| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvmptclx | GIF version | ||
| Description: Closure lemma for dvmptmulx 15242 and other related theorems. (Contributed by Mario Carneiro, 1-Sep-2014.) (Revised by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvmptadd.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| dvmptadd.a | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
| dvmptadd.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) |
| dvmptadd.da | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
| dvmptclx.ss | ⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
| Ref | Expression |
|---|---|
| dvmptclx | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptadd.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | cnex 8062 | . . . . . . 7 ⊢ ℂ ∈ V | |
| 3 | 2 | a1i 9 | . . . . . 6 ⊢ (𝜑 → ℂ ∈ V) |
| 4 | 1 | elexd 2787 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ V) |
| 5 | dvmptadd.a | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) | |
| 6 | 5 | fmpttd 5745 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
| 7 | dvmptclx.ss | . . . . . 6 ⊢ (𝜑 → 𝑋 ⊆ 𝑆) | |
| 8 | elpm2r 6763 | . . . . . 6 ⊢ (((ℂ ∈ V ∧ 𝑆 ∈ V) ∧ ((𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ ∧ 𝑋 ⊆ 𝑆)) → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (ℂ ↑pm 𝑆)) | |
| 9 | 3, 4, 6, 7, 8 | syl22anc 1251 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (ℂ ↑pm 𝑆)) |
| 10 | dvfgg 15210 | . . . . 5 ⊢ ((𝑆 ∈ {ℝ, ℂ} ∧ (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (ℂ ↑pm 𝑆)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)):dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴))⟶ℂ) | |
| 11 | 1, 9, 10 | syl2anc 411 | . . . 4 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)):dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴))⟶ℂ) |
| 12 | dvmptadd.da | . . . . . . 7 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) | |
| 13 | 12 | dmeqd 4886 | . . . . . 6 ⊢ (𝜑 → dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = dom (𝑥 ∈ 𝑋 ↦ 𝐵)) |
| 14 | dvmptadd.b | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ 𝑉) | |
| 15 | 14 | ralrimiva 2580 | . . . . . . 7 ⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑉) |
| 16 | dmmptg 5186 | . . . . . . 7 ⊢ (∀𝑥 ∈ 𝑋 𝐵 ∈ 𝑉 → dom (𝑥 ∈ 𝑋 ↦ 𝐵) = 𝑋) | |
| 17 | 15, 16 | syl 14 | . . . . . 6 ⊢ (𝜑 → dom (𝑥 ∈ 𝑋 ↦ 𝐵) = 𝑋) |
| 18 | 13, 17 | eqtrd 2239 | . . . . 5 ⊢ (𝜑 → dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = 𝑋) |
| 19 | 18 | feq2d 5420 | . . . 4 ⊢ (𝜑 → ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)):dom (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴))⟶ℂ ↔ (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)):𝑋⟶ℂ)) |
| 20 | 11, 19 | mpbid 147 | . . 3 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)):𝑋⟶ℂ) |
| 21 | 12 | feq1d 5419 | . . 3 ⊢ (𝜑 → ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)):𝑋⟶ℂ ↔ (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℂ)) |
| 22 | 20, 21 | mpbid 147 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℂ) |
| 23 | 22 | fvmptelcdm 5743 | 1 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ∀wral 2485 Vcvv 2773 ⊆ wss 3168 {cpr 3636 ↦ cmpt 4110 dom cdm 4680 ⟶wf 5273 (class class class)co 5954 ↑pm cpm 6746 ℂcc 7936 ℝcr 7937 D cdv 15177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-mulrcl 8037 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-precex 8048 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-apti 8053 ax-pre-ltadd 8054 ax-pre-mulgt0 8055 ax-pre-mulext 8056 ax-arch 8057 ax-caucvg 8058 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-if 3574 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-po 4348 df-iso 4349 df-iord 4418 df-on 4420 df-ilim 4421 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-isom 5286 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-recs 6401 df-frec 6487 df-map 6747 df-pm 6748 df-sup 7098 df-inf 7099 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-reap 8661 df-ap 8668 df-div 8759 df-inn 9050 df-2 9108 df-3 9109 df-4 9110 df-n0 9309 df-z 9386 df-uz 9662 df-q 9754 df-rp 9789 df-xneg 9907 df-xadd 9908 df-seqfrec 10606 df-exp 10697 df-cj 11203 df-re 11204 df-im 11205 df-rsqrt 11359 df-abs 11360 df-rest 13123 df-topgen 13142 df-psmet 14355 df-xmet 14356 df-met 14357 df-bl 14358 df-mopn 14359 df-top 14520 df-topon 14533 df-bases 14565 df-ntr 14618 df-limced 15178 df-dvap 15179 |
| This theorem is referenced by: dvmptmulx 15242 dvmptcmulcn 15243 dvmptnegcn 15244 dvmptsubcn 15245 dvmptcjx 15246 |
| Copyright terms: Public domain | W3C validator |