Step | Hyp | Ref
| Expression |
1 | | seqf.2 |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℤ) |
2 | | fveq2 5496 |
. . . . 5
⊢ (𝑥 = 𝑀 → (𝐹‘𝑥) = (𝐹‘𝑀)) |
3 | 2 | eleq1d 2239 |
. . . 4
⊢ (𝑥 = 𝑀 → ((𝐹‘𝑥) ∈ 𝑆 ↔ (𝐹‘𝑀) ∈ 𝑆)) |
4 | | seqf.3 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑍) → (𝐹‘𝑥) ∈ 𝑆) |
5 | 4 | ralrimiva 2543 |
. . . 4
⊢ (𝜑 → ∀𝑥 ∈ 𝑍 (𝐹‘𝑥) ∈ 𝑆) |
6 | | uzid 9501 |
. . . . . 6
⊢ (𝑀 ∈ ℤ → 𝑀 ∈
(ℤ≥‘𝑀)) |
7 | 1, 6 | syl 14 |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
8 | | seqf.1 |
. . . . 5
⊢ 𝑍 =
(ℤ≥‘𝑀) |
9 | 7, 8 | eleqtrrdi 2264 |
. . . 4
⊢ (𝜑 → 𝑀 ∈ 𝑍) |
10 | 3, 5, 9 | rspcdva 2839 |
. . 3
⊢ (𝜑 → (𝐹‘𝑀) ∈ 𝑆) |
11 | | ssv 3169 |
. . . 4
⊢ 𝑆 ⊆ V |
12 | 11 | a1i 9 |
. . 3
⊢ (𝜑 → 𝑆 ⊆ V) |
13 | | simprl 526 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → 𝑥 ∈ (ℤ≥‘𝑀)) |
14 | | simprr 527 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → 𝑦 ∈ 𝑆) |
15 | | seqf.4 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
16 | 15 | caovclg 6005 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑎 + 𝑏) ∈ 𝑆) |
17 | 16 | adantlr 474 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) ∧ (𝑎 ∈ 𝑆 ∧ 𝑏 ∈ 𝑆)) → (𝑎 + 𝑏) ∈ 𝑆) |
18 | | fveq2 5496 |
. . . . . . . 8
⊢ (𝑐 = (𝑥 + 1) → (𝐹‘𝑐) = (𝐹‘(𝑥 + 1))) |
19 | 18 | eleq1d 2239 |
. . . . . . 7
⊢ (𝑐 = (𝑥 + 1) → ((𝐹‘𝑐) ∈ 𝑆 ↔ (𝐹‘(𝑥 + 1)) ∈ 𝑆)) |
20 | | fveq2 5496 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑐 → (𝐹‘𝑥) = (𝐹‘𝑐)) |
21 | 20 | eleq1d 2239 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑐 → ((𝐹‘𝑥) ∈ 𝑆 ↔ (𝐹‘𝑐) ∈ 𝑆)) |
22 | 21 | cbvralv 2696 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝑍 (𝐹‘𝑥) ∈ 𝑆 ↔ ∀𝑐 ∈ 𝑍 (𝐹‘𝑐) ∈ 𝑆) |
23 | 5, 22 | sylib 121 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑐 ∈ 𝑍 (𝐹‘𝑐) ∈ 𝑆) |
24 | 23 | adantr 274 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → ∀𝑐 ∈ 𝑍 (𝐹‘𝑐) ∈ 𝑆) |
25 | | peano2uz 9542 |
. . . . . . . . 9
⊢ (𝑥 ∈
(ℤ≥‘𝑀) → (𝑥 + 1) ∈
(ℤ≥‘𝑀)) |
26 | 25, 8 | eleqtrrdi 2264 |
. . . . . . . 8
⊢ (𝑥 ∈
(ℤ≥‘𝑀) → (𝑥 + 1) ∈ 𝑍) |
27 | 13, 26 | syl 14 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 1) ∈ 𝑍) |
28 | 19, 24, 27 | rspcdva 2839 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → (𝐹‘(𝑥 + 1)) ∈ 𝑆) |
29 | 17, 14, 28 | caovcld 6006 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝑆) |
30 | | fvoveq1 5876 |
. . . . . . 7
⊢ (𝑧 = 𝑥 → (𝐹‘(𝑧 + 1)) = (𝐹‘(𝑥 + 1))) |
31 | 30 | oveq2d 5869 |
. . . . . 6
⊢ (𝑧 = 𝑥 → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘(𝑥 + 1)))) |
32 | | oveq1 5860 |
. . . . . 6
⊢ (𝑤 = 𝑦 → (𝑤 + (𝐹‘(𝑥 + 1))) = (𝑦 + (𝐹‘(𝑥 + 1)))) |
33 | | eqid 2170 |
. . . . . 6
⊢ (𝑧 ∈
(ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) = (𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) |
34 | 31, 32, 33 | ovmpog 5987 |
. . . . 5
⊢ ((𝑥 ∈
(ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆 ∧ (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝑆) → (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = (𝑦 + (𝐹‘(𝑥 + 1)))) |
35 | 13, 14, 29, 34 | syl3anc 1233 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = (𝑦 + (𝐹‘(𝑥 + 1)))) |
36 | 35, 29 | eqeltrd 2247 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ (ℤ≥‘𝑀) ∧ 𝑦 ∈ 𝑆)) → (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝑆) |
37 | | iseqvalcbv 10413 |
. . 3
⊢
frec((𝑠 ∈
(ℤ≥‘𝑀), 𝑡 ∈ V ↦ 〈(𝑠 + 1), (𝑠(𝑢 ∈ (ℤ≥‘𝑀), 𝑣 ∈ 𝑆 ↦ (𝑣 + (𝐹‘(𝑢 + 1))))𝑡)〉), 〈𝑀, (𝐹‘𝑀)〉) = frec((𝑥 ∈ (ℤ≥‘𝑀), 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ≥‘𝑀), 𝑤 ∈ 𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)〉), 〈𝑀, (𝐹‘𝑀)〉) |
38 | 8 | eleq2i 2237 |
. . . . 5
⊢ (𝑥 ∈ 𝑍 ↔ 𝑥 ∈ (ℤ≥‘𝑀)) |
39 | 38, 4 | sylan2br 286 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑥) ∈ 𝑆) |
40 | 1, 37, 39, 15 | seq3val 10414 |
. . 3
⊢ (𝜑 → seq𝑀( + , 𝐹) = ran frec((𝑠 ∈ (ℤ≥‘𝑀), 𝑡 ∈ V ↦ 〈(𝑠 + 1), (𝑠(𝑢 ∈ (ℤ≥‘𝑀), 𝑣 ∈ 𝑆 ↦ (𝑣 + (𝐹‘(𝑢 + 1))))𝑡)〉), 〈𝑀, (𝐹‘𝑀)〉)) |
41 | 1, 10, 12, 36, 37, 40 | frecuzrdgtclt 10377 |
. 2
⊢ (𝜑 → seq𝑀( + , 𝐹):(ℤ≥‘𝑀)⟶𝑆) |
42 | 8 | a1i 9 |
. . 3
⊢ (𝜑 → 𝑍 = (ℤ≥‘𝑀)) |
43 | 42 | feq2d 5335 |
. 2
⊢ (𝜑 → (seq𝑀( + , 𝐹):𝑍⟶𝑆 ↔ seq𝑀( + , 𝐹):(ℤ≥‘𝑀)⟶𝑆)) |
44 | 41, 43 | mpbird 166 |
1
⊢ (𝜑 → seq𝑀( + , 𝐹):𝑍⟶𝑆) |