ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mapss GIF version

Theorem mapss 6688
Description: Subset inheritance for set exponentiation. Theorem 99 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
Assertion
Ref Expression
mapss ((𝐵𝑉𝐴𝐵) → (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶))

Proof of Theorem mapss
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 elmapi 6667 . . . . . 6 (𝑓 ∈ (𝐴𝑚 𝐶) → 𝑓:𝐶𝐴)
21adantl 277 . . . . 5 (((𝐵𝑉𝐴𝐵) ∧ 𝑓 ∈ (𝐴𝑚 𝐶)) → 𝑓:𝐶𝐴)
3 simplr 528 . . . . 5 (((𝐵𝑉𝐴𝐵) ∧ 𝑓 ∈ (𝐴𝑚 𝐶)) → 𝐴𝐵)
42, 3fssd 5377 . . . 4 (((𝐵𝑉𝐴𝐵) ∧ 𝑓 ∈ (𝐴𝑚 𝐶)) → 𝑓:𝐶𝐵)
5 simpll 527 . . . . 5 (((𝐵𝑉𝐴𝐵) ∧ 𝑓 ∈ (𝐴𝑚 𝐶)) → 𝐵𝑉)
6 elmapex 6666 . . . . . . 7 (𝑓 ∈ (𝐴𝑚 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V))
76simprd 114 . . . . . 6 (𝑓 ∈ (𝐴𝑚 𝐶) → 𝐶 ∈ V)
87adantl 277 . . . . 5 (((𝐵𝑉𝐴𝐵) ∧ 𝑓 ∈ (𝐴𝑚 𝐶)) → 𝐶 ∈ V)
95, 8elmapd 6659 . . . 4 (((𝐵𝑉𝐴𝐵) ∧ 𝑓 ∈ (𝐴𝑚 𝐶)) → (𝑓 ∈ (𝐵𝑚 𝐶) ↔ 𝑓:𝐶𝐵))
104, 9mpbird 167 . . 3 (((𝐵𝑉𝐴𝐵) ∧ 𝑓 ∈ (𝐴𝑚 𝐶)) → 𝑓 ∈ (𝐵𝑚 𝐶))
1110ex 115 . 2 ((𝐵𝑉𝐴𝐵) → (𝑓 ∈ (𝐴𝑚 𝐶) → 𝑓 ∈ (𝐵𝑚 𝐶)))
1211ssrdv 3161 1 ((𝐵𝑉𝐴𝐵) → (𝐴𝑚 𝐶) ⊆ (𝐵𝑚 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wcel 2148  Vcvv 2737  wss 3129  wf 5211  (class class class)co 5872  𝑚 cmap 6645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4003  df-opab 4064  df-id 4292  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-iota 5177  df-fun 5217  df-fn 5218  df-f 5219  df-fv 5223  df-ov 5875  df-oprab 5876  df-mpo 5877  df-map 6647
This theorem is referenced by:  mapdom1g  6844  bj-charfunbi  14423
  Copyright terms: Public domain W3C validator