ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqf GIF version

Theorem seqf 10460
Description: Range of the recursive sequence builder. (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypotheses
Ref Expression
seqf.1 𝑍 = (ℤ𝑀)
seqf.2 (𝜑𝑀 ∈ ℤ)
seqf.3 ((𝜑𝑥𝑍) → (𝐹𝑥) ∈ 𝑆)
seqf.4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
Assertion
Ref Expression
seqf (𝜑 → seq𝑀( + , 𝐹):𝑍𝑆)
Distinct variable groups:   𝑥, + ,𝑦   𝑥,𝐹,𝑦   𝑥,𝑀,𝑦   𝑥,𝑆,𝑦   𝑥,𝑍   𝜑,𝑥,𝑦
Allowed substitution hint:   𝑍(𝑦)

Proof of Theorem seqf
Dummy variables 𝑎 𝑏 𝑠 𝑡 𝑤 𝑧 𝑢 𝑣 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 seqf.2 . . 3 (𝜑𝑀 ∈ ℤ)
2 fveq2 5515 . . . . 5 (𝑥 = 𝑀 → (𝐹𝑥) = (𝐹𝑀))
32eleq1d 2246 . . . 4 (𝑥 = 𝑀 → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹𝑀) ∈ 𝑆))
4 seqf.3 . . . . 5 ((𝜑𝑥𝑍) → (𝐹𝑥) ∈ 𝑆)
54ralrimiva 2550 . . . 4 (𝜑 → ∀𝑥𝑍 (𝐹𝑥) ∈ 𝑆)
6 uzid 9541 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ (ℤ𝑀))
71, 6syl 14 . . . . 5 (𝜑𝑀 ∈ (ℤ𝑀))
8 seqf.1 . . . . 5 𝑍 = (ℤ𝑀)
97, 8eleqtrrdi 2271 . . . 4 (𝜑𝑀𝑍)
103, 5, 9rspcdva 2846 . . 3 (𝜑 → (𝐹𝑀) ∈ 𝑆)
11 ssv 3177 . . . 4 𝑆 ⊆ V
1211a1i 9 . . 3 (𝜑𝑆 ⊆ V)
13 simprl 529 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → 𝑥 ∈ (ℤ𝑀))
14 simprr 531 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → 𝑦𝑆)
15 seqf.4 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
1615caovclg 6026 . . . . . . 7 ((𝜑 ∧ (𝑎𝑆𝑏𝑆)) → (𝑎 + 𝑏) ∈ 𝑆)
1716adantlr 477 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) ∧ (𝑎𝑆𝑏𝑆)) → (𝑎 + 𝑏) ∈ 𝑆)
18 fveq2 5515 . . . . . . . 8 (𝑐 = (𝑥 + 1) → (𝐹𝑐) = (𝐹‘(𝑥 + 1)))
1918eleq1d 2246 . . . . . . 7 (𝑐 = (𝑥 + 1) → ((𝐹𝑐) ∈ 𝑆 ↔ (𝐹‘(𝑥 + 1)) ∈ 𝑆))
20 fveq2 5515 . . . . . . . . . . 11 (𝑥 = 𝑐 → (𝐹𝑥) = (𝐹𝑐))
2120eleq1d 2246 . . . . . . . . . 10 (𝑥 = 𝑐 → ((𝐹𝑥) ∈ 𝑆 ↔ (𝐹𝑐) ∈ 𝑆))
2221cbvralv 2703 . . . . . . . . 9 (∀𝑥𝑍 (𝐹𝑥) ∈ 𝑆 ↔ ∀𝑐𝑍 (𝐹𝑐) ∈ 𝑆)
235, 22sylib 122 . . . . . . . 8 (𝜑 → ∀𝑐𝑍 (𝐹𝑐) ∈ 𝑆)
2423adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → ∀𝑐𝑍 (𝐹𝑐) ∈ 𝑆)
25 peano2uz 9582 . . . . . . . . 9 (𝑥 ∈ (ℤ𝑀) → (𝑥 + 1) ∈ (ℤ𝑀))
2625, 8eleqtrrdi 2271 . . . . . . . 8 (𝑥 ∈ (ℤ𝑀) → (𝑥 + 1) ∈ 𝑍)
2713, 26syl 14 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑥 + 1) ∈ 𝑍)
2819, 24, 27rspcdva 2846 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝐹‘(𝑥 + 1)) ∈ 𝑆)
2917, 14, 28caovcld 6027 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝑆)
30 fvoveq1 5897 . . . . . . 7 (𝑧 = 𝑥 → (𝐹‘(𝑧 + 1)) = (𝐹‘(𝑥 + 1)))
3130oveq2d 5890 . . . . . 6 (𝑧 = 𝑥 → (𝑤 + (𝐹‘(𝑧 + 1))) = (𝑤 + (𝐹‘(𝑥 + 1))))
32 oveq1 5881 . . . . . 6 (𝑤 = 𝑦 → (𝑤 + (𝐹‘(𝑥 + 1))) = (𝑦 + (𝐹‘(𝑥 + 1))))
33 eqid 2177 . . . . . 6 (𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1)))) = (𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))
3431, 32, 33ovmpog 6008 . . . . 5 ((𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆 ∧ (𝑦 + (𝐹‘(𝑥 + 1))) ∈ 𝑆) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = (𝑦 + (𝐹‘(𝑥 + 1))))
3513, 14, 29, 34syl3anc 1238 . . . 4 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) = (𝑦 + (𝐹‘(𝑥 + 1))))
3635, 29eqeltrd 2254 . . 3 ((𝜑 ∧ (𝑥 ∈ (ℤ𝑀) ∧ 𝑦𝑆)) → (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦) ∈ 𝑆)
37 iseqvalcbv 10456 . . 3 frec((𝑠 ∈ (ℤ𝑀), 𝑡 ∈ V ↦ ⟨(𝑠 + 1), (𝑠(𝑢 ∈ (ℤ𝑀), 𝑣𝑆 ↦ (𝑣 + (𝐹‘(𝑢 + 1))))𝑡)⟩), ⟨𝑀, (𝐹𝑀)⟩) = frec((𝑥 ∈ (ℤ𝑀), 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥(𝑧 ∈ (ℤ𝑀), 𝑤𝑆 ↦ (𝑤 + (𝐹‘(𝑧 + 1))))𝑦)⟩), ⟨𝑀, (𝐹𝑀)⟩)
388eleq2i 2244 . . . . 5 (𝑥𝑍𝑥 ∈ (ℤ𝑀))
3938, 4sylan2br 288 . . . 4 ((𝜑𝑥 ∈ (ℤ𝑀)) → (𝐹𝑥) ∈ 𝑆)
401, 37, 39, 15seq3val 10457 . . 3 (𝜑 → seq𝑀( + , 𝐹) = ran frec((𝑠 ∈ (ℤ𝑀), 𝑡 ∈ V ↦ ⟨(𝑠 + 1), (𝑠(𝑢 ∈ (ℤ𝑀), 𝑣𝑆 ↦ (𝑣 + (𝐹‘(𝑢 + 1))))𝑡)⟩), ⟨𝑀, (𝐹𝑀)⟩))
411, 10, 12, 36, 37, 40frecuzrdgtclt 10420 . 2 (𝜑 → seq𝑀( + , 𝐹):(ℤ𝑀)⟶𝑆)
428a1i 9 . . 3 (𝜑𝑍 = (ℤ𝑀))
4342feq2d 5353 . 2 (𝜑 → (seq𝑀( + , 𝐹):𝑍𝑆 ↔ seq𝑀( + , 𝐹):(ℤ𝑀)⟶𝑆))
4441, 43mpbird 167 1 (𝜑 → seq𝑀( + , 𝐹):𝑍𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  wral 2455  Vcvv 2737  wss 3129  cop 3595  wf 5212  cfv 5216  (class class class)co 5874  cmpo 5876  freccfrec 6390  1c1 7811   + caddc 7813  cz 9252  cuz 9527  seqcseq 10444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-iinf 4587  ax-cnex 7901  ax-resscn 7902  ax-1cn 7903  ax-1re 7904  ax-icn 7905  ax-addcl 7906  ax-addrcl 7907  ax-mulcl 7908  ax-addcom 7910  ax-addass 7912  ax-distr 7914  ax-i2m1 7915  ax-0lt1 7916  ax-0id 7918  ax-rnegex 7919  ax-cnre 7921  ax-pre-ltirr 7922  ax-pre-ltwlin 7923  ax-pre-lttrn 7924  ax-pre-ltadd 7926
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-tr 4102  df-id 4293  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371  df-iom 4590  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-recs 6305  df-frec 6391  df-pnf 7993  df-mnf 7994  df-xr 7995  df-ltxr 7996  df-le 7997  df-sub 8129  df-neg 8130  df-inn 8919  df-n0 9176  df-z 9253  df-uz 9528  df-seqfrec 10445
This theorem is referenced by:  seq3p1  10461  seq3feq2  10469  seq3feq  10471  serf  10473  serfre  10474  seq3split  10478  seq3caopr2  10481  seq3f1olemqsumkj  10497  seq3homo  10509  seq3z  10510  seqfeq3  10511  seq3distr  10512  ser3ge0  10516  exp3vallem  10520  exp3val  10521  facnn  10706  fac0  10707  bcval5  10742  seq3coll  10821  seq3shft  10846  resqrexlemf  11015  prodf  11545  algrf  12044  pcmptcl  12339  nninfdclemf  12449  mulgval  12985  mulgfng  12986  mulgnnsubcl  12994  lgsval  14341  lgscllem  14344  lgsval4a  14359  lgsneg  14361  lgsdir  14372  lgsdilem2  14373  lgsdi  14374  lgsne0  14375
  Copyright terms: Public domain W3C validator