ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqf GIF version

Theorem seqf 10417
Description: Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypotheses
Ref Expression
seqf.1 𝑍 = (ℤ𝑀)
seqf.2 (𝜑𝑀 ∈ ℤ)
seqf.3 ((𝜑𝑥𝑍) → (𝐹𝑥) ∈ 𝑆)
seqf.4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
seqf (𝜑 → seq𝑀( + , 𝐹):𝑍𝑆)
Distinct variable groups:   𝑥, + ,𝑦   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥,𝑆,𝑦   𝑥,𝑍   𝜑,𝑥,𝑦
Allowed substitution hint:   𝑍(𝑦)

Proof of Theorem seqf
Dummy variables 𝑎 𝑏 𝑠 𝑡 𝑤 𝑧 𝑢 𝑣 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqf.2 . . 3 (𝜑𝑀 ∈ ℤ)
2 fveq2 5496 . . . . 5 (𝑥 = 𝑀 → (𝐹𝑥) = (𝐹𝑀))
32eleq1d 2239 . . . 4 (𝑥 = 𝑀 → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹𝑀) ∈ 𝑆))
4 seqf.3 . . . . 5 ((𝜑𝑥𝑍) → (𝐹𝑥) ∈ 𝑆)
54ralrimiva 2543 . . . 4 (𝜑 → ∀𝑥𝑍 (𝐹𝑥) ∈ 𝑆)
6 uzid 9501 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
71, 6syl 14 . . . . 5 (𝜑𝑀 ∈ (ℤ𝑀))
8 seqf.1 . . . . 5 𝑍 = (ℤ𝑀)
97, 8eleqtrrdi 2264 . . . 4 (𝜑𝑀𝑍)
103, 5, 9rspcdva 2839 . . 3 (𝜑 → (𝐹𝑀) ∈ 𝑆)
11 ssv 3169 . . . 4 𝑆 ⊆ V
1211a1i 9 . . 3 (𝜑𝑆 ⊆ V)
13 simprl 526 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → 𝑥 ∈ (ℤ𝑀))
14 simprr 527 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → 𝑦𝑆)
15 seqf.4 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
1615caovclg 6005 . . . . . . 7 ((𝜑 ∧ (𝑎𝑆𝑏𝑆)) → (𝑎 + 𝑏) ∈ 𝑆)
1716adantlr 474 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎 + 𝑏) ∈ 𝑆)
18 fveq2 5496 . . . . . . . 8 (𝑐 = (𝑥 + 1) → (𝐹𝑐) = (𝐹‘(𝑥 + 1)))
1918eleq1d 2239 . . . . . . 7 (𝑐 = (𝑥 + 1) → ((𝐹𝑐) ∈ 𝑆 ↔ (𝐹‘(𝑥 + 1)) ∈ 𝑆))
20 fveq2 5496 . . . . . . . . . . 11 (𝑥 = 𝑐 → (𝐹𝑥) = (𝐹𝑐))
2120eleq1d 2239 . . . . . . . . . 10 (𝑥 = 𝑐 → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹𝑐) ∈ 𝑆))
2221cbvralv 2696 . . . . . . . . 9 (∀𝑥𝑍 (𝐹𝑥) ∈ 𝑆 ↔ ∀𝑐𝑍 (𝐹𝑐) ∈ 𝑆)
235, 22sylib 121 . . . . . . . 8 (𝜑 → ∀𝑐𝑍 (𝐹𝑐) ∈ 𝑆)
2423adantr 274 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → ∀𝑐𝑍 (𝐹𝑐) ∈ 𝑆)
25 peano2uz 9542 . . . . . . . . 9 (𝑥 ∈ (ℤ𝑀) → (𝑥 + 1) ∈ (ℤ𝑀))
2625, 8eleqtrrdi 2264 . . . . . . . 8 (𝑥 ∈ (ℤ𝑀) → (𝑥 + 1) ∈ 𝑍)
2713, 26syl 14 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑥 + 1) ∈ 𝑍)
2819, 24, 27rspcdva 2839 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝐹‘(𝑥 + 1)) ∈ 𝑆)
2917, 14, 28caovcld 6006 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝑆)
30 fvoveq1 5876 . . . . . . 7 (𝑧 = 𝑥 → (𝐹‘(𝑧 + 1)) = (𝐹‘(𝑥 + 1)))
3130oveq2d 5869 . . . . . 6 (𝑧 = 𝑥 → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘(𝑥 + 1))))
32 oveq1 5860 . . . . . 6 (𝑤 = 𝑦 → (𝑤 + (𝐹‘(𝑥 + 1))) = (𝑦 + (𝐹‘(𝑥 + 1))))
33 eqid 2170 . . . . . 6 (𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) = (𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))
3431, 32, 33ovmpog 5987 . . . . 5 ((𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆 ∧ (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝑆) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = (𝑦 + (𝐹‘(𝑥 + 1))))
3513, 14, 29, 34syl3anc 1233 . . . 4 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = (𝑦 + (𝐹‘(𝑥 + 1))))
3635, 29eqeltrd 2247 . . 3 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝑆)
37 iseqvalcbv 10413 . . 3 frec((𝑠 ∈ (ℤ𝑀), 𝑡 ∈ V ↦ ⟨(𝑠 + 1), (𝑠(𝑢 ∈ (ℤ𝑀), 𝑣𝑆 ↦ (𝑣 + (𝐹‘(𝑢 + 1))))𝑡)⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)
388eleq2i 2237 . . . . 5 (𝑥𝑍𝑥 ∈ (ℤ𝑀))
3938, 4sylan2br 286 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
401, 37, 39, 15seq3val 10414 . . 3 (𝜑 → seq𝑀( + , 𝐹) = ran frec((𝑠 ∈ (ℤ𝑀), 𝑡 ∈ V ↦ ⟨(𝑠 + 1), (𝑠(𝑢 ∈ (ℤ𝑀), 𝑣𝑆 ↦ (𝑣 + (𝐹‘(𝑢 + 1))))𝑡)⟩), ⟨𝑀, (𝐹𝑀)⟩))
411, 10, 12, 36, 37, 40frecuzrdgtclt 10377 . 2 (𝜑 → seq𝑀( + , 𝐹):(ℤ𝑀)⟶𝑆)
428a1i 9 . . 3 (𝜑𝑍 = (ℤ𝑀))
4342feq2d 5335 . 2 (𝜑 → (seq𝑀( + , 𝐹):𝑍𝑆 ↔ seq𝑀( + , 𝐹):(ℤ𝑀)⟶𝑆))
4441, 43mpbird 166 1 (𝜑 → seq𝑀( + , 𝐹):𝑍𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  wral 2448  Vcvv 2730  wss 3121  cop 3586  wf 5194  cfv 5198  (class class class)co 5853  cmpo 5855  freccfrec 6369  1c1 7775   + caddc 7777  cz 9212  cuz 9487  seqcseq 10401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-addcom 7874  ax-addass 7876  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-0id 7882  ax-rnegex 7883  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-ltadd 7890
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-ilim 4354  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-recs 6284  df-frec 6370  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-seqfrec 10402
This theorem is referenced by:  seq3p1  10418  seq3feq2  10426  seq3feq  10428  serf  10430  serfre  10431  seq3split  10435  seq3caopr2  10438  seq3f1olemqsumkj  10454  seq3homo  10466  seq3z  10467  seqfeq3  10468  seq3distr  10469  ser3ge0  10473  exp3vallem  10477  exp3val  10478  facnn  10661  fac0  10662  bcval5  10697  seq3coll  10777  seq3shft  10802  resqrexlemf  10971  prodf  11501  algrf  11999  pcmptcl  12294  nninfdclemf  12404  lgsval  13699  lgscllem  13702  lgsval4a  13717  lgsneg  13719  lgsdir  13730  lgsdilem2  13731  lgsdi  13732  lgsne0  13733
  Copyright terms: Public domain W3C validator