ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqf GIF version

Theorem seqf 10121
Description: Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypotheses
Ref Expression
seqf.1 𝑍 = (ℤ𝑀)
seqf.2 (𝜑𝑀 ∈ ℤ)
seqf.3 ((𝜑𝑥𝑍) → (𝐹𝑥) ∈ 𝑆)
seqf.4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
seqf (𝜑 → seq𝑀( + , 𝐹):𝑍𝑆)
Distinct variable groups:   𝑥, + ,𝑦   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥,𝑆,𝑦   𝑥,𝑍   𝜑,𝑥,𝑦
Allowed substitution hint:   𝑍(𝑦)

Proof of Theorem seqf
Dummy variables 𝑎 𝑏 𝑠 𝑡 𝑤 𝑧 𝑢 𝑣 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqf.2 . . 3 (𝜑𝑀 ∈ ℤ)
2 fveq2 5373 . . . . 5 (𝑥 = 𝑀 → (𝐹𝑥) = (𝐹𝑀))
32eleq1d 2181 . . . 4 (𝑥 = 𝑀 → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹𝑀) ∈ 𝑆))
4 seqf.3 . . . . 5 ((𝜑𝑥𝑍) → (𝐹𝑥) ∈ 𝑆)
54ralrimiva 2477 . . . 4 (𝜑 → ∀𝑥𝑍 (𝐹𝑥) ∈ 𝑆)
6 uzid 9236 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
71, 6syl 14 . . . . 5 (𝜑𝑀 ∈ (ℤ𝑀))
8 seqf.1 . . . . 5 𝑍 = (ℤ𝑀)
97, 8syl6eleqr 2206 . . . 4 (𝜑𝑀𝑍)
103, 5, 9rspcdva 2763 . . 3 (𝜑 → (𝐹𝑀) ∈ 𝑆)
11 ssv 3083 . . . 4 𝑆 ⊆ V
1211a1i 9 . . 3 (𝜑𝑆 ⊆ V)
13 simprl 503 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → 𝑥 ∈ (ℤ𝑀))
14 simprr 504 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → 𝑦𝑆)
15 seqf.4 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
1615caovclg 5875 . . . . . . 7 ((𝜑 ∧ (𝑎𝑆𝑏𝑆)) → (𝑎 + 𝑏) ∈ 𝑆)
1716adantlr 466 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎 + 𝑏) ∈ 𝑆)
18 fveq2 5373 . . . . . . . 8 (𝑐 = (𝑥 + 1) → (𝐹𝑐) = (𝐹‘(𝑥 + 1)))
1918eleq1d 2181 . . . . . . 7 (𝑐 = (𝑥 + 1) → ((𝐹𝑐) ∈ 𝑆 ↔ (𝐹‘(𝑥 + 1)) ∈ 𝑆))
20 fveq2 5373 . . . . . . . . . . 11 (𝑥 = 𝑐 → (𝐹𝑥) = (𝐹𝑐))
2120eleq1d 2181 . . . . . . . . . 10 (𝑥 = 𝑐 → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹𝑐) ∈ 𝑆))
2221cbvralv 2626 . . . . . . . . 9 (∀𝑥𝑍 (𝐹𝑥) ∈ 𝑆 ↔ ∀𝑐𝑍 (𝐹𝑐) ∈ 𝑆)
235, 22sylib 121 . . . . . . . 8 (𝜑 → ∀𝑐𝑍 (𝐹𝑐) ∈ 𝑆)
2423adantr 272 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → ∀𝑐𝑍 (𝐹𝑐) ∈ 𝑆)
25 peano2uz 9274 . . . . . . . . 9 (𝑥 ∈ (ℤ𝑀) → (𝑥 + 1) ∈ (ℤ𝑀))
2625, 8syl6eleqr 2206 . . . . . . . 8 (𝑥 ∈ (ℤ𝑀) → (𝑥 + 1) ∈ 𝑍)
2713, 26syl 14 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑥 + 1) ∈ 𝑍)
2819, 24, 27rspcdva 2763 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝐹‘(𝑥 + 1)) ∈ 𝑆)
2917, 14, 28caovcld 5876 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝑆)
30 fvoveq1 5749 . . . . . . 7 (𝑧 = 𝑥 → (𝐹‘(𝑧 + 1)) = (𝐹‘(𝑥 + 1)))
3130oveq2d 5742 . . . . . 6 (𝑧 = 𝑥 → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘(𝑥 + 1))))
32 oveq1 5733 . . . . . 6 (𝑤 = 𝑦 → (𝑤 + (𝐹‘(𝑥 + 1))) = (𝑦 + (𝐹‘(𝑥 + 1))))
33 eqid 2113 . . . . . 6 (𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) = (𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))
3431, 32, 33ovmpog 5857 . . . . 5 ((𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆 ∧ (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝑆) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = (𝑦 + (𝐹‘(𝑥 + 1))))
3513, 14, 29, 34syl3anc 1197 . . . 4 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = (𝑦 + (𝐹‘(𝑥 + 1))))
3635, 29eqeltrd 2189 . . 3 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝑆)
37 iseqvalcbv 10117 . . 3 frec((𝑠 ∈ (ℤ𝑀), 𝑡 ∈ V ↦ ⟨(𝑠 + 1), (𝑠(𝑢 ∈ (ℤ𝑀), 𝑣𝑆 ↦ (𝑣 + (𝐹‘(𝑢 + 1))))𝑡)⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)
388eleq2i 2179 . . . . 5 (𝑥𝑍𝑥 ∈ (ℤ𝑀))
3938, 4sylan2br 284 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
401, 37, 39, 15seq3val 10118 . . 3 (𝜑 → seq𝑀( + , 𝐹) = ran frec((𝑠 ∈ (ℤ𝑀), 𝑡 ∈ V ↦ ⟨(𝑠 + 1), (𝑠(𝑢 ∈ (ℤ𝑀), 𝑣𝑆 ↦ (𝑣 + (𝐹‘(𝑢 + 1))))𝑡)⟩), ⟨𝑀, (𝐹𝑀)⟩))
411, 10, 12, 36, 37, 40frecuzrdgtclt 10081 . 2 (𝜑 → seq𝑀( + , 𝐹):(ℤ𝑀)⟶𝑆)
428a1i 9 . . 3 (𝜑𝑍 = (ℤ𝑀))
4342feq2d 5216 . 2 (𝜑 → (seq𝑀( + , 𝐹):𝑍𝑆 ↔ seq𝑀( + , 𝐹):(ℤ𝑀)⟶𝑆))
4441, 43mpbird 166 1 (𝜑 → seq𝑀( + , 𝐹):𝑍𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1312  wcel 1461  wral 2388  Vcvv 2655  wss 3035  cop 3494  wf 5075  cfv 5079  (class class class)co 5726  cmpo 5728  freccfrec 6239  1c1 7542   + caddc 7544  cz 8952  cuz 9222  seqcseq 10105
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-coll 4001  ax-sep 4004  ax-nul 4012  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-iinf 4460  ax-cnex 7630  ax-resscn 7631  ax-1cn 7632  ax-1re 7633  ax-icn 7634  ax-addcl 7635  ax-addrcl 7636  ax-mulcl 7637  ax-addcom 7639  ax-addass 7641  ax-distr 7643  ax-i2m1 7644  ax-0lt1 7645  ax-0id 7647  ax-rnegex 7648  ax-cnre 7650  ax-pre-ltirr 7651  ax-pre-ltwlin 7652  ax-pre-lttrn 7653  ax-pre-ltadd 7655
This theorem depends on definitions:  df-bi 116  df-3or 944  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rab 2397  df-v 2657  df-sbc 2877  df-csb 2970  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-nul 3328  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-int 3736  df-iun 3779  df-br 3894  df-opab 3948  df-mpt 3949  df-tr 3985  df-id 4173  df-iord 4246  df-on 4248  df-ilim 4249  df-suc 4251  df-iom 4463  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-rn 4508  df-res 4509  df-ima 4510  df-iota 5044  df-fun 5081  df-fn 5082  df-f 5083  df-f1 5084  df-fo 5085  df-f1o 5086  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-1st 5990  df-2nd 5991  df-recs 6154  df-frec 6240  df-pnf 7720  df-mnf 7721  df-xr 7722  df-ltxr 7723  df-le 7724  df-sub 7852  df-neg 7853  df-inn 8625  df-n0 8876  df-z 8953  df-uz 9223  df-seqfrec 10106
This theorem is referenced by:  seq3p1  10122  seq3feq2  10130  seq3feq  10132  serf  10134  serfre  10135  seq3split  10139  seq3caopr2  10142  seq3f1olemqsumkj  10158  seq3homo  10170  seq3z  10171  seqfeq3  10172  seq3distr  10173  ser3ge0  10177  exp3vallem  10181  exp3val  10182  facnn  10360  fac0  10361  bcval5  10396  seq3coll  10472  seq3shft  10497  resqrexlemf  10665  algrf  11566
  Copyright terms: Public domain W3C validator