Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > seqf2 | GIF version |
Description: Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.) (Revised by Jim Kingdon, 7-Jul-2023.) |
Ref | Expression |
---|---|
seqcl2.1 | ⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝐶) |
seqcl2.2 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥 + 𝑦) ∈ 𝐶) |
seqf2.3 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
seqf2.4 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
seqf2.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑥) ∈ 𝐷) |
Ref | Expression |
---|---|
seqf2 | ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | seqf2.4 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
2 | seqcl2.1 | . . 3 ⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝐶) | |
3 | ssv 3169 | . . . 4 ⊢ 𝐶 ⊆ V | |
4 | 3 | a1i 9 | . . 3 ⊢ (𝜑 → 𝐶 ⊆ V) |
5 | seqf2.5 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘(𝑀 + 1))) → (𝐹‘𝑥) ∈ 𝐷) | |
6 | seqcl2.2 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷)) → (𝑥 + 𝑦) ∈ 𝐶) | |
7 | 5, 6 | seqovcd 10419 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝐶)) → (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝐶) |
8 | iseqvalcbv 10413 | . . 3 ⊢ frec((𝑠 ∈ (ℤ≥‘𝑀), 𝑡 ∈ V ↦ 〈(𝑠 + 1), (𝑠(𝑢 ∈ (ℤ≥‘𝑀), 𝑣 ∈ 𝐶 ↦ (𝑣 + (𝐹‘(𝑢 + 1))))𝑡)〉), 〈𝑀, (𝐹‘𝑀)〉) = frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝐶 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) | |
9 | 1, 8, 2, 6, 5 | seqvalcd 10415 | . . 3 ⊢ (𝜑 → seq𝑀( + , 𝐹) = ran frec((𝑠 ∈ (ℤ≥‘𝑀), 𝑡 ∈ V ↦ 〈(𝑠 + 1), (𝑠(𝑢 ∈ (ℤ≥‘𝑀), 𝑣 ∈ 𝐶 ↦ (𝑣 + (𝐹‘(𝑢 + 1))))𝑡)〉), 〈𝑀, (𝐹‘𝑀)〉)) |
10 | 1, 2, 4, 7, 8, 9 | frecuzrdgtclt 10377 | . 2 ⊢ (𝜑 → seq𝑀( + , 𝐹):(ℤ≥‘𝑀)⟶𝐶) |
11 | seqf2.3 | . . . 4 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
12 | 11 | a1i 9 | . . 3 ⊢ (𝜑 → 𝑍 = (ℤ≥‘𝑀)) |
13 | 12 | feq2d 5335 | . 2 ⊢ (𝜑 → (seq𝑀( + , 𝐹):𝑍⟶𝐶 ↔ seq𝑀( + , 𝐹):(ℤ≥‘𝑀)⟶𝐶)) |
14 | 10, 13 | mpbird 166 | 1 ⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1348 ∈ wcel 2141 Vcvv 2730 ⊆ wss 3121 〈cop 3586 ⟶wf 5194 ‘cfv 5198 (class class class)co 5853 ∈ cmpo 5855 freccfrec 6369 1c1 7775 + caddc 7777 ℤcz 9212 ℤ≥cuz 9487 seqcseq 10401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-seqfrec 10402 |
This theorem is referenced by: seqp1cd 10422 ennnfonelemh 12359 ennnfonelemom 12363 |
Copyright terms: Public domain | W3C validator |