ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvmptclx GIF version

Theorem dvmptclx 15377
Description: Closure lemma for dvmptmulx 15379 and other related theorems. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
dvmptadd.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptadd.a ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptadd.b ((𝜑𝑥𝑋) → 𝐵𝑉)
dvmptadd.da (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
dvmptclx.ss (𝜑𝑋𝑆)
Assertion
Ref Expression
dvmptclx ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
Distinct variable groups:   𝜑,𝑥   𝑥,𝑆   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem dvmptclx
StepHypRef Expression
1 dvmptadd.s . . . . 5 (𝜑𝑆 ∈ {ℝ, ℂ})
2 cnex 8111 . . . . . . 7 ℂ ∈ V
32a1i 9 . . . . . 6 (𝜑 → ℂ ∈ V)
41elexd 2813 . . . . . 6 (𝜑𝑆 ∈ V)
5 dvmptadd.a . . . . . . 7 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
65fmpttd 5783 . . . . . 6 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℂ)
7 dvmptclx.ss . . . . . 6 (𝜑𝑋𝑆)
8 elpm2r 6803 . . . . . 6 (((ℂ ∈ V ∧ 𝑆 ∈ V) ∧ ((𝑥𝑋𝐴):𝑋⟶ℂ ∧ 𝑋𝑆)) → (𝑥𝑋𝐴) ∈ (ℂ ↑pm 𝑆))
93, 4, 6, 7, 8syl22anc 1272 . . . . 5 (𝜑 → (𝑥𝑋𝐴) ∈ (ℂ ↑pm 𝑆))
10 dvfgg 15347 . . . . 5 ((𝑆 ∈ {ℝ, ℂ} ∧ (𝑥𝑋𝐴) ∈ (ℂ ↑pm 𝑆)) → (𝑆 D (𝑥𝑋𝐴)):dom (𝑆 D (𝑥𝑋𝐴))⟶ℂ)
111, 9, 10syl2anc 411 . . . 4 (𝜑 → (𝑆 D (𝑥𝑋𝐴)):dom (𝑆 D (𝑥𝑋𝐴))⟶ℂ)
12 dvmptadd.da . . . . . . 7 (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
1312dmeqd 4922 . . . . . 6 (𝜑 → dom (𝑆 D (𝑥𝑋𝐴)) = dom (𝑥𝑋𝐵))
14 dvmptadd.b . . . . . . . 8 ((𝜑𝑥𝑋) → 𝐵𝑉)
1514ralrimiva 2603 . . . . . . 7 (𝜑 → ∀𝑥𝑋 𝐵𝑉)
16 dmmptg 5222 . . . . . . 7 (∀𝑥𝑋 𝐵𝑉 → dom (𝑥𝑋𝐵) = 𝑋)
1715, 16syl 14 . . . . . 6 (𝜑 → dom (𝑥𝑋𝐵) = 𝑋)
1813, 17eqtrd 2262 . . . . 5 (𝜑 → dom (𝑆 D (𝑥𝑋𝐴)) = 𝑋)
1918feq2d 5457 . . . 4 (𝜑 → ((𝑆 D (𝑥𝑋𝐴)):dom (𝑆 D (𝑥𝑋𝐴))⟶ℂ ↔ (𝑆 D (𝑥𝑋𝐴)):𝑋⟶ℂ))
2011, 19mpbid 147 . . 3 (𝜑 → (𝑆 D (𝑥𝑋𝐴)):𝑋⟶ℂ)
2112feq1d 5456 . . 3 (𝜑 → ((𝑆 D (𝑥𝑋𝐴)):𝑋⟶ℂ ↔ (𝑥𝑋𝐵):𝑋⟶ℂ))
2220, 21mpbid 147 . 2 (𝜑 → (𝑥𝑋𝐵):𝑋⟶ℂ)
2322fvmptelcdm 5781 1 ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wral 2508  Vcvv 2799  wss 3197  {cpr 3667  cmpt 4144  dom cdm 4716  wf 5310  (class class class)co 5994  pm cpm 6786  cc 7985  cr 7986   D cdv 15314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-isom 5323  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-map 6787  df-pm 6788  df-sup 7139  df-inf 7140  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-xneg 9956  df-xadd 9957  df-seqfrec 10657  df-exp 10748  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-rest 13260  df-topgen 13279  df-psmet 14492  df-xmet 14493  df-met 14494  df-bl 14495  df-mopn 14496  df-top 14657  df-topon 14670  df-bases 14702  df-ntr 14755  df-limced 15315  df-dvap 15316
This theorem is referenced by:  dvmptmulx  15379  dvmptcmulcn  15380  dvmptnegcn  15381  dvmptsubcn  15382  dvmptcjx  15383
  Copyright terms: Public domain W3C validator