| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ennnfonelemh | GIF version | ||
| Description: Lemma for ennnfone 12796. (Contributed by Jim Kingdon, 8-Jul-2023.) |
| Ref | Expression |
|---|---|
| ennnfonelemh.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| ennnfonelemh.f | ⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
| ennnfonelemh.ne | ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
| ennnfonelemh.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) |
| ennnfonelemh.n | ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
| ennnfonelemh.j | ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
| ennnfonelemh.h | ⊢ 𝐻 = seq0(𝐺, 𝐽) |
| Ref | Expression |
|---|---|
| ennnfonelemh | ⊢ (𝜑 → 𝐻:ℕ0⟶(𝐴 ↑pm ω)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ennnfonelemh.dceq | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | |
| 2 | ennnfonelemh.f | . . . . 5 ⊢ (𝜑 → 𝐹:ω–onto→𝐴) | |
| 3 | ennnfonelemh.ne | . . . . 5 ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) | |
| 4 | ennnfonelemh.g | . . . . 5 ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) | |
| 5 | ennnfonelemh.n | . . . . 5 ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
| 6 | ennnfonelemh.j | . . . . 5 ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) | |
| 7 | ennnfonelemh.h | . . . . 5 ⊢ 𝐻 = seq0(𝐺, 𝐽) | |
| 8 | 1, 2, 3, 4, 5, 6, 7 | ennnfonelemj0 12772 | . . . 4 ⊢ (𝜑 → (𝐽‘0) ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω}) |
| 9 | 1, 2, 3, 4, 5, 6, 7 | ennnfonelemg 12774 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → (𝑓𝐺𝑗) ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω}) |
| 10 | nn0uz 9683 | . . . 4 ⊢ ℕ0 = (ℤ≥‘0) | |
| 11 | 0zd 9384 | . . . 4 ⊢ (𝜑 → 0 ∈ ℤ) | |
| 12 | 1, 2, 3, 4, 5, 6, 7 | ennnfonelemjn 12773 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ (ℤ≥‘(0 + 1))) → (𝐽‘𝑓) ∈ ω) |
| 13 | 8, 9, 10, 11, 12 | seqf2 10613 | . . 3 ⊢ (𝜑 → seq0(𝐺, 𝐽):ℕ0⟶{𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω}) |
| 14 | ssrab2 3278 | . . . 4 ⊢ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω} ⊆ (𝐴 ↑pm ω) | |
| 15 | 14 | a1i 9 | . . 3 ⊢ (𝜑 → {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω} ⊆ (𝐴 ↑pm ω)) |
| 16 | 13, 15 | fssd 5438 | . 2 ⊢ (𝜑 → seq0(𝐺, 𝐽):ℕ0⟶(𝐴 ↑pm ω)) |
| 17 | 7 | feq1i 5418 | . 2 ⊢ (𝐻:ℕ0⟶(𝐴 ↑pm ω) ↔ seq0(𝐺, 𝐽):ℕ0⟶(𝐴 ↑pm ω)) |
| 18 | 16, 17 | sylibr 134 | 1 ⊢ (𝜑 → 𝐻:ℕ0⟶(𝐴 ↑pm ω)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 DECID wdc 836 = wceq 1373 ∈ wcel 2176 ≠ wne 2376 ∀wral 2484 ∃wrex 2485 {crab 2488 ∪ cun 3164 ⊆ wss 3166 ∅c0 3460 ifcif 3571 {csn 3633 〈cop 3636 ↦ cmpt 4105 suc csuc 4412 ωcom 4638 ◡ccnv 4674 dom cdm 4675 “ cima 4678 ⟶wf 5267 –onto→wfo 5269 ‘cfv 5271 (class class class)co 5944 ∈ cmpo 5946 freccfrec 6476 ↑pm cpm 6736 0cc0 7925 1c1 7926 + caddc 7928 − cmin 8243 ℕ0cn0 9295 ℤcz 9372 seqcseq 10592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-addass 8027 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-frec 6477 df-pm 6738 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 df-uz 9649 df-seqfrec 10593 |
| This theorem is referenced by: ennnfonelemp1 12777 ennnfonelemrnh 12787 ennnfonelemfun 12788 ennnfonelemf1 12789 |
| Copyright terms: Public domain | W3C validator |