Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ennnfonelemh | GIF version |
Description: Lemma for ennnfone 12113. (Contributed by Jim Kingdon, 8-Jul-2023.) |
Ref | Expression |
---|---|
ennnfonelemh.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
ennnfonelemh.f | ⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
ennnfonelemh.ne | ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) |
ennnfonelemh.g | ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) |
ennnfonelemh.n | ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
ennnfonelemh.j | ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) |
ennnfonelemh.h | ⊢ 𝐻 = seq0(𝐺, 𝐽) |
Ref | Expression |
---|---|
ennnfonelemh | ⊢ (𝜑 → 𝐻:ℕ0⟶(𝐴 ↑pm ω)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ennnfonelemh.dceq | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | |
2 | ennnfonelemh.f | . . . . 5 ⊢ (𝜑 → 𝐹:ω–onto→𝐴) | |
3 | ennnfonelemh.ne | . . . . 5 ⊢ (𝜑 → ∀𝑛 ∈ ω ∃𝑘 ∈ ω ∀𝑗 ∈ suc 𝑛(𝐹‘𝑘) ≠ (𝐹‘𝑗)) | |
4 | ennnfonelemh.g | . . . . 5 ⊢ 𝐺 = (𝑥 ∈ (𝐴 ↑pm ω), 𝑦 ∈ ω ↦ if((𝐹‘𝑦) ∈ (𝐹 “ 𝑦), 𝑥, (𝑥 ∪ {〈dom 𝑥, (𝐹‘𝑦)〉}))) | |
5 | ennnfonelemh.n | . . . . 5 ⊢ 𝑁 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
6 | ennnfonelemh.j | . . . . 5 ⊢ 𝐽 = (𝑥 ∈ ℕ0 ↦ if(𝑥 = 0, ∅, (◡𝑁‘(𝑥 − 1)))) | |
7 | ennnfonelemh.h | . . . . 5 ⊢ 𝐻 = seq0(𝐺, 𝐽) | |
8 | 1, 2, 3, 4, 5, 6, 7 | ennnfonelemj0 12089 | . . . 4 ⊢ (𝜑 → (𝐽‘0) ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω}) |
9 | 1, 2, 3, 4, 5, 6, 7 | ennnfonelemg 12091 | . . . 4 ⊢ ((𝜑 ∧ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω} ∧ 𝑗 ∈ ω)) → (𝑓𝐺𝑗) ∈ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω}) |
10 | nn0uz 9452 | . . . 4 ⊢ ℕ0 = (ℤ≥‘0) | |
11 | 0zd 9158 | . . . 4 ⊢ (𝜑 → 0 ∈ ℤ) | |
12 | 1, 2, 3, 4, 5, 6, 7 | ennnfonelemjn 12090 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ (ℤ≥‘(0 + 1))) → (𝐽‘𝑓) ∈ ω) |
13 | 8, 9, 10, 11, 12 | seqf2 10341 | . . 3 ⊢ (𝜑 → seq0(𝐺, 𝐽):ℕ0⟶{𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω}) |
14 | ssrab2 3209 | . . . 4 ⊢ {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω} ⊆ (𝐴 ↑pm ω) | |
15 | 14 | a1i 9 | . . 3 ⊢ (𝜑 → {𝑔 ∈ (𝐴 ↑pm ω) ∣ dom 𝑔 ∈ ω} ⊆ (𝐴 ↑pm ω)) |
16 | 13, 15 | fssd 5325 | . 2 ⊢ (𝜑 → seq0(𝐺, 𝐽):ℕ0⟶(𝐴 ↑pm ω)) |
17 | 7 | feq1i 5305 | . 2 ⊢ (𝐻:ℕ0⟶(𝐴 ↑pm ω) ↔ seq0(𝐺, 𝐽):ℕ0⟶(𝐴 ↑pm ω)) |
18 | 16, 17 | sylibr 133 | 1 ⊢ (𝜑 → 𝐻:ℕ0⟶(𝐴 ↑pm ω)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 DECID wdc 820 = wceq 1332 ∈ wcel 2125 ≠ wne 2324 ∀wral 2432 ∃wrex 2433 {crab 2436 ∪ cun 3096 ⊆ wss 3098 ∅c0 3390 ifcif 3501 {csn 3556 〈cop 3559 ↦ cmpt 4021 suc csuc 4320 ωcom 4543 ◡ccnv 4578 dom cdm 4579 “ cima 4582 ⟶wf 5159 –onto→wfo 5161 ‘cfv 5163 (class class class)co 5814 ∈ cmpo 5816 freccfrec 6327 ↑pm cpm 6583 0cc0 7711 1c1 7712 + caddc 7714 − cmin 8025 ℕ0cn0 9069 ℤcz 9146 seqcseq 10322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-iinf 4541 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-addcom 7811 ax-addass 7813 ax-distr 7815 ax-i2m1 7816 ax-0lt1 7817 ax-0id 7819 ax-rnegex 7820 ax-cnre 7822 ax-pre-ltirr 7823 ax-pre-ltwlin 7824 ax-pre-lttrn 7825 ax-pre-ltadd 7827 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-if 3502 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-tr 4059 df-id 4248 df-iord 4321 df-on 4323 df-ilim 4324 df-suc 4326 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-1st 6078 df-2nd 6079 df-recs 6242 df-frec 6328 df-pm 6585 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 df-sub 8027 df-neg 8028 df-inn 8813 df-n0 9070 df-z 9147 df-uz 9419 df-seqfrec 10323 |
This theorem is referenced by: ennnfonelemp1 12094 ennnfonelemrnh 12104 ennnfonelemfun 12105 ennnfonelemf1 12106 |
Copyright terms: Public domain | W3C validator |