 2, 6, 5seqvalcd 10461 . . 3 (𝜑 → seq𝑀( + , 𝐹) = ran frec((𝑠 ∈ (ℤ𝑀), 𝑡 ∈ V ↦ ⟨(𝑠 + 1), (𝑠(𝑢 ∈ (ℤ𝑀), 𝑣𝐶 ↦ (𝑣 + (𝐹‘(𝑢 + 1))))𝑡)⟩), ⟨𝑀, (𝐹𝑀)⟩))
101, 2, 4, 7, 8, 9frecuzrdgtclt 10423 . 2 (𝜑 → seq𝑀( + , 𝐹):(ℤ𝑀)⟶𝐶)
11 seqf2.3 . . . 4 𝑍 = (ℤ𝑀)
1211a1i 9 . . 3 (𝜑𝑍 = (ℤ𝑀))
1312feq2d 5355 . 2 (𝜑 → (seq𝑀( + , 𝐹):𝑍𝐶 ↔ seq𝑀( + , 𝐹):(ℤ𝑀)⟶𝐶))
1410, 13mpbird 167 1 (𝜑 → seq𝑀( + , 𝐹):𝑍𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  Vcvv 2739  wss 3131  cop 3597  wf 5214  cfv 5218  (class class class)co 5877  cmpo 5879  freccfrec 6393  1c1 7814   + caddc 7816  cz 9255  cuz 9530  seqcseq 10447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-z 9256  df-uz 9531  df-seqfrec 10448
This theorem is referenced by:  seqp1cd  10468  ennnfonelemh  12407  ennnfonelemom  12411
  Copyright terms: Public domain W3C validator