Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cncfss | GIF version |
Description: The set of continuous functions is expanded when the range is expanded. (Contributed by Mario Carneiro, 30-Aug-2014.) |
Ref | Expression |
---|---|
cncfss | ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ) → (𝐴–cn→𝐵) ⊆ (𝐴–cn→𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncff 12935 | . . . . . 6 ⊢ (𝑓 ∈ (𝐴–cn→𝐵) → 𝑓:𝐴⟶𝐵) | |
2 | 1 | adantl 275 | . . . . 5 ⊢ (((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ) ∧ 𝑓 ∈ (𝐴–cn→𝐵)) → 𝑓:𝐴⟶𝐵) |
3 | simpll 519 | . . . . 5 ⊢ (((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ) ∧ 𝑓 ∈ (𝐴–cn→𝐵)) → 𝐵 ⊆ 𝐶) | |
4 | 2, 3 | fssd 5331 | . . . 4 ⊢ (((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ) ∧ 𝑓 ∈ (𝐴–cn→𝐵)) → 𝑓:𝐴⟶𝐶) |
5 | cncffvrn 12940 | . . . . 5 ⊢ ((𝐶 ⊆ ℂ ∧ 𝑓 ∈ (𝐴–cn→𝐵)) → (𝑓 ∈ (𝐴–cn→𝐶) ↔ 𝑓:𝐴⟶𝐶)) | |
6 | 5 | adantll 468 | . . . 4 ⊢ (((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ) ∧ 𝑓 ∈ (𝐴–cn→𝐵)) → (𝑓 ∈ (𝐴–cn→𝐶) ↔ 𝑓:𝐴⟶𝐶)) |
7 | 4, 6 | mpbird 166 | . . 3 ⊢ (((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ) ∧ 𝑓 ∈ (𝐴–cn→𝐵)) → 𝑓 ∈ (𝐴–cn→𝐶)) |
8 | 7 | ex 114 | . 2 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ) → (𝑓 ∈ (𝐴–cn→𝐵) → 𝑓 ∈ (𝐴–cn→𝐶))) |
9 | 8 | ssrdv 3134 | 1 ⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ) → (𝐴–cn→𝐵) ⊆ (𝐴–cn→𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2128 ⊆ wss 3102 ⟶wf 5165 (class class class)co 5821 ℂcc 7724 –cn→ccncf 12928 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-cnex 7817 ax-resscn 7818 ax-1cn 7819 ax-1re 7820 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-mulrcl 7825 ax-addcom 7826 ax-mulcom 7827 ax-addass 7828 ax-mulass 7829 ax-distr 7830 ax-i2m1 7831 ax-0lt1 7832 ax-1rid 7833 ax-0id 7834 ax-rnegex 7835 ax-precex 7836 ax-cnre 7837 ax-pre-ltirr 7838 ax-pre-ltwlin 7839 ax-pre-lttrn 7840 ax-pre-apti 7841 ax-pre-ltadd 7842 ax-pre-mulgt0 7843 ax-pre-mulext 7844 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-po 4256 df-iso 4257 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-map 6592 df-pnf 7908 df-mnf 7909 df-xr 7910 df-ltxr 7911 df-le 7912 df-sub 8042 df-neg 8043 df-reap 8444 df-ap 8451 df-div 8540 df-2 8886 df-cj 10735 df-re 10736 df-im 10737 df-rsqrt 10891 df-abs 10892 df-cncf 12929 |
This theorem is referenced by: cnlimci 13013 |
Copyright terms: Public domain | W3C validator |