![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mapss | GIF version |
Description: Subset inheritance for set exponentiation. Theorem 99 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
mapss | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ↑𝑚 𝐶) ⊆ (𝐵 ↑𝑚 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapi 6724 | . . . . . 6 ⊢ (𝑓 ∈ (𝐴 ↑𝑚 𝐶) → 𝑓:𝐶⟶𝐴) | |
2 | 1 | adantl 277 | . . . . 5 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑𝑚 𝐶)) → 𝑓:𝐶⟶𝐴) |
3 | simplr 528 | . . . . 5 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑𝑚 𝐶)) → 𝐴 ⊆ 𝐵) | |
4 | 2, 3 | fssd 5416 | . . . 4 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑𝑚 𝐶)) → 𝑓:𝐶⟶𝐵) |
5 | simpll 527 | . . . . 5 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑𝑚 𝐶)) → 𝐵 ∈ 𝑉) | |
6 | elmapex 6723 | . . . . . . 7 ⊢ (𝑓 ∈ (𝐴 ↑𝑚 𝐶) → (𝐴 ∈ V ∧ 𝐶 ∈ V)) | |
7 | 6 | simprd 114 | . . . . . 6 ⊢ (𝑓 ∈ (𝐴 ↑𝑚 𝐶) → 𝐶 ∈ V) |
8 | 7 | adantl 277 | . . . . 5 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑𝑚 𝐶)) → 𝐶 ∈ V) |
9 | 5, 8 | elmapd 6716 | . . . 4 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑𝑚 𝐶)) → (𝑓 ∈ (𝐵 ↑𝑚 𝐶) ↔ 𝑓:𝐶⟶𝐵)) |
10 | 4, 9 | mpbird 167 | . . 3 ⊢ (((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑓 ∈ (𝐴 ↑𝑚 𝐶)) → 𝑓 ∈ (𝐵 ↑𝑚 𝐶)) |
11 | 10 | ex 115 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝑓 ∈ (𝐴 ↑𝑚 𝐶) → 𝑓 ∈ (𝐵 ↑𝑚 𝐶))) |
12 | 11 | ssrdv 3185 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → (𝐴 ↑𝑚 𝐶) ⊆ (𝐵 ↑𝑚 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 Vcvv 2760 ⊆ wss 3153 ⟶wf 5250 (class class class)co 5918 ↑𝑚 cmap 6702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-map 6704 |
This theorem is referenced by: mapdom1g 6903 plyss 14884 bj-charfunbi 15303 |
Copyright terms: Public domain | W3C validator |