ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqf GIF version

Theorem seqf 10673
Description: Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypotheses
Ref Expression
seqf.1 𝑍 = (ℤ𝑀)
seqf.2 (𝜑𝑀 ∈ ℤ)
seqf.3 ((𝜑𝑥𝑍) → (𝐹𝑥) ∈ 𝑆)
seqf.4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
seqf (𝜑 → seq𝑀( + , 𝐹):𝑍𝑆)
Distinct variable groups:   𝑥, + ,𝑦   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥,𝑆,𝑦   𝑥,𝑍   𝜑,𝑥,𝑦
Allowed substitution hint:   𝑍(𝑦)

Proof of Theorem seqf
Dummy variables 𝑎 𝑏 𝑠 𝑡 𝑤 𝑧 𝑢 𝑣 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqf.2 . . 3 (𝜑𝑀 ∈ ℤ)
2 fveq2 5623 . . . . 5 (𝑥 = 𝑀 → (𝐹𝑥) = (𝐹𝑀))
32eleq1d 2298 . . . 4 (𝑥 = 𝑀 → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹𝑀) ∈ 𝑆))
4 seqf.3 . . . . 5 ((𝜑𝑥𝑍) → (𝐹𝑥) ∈ 𝑆)
54ralrimiva 2603 . . . 4 (𝜑 → ∀𝑥𝑍 (𝐹𝑥) ∈ 𝑆)
6 uzid 9724 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
71, 6syl 14 . . . . 5 (𝜑𝑀 ∈ (ℤ𝑀))
8 seqf.1 . . . . 5 𝑍 = (ℤ𝑀)
97, 8eleqtrrdi 2323 . . . 4 (𝜑𝑀𝑍)
103, 5, 9rspcdva 2912 . . 3 (𝜑 → (𝐹𝑀) ∈ 𝑆)
11 ssv 3246 . . . 4 𝑆 ⊆ V
1211a1i 9 . . 3 (𝜑𝑆 ⊆ V)
13 simprl 529 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → 𝑥 ∈ (ℤ𝑀))
14 simprr 531 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → 𝑦𝑆)
15 seqf.4 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
1615caovclg 6149 . . . . . . 7 ((𝜑 ∧ (𝑎𝑆𝑏𝑆)) → (𝑎 + 𝑏) ∈ 𝑆)
1716adantlr 477 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎 + 𝑏) ∈ 𝑆)
18 fveq2 5623 . . . . . . . 8 (𝑐 = (𝑥 + 1) → (𝐹𝑐) = (𝐹‘(𝑥 + 1)))
1918eleq1d 2298 . . . . . . 7 (𝑐 = (𝑥 + 1) → ((𝐹𝑐) ∈ 𝑆 ↔ (𝐹‘(𝑥 + 1)) ∈ 𝑆))
20 fveq2 5623 . . . . . . . . . . 11 (𝑥 = 𝑐 → (𝐹𝑥) = (𝐹𝑐))
2120eleq1d 2298 . . . . . . . . . 10 (𝑥 = 𝑐 → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹𝑐) ∈ 𝑆))
2221cbvralv 2765 . . . . . . . . 9 (∀𝑥𝑍 (𝐹𝑥) ∈ 𝑆 ↔ ∀𝑐𝑍 (𝐹𝑐) ∈ 𝑆)
235, 22sylib 122 . . . . . . . 8 (𝜑 → ∀𝑐𝑍 (𝐹𝑐) ∈ 𝑆)
2423adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → ∀𝑐𝑍 (𝐹𝑐) ∈ 𝑆)
25 peano2uz 9766 . . . . . . . . 9 (𝑥 ∈ (ℤ𝑀) → (𝑥 + 1) ∈ (ℤ𝑀))
2625, 8eleqtrrdi 2323 . . . . . . . 8 (𝑥 ∈ (ℤ𝑀) → (𝑥 + 1) ∈ 𝑍)
2713, 26syl 14 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑥 + 1) ∈ 𝑍)
2819, 24, 27rspcdva 2912 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝐹‘(𝑥 + 1)) ∈ 𝑆)
2917, 14, 28caovcld 6150 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝑆)
30 fvoveq1 6017 . . . . . . 7 (𝑧 = 𝑥 → (𝐹‘(𝑧 + 1)) = (𝐹‘(𝑥 + 1)))
3130oveq2d 6010 . . . . . 6 (𝑧 = 𝑥 → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘(𝑥 + 1))))
32 oveq1 6001 . . . . . 6 (𝑤 = 𝑦 → (𝑤 + (𝐹‘(𝑥 + 1))) = (𝑦 + (𝐹‘(𝑥 + 1))))
33 eqid 2229 . . . . . 6 (𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) = (𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))
3431, 32, 33ovmpog 6130 . . . . 5 ((𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆 ∧ (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝑆) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = (𝑦 + (𝐹‘(𝑥 + 1))))
3513, 14, 29, 34syl3anc 1271 . . . 4 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = (𝑦 + (𝐹‘(𝑥 + 1))))
3635, 29eqeltrd 2306 . . 3 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝑆)
37 iseqvalcbv 10668 . . 3 frec((𝑠 ∈ (ℤ𝑀), 𝑡 ∈ V ↦ ⟨(𝑠 + 1), (𝑠(𝑢 ∈ (ℤ𝑀), 𝑣𝑆 ↦ (𝑣 + (𝐹‘(𝑢 + 1))))𝑡)⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)
388eleq2i 2296 . . . . 5 (𝑥𝑍𝑥 ∈ (ℤ𝑀))
3938, 4sylan2br 288 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
401, 37, 39, 15seq3val 10669 . . 3 (𝜑 → seq𝑀( + , 𝐹) = ran frec((𝑠 ∈ (ℤ𝑀), 𝑡 ∈ V ↦ ⟨(𝑠 + 1), (𝑠(𝑢 ∈ (ℤ𝑀), 𝑣𝑆 ↦ (𝑣 + (𝐹‘(𝑢 + 1))))𝑡)⟩), ⟨𝑀, (𝐹𝑀)⟩))
411, 10, 12, 36, 37, 40frecuzrdgtclt 10630 . 2 (𝜑 → seq𝑀( + , 𝐹):(ℤ𝑀)⟶𝑆)
428a1i 9 . . 3 (𝜑𝑍 = (ℤ𝑀))
4342feq2d 5457 . 2 (𝜑 → (seq𝑀( + , 𝐹):𝑍𝑆 ↔ seq𝑀( + , 𝐹):(ℤ𝑀)⟶𝑆))
4441, 43mpbird 167 1 (𝜑 → seq𝑀( + , 𝐹):𝑍𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wral 2508  Vcvv 2799  wss 3197  cop 3669  wf 5310  cfv 5314  (class class class)co 5994  cmpo 5996  freccfrec 6526  1c1 7988   + caddc 7990  cz 9434  cuz 9710  seqcseq 10656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-inn 9099  df-n0 9358  df-z 9435  df-uz 9711  df-seqfrec 10657
This theorem is referenced by:  seq3p1  10674  seq3feq2  10685  seq3feq  10689  serf  10692  serfre  10693  seq3split  10697  seq3caopr2  10702  seq3f1olemqsumkj  10720  seq3homo  10736  seq3z  10737  seqfeq3  10738  seq3distr  10741  ser3ge0  10745  exp3vallem  10749  exp3val  10750  facnn  10936  fac0  10937  bcval5  10972  seq3coll  11051  seq3shft  11335  resqrexlemf  11504  prodf  12035  algrf  12553  pcmptcl  12851  nninfdclemf  13006  mulgval  13645  mulgfng  13647  mulgnnsubcl  13657  lgsval  15668  lgscllem  15671  lgsval4a  15686  lgsneg  15688  lgsdir  15699  lgsdilem2  15700  lgsdi  15701  lgsne0  15702
  Copyright terms: Public domain W3C validator