Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trilpolemisumle GIF version

Theorem trilpolemisumle 16118
Description: Lemma for trilpo 16123. An upper bound for the sum of the digits beyond a certain point. (Contributed by Jim Kingdon, 28-Aug-2023.)
Hypotheses
Ref Expression
trilpolemgt1.f (𝜑𝐹:ℕ⟶{0, 1})
trilpolemgt1.a 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖))
trilpolemisumle.z 𝑍 = (ℤ𝑀)
trilpolemisumle.m (𝜑𝑀 ∈ ℕ)
Assertion
Ref Expression
trilpolemisumle (𝜑 → Σ𝑖𝑍 ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ Σ𝑖𝑍 (1 / (2↑𝑖)))
Distinct variable groups:   𝑖,𝐹   𝑖,𝑀   𝑖,𝑍   𝜑,𝑖
Allowed substitution hint:   𝐴(𝑖)

Proof of Theorem trilpolemisumle
Dummy variables 𝑛 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trilpolemisumle.z . 2 𝑍 = (ℤ𝑀)
2 trilpolemisumle.m . . 3 (𝜑𝑀 ∈ ℕ)
32nnzd 9514 . 2 (𝜑𝑀 ∈ ℤ)
41eleq2i 2273 . . . . 5 (𝑖𝑍𝑖 ∈ (ℤ𝑀))
54biimpi 120 . . . 4 (𝑖𝑍𝑖 ∈ (ℤ𝑀))
6 eluznn 9741 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑀)) → 𝑖 ∈ ℕ)
72, 5, 6syl2an 289 . . 3 ((𝜑𝑖𝑍) → 𝑖 ∈ ℕ)
8 eqid 2206 . . . 4 (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛))) = (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))
9 oveq2 5965 . . . . . 6 (𝑛 = 𝑖 → (2↑𝑛) = (2↑𝑖))
109oveq2d 5973 . . . . 5 (𝑛 = 𝑖 → (1 / (2↑𝑛)) = (1 / (2↑𝑖)))
11 fveq2 5589 . . . . 5 (𝑛 = 𝑖 → (𝐹𝑛) = (𝐹𝑖))
1210, 11oveq12d 5975 . . . 4 (𝑛 = 𝑖 → ((1 / (2↑𝑛)) · (𝐹𝑛)) = ((1 / (2↑𝑖)) · (𝐹𝑖)))
13 simpr 110 . . . 4 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
14 2rp 9800 . . . . . . . . 9 2 ∈ ℝ+
1514a1i 9 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → 2 ∈ ℝ+)
1613nnzd 9514 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℤ)
1715, 16rpexpcld 10864 . . . . . . 7 ((𝜑𝑖 ∈ ℕ) → (2↑𝑖) ∈ ℝ+)
1817rpreccld 9849 . . . . . 6 ((𝜑𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ+)
1918rpred 9838 . . . . 5 ((𝜑𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ)
20 trilpolemgt1.f . . . . . . 7 (𝜑𝐹:ℕ⟶{0, 1})
21 0re 8092 . . . . . . . . 9 0 ∈ ℝ
22 1re 8091 . . . . . . . . 9 1 ∈ ℝ
23 prssi 3797 . . . . . . . . 9 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆ ℝ)
2421, 22, 23mp2an 426 . . . . . . . 8 {0, 1} ⊆ ℝ
2524a1i 9 . . . . . . 7 (𝜑 → {0, 1} ⊆ ℝ)
2620, 25fssd 5448 . . . . . 6 (𝜑𝐹:ℕ⟶ℝ)
2726ffvelcdmda 5728 . . . . 5 ((𝜑𝑖 ∈ ℕ) → (𝐹𝑖) ∈ ℝ)
2819, 27remulcld 8123 . . . 4 ((𝜑𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℝ)
298, 12, 13, 28fvmptd3 5686 . . 3 ((𝜑𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐹𝑖)))
307, 29syldan 282 . 2 ((𝜑𝑖𝑍) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐹𝑖)))
317, 28syldan 282 . 2 ((𝜑𝑖𝑍) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℝ)
32 eqid 2206 . . . 4 (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛))) = (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))
3332, 10, 13, 18fvmptd3 5686 . . 3 ((𝜑𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))‘𝑖) = (1 / (2↑𝑖)))
347, 33syldan 282 . 2 ((𝜑𝑖𝑍) → ((𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))‘𝑖) = (1 / (2↑𝑖)))
357, 19syldan 282 . 2 ((𝜑𝑖𝑍) → (1 / (2↑𝑖)) ∈ ℝ)
36 simpr 110 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → (𝐹𝑖) = 0)
3736oveq2d 5973 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → ((1 / (2↑𝑖)) · (𝐹𝑖)) = ((1 / (2↑𝑖)) · 0))
3818rpcnd 9840 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℂ)
3938adantr 276 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → (1 / (2↑𝑖)) ∈ ℂ)
4039mul01d 8485 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → ((1 / (2↑𝑖)) · 0) = 0)
4137, 40eqtrd 2239 . . . . 5 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → ((1 / (2↑𝑖)) · (𝐹𝑖)) = 0)
4218adantr 276 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → (1 / (2↑𝑖)) ∈ ℝ+)
4342rpge0d 9842 . . . . 5 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → 0 ≤ (1 / (2↑𝑖)))
4441, 43eqbrtrd 4073 . . . 4 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ (1 / (2↑𝑖)))
45 simpr 110 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → (𝐹𝑖) = 1)
4645oveq2d 5973 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → ((1 / (2↑𝑖)) · (𝐹𝑖)) = ((1 / (2↑𝑖)) · 1))
4738adantr 276 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → (1 / (2↑𝑖)) ∈ ℂ)
4847mulridd 8109 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → ((1 / (2↑𝑖)) · 1) = (1 / (2↑𝑖)))
4946, 48eqtrd 2239 . . . . 5 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → ((1 / (2↑𝑖)) · (𝐹𝑖)) = (1 / (2↑𝑖)))
5019adantr 276 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → (1 / (2↑𝑖)) ∈ ℝ)
5150leidd 8607 . . . . 5 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → (1 / (2↑𝑖)) ≤ (1 / (2↑𝑖)))
5249, 51eqbrtrd 4073 . . . 4 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ (1 / (2↑𝑖)))
5320ffvelcdmda 5728 . . . . 5 ((𝜑𝑖 ∈ ℕ) → (𝐹𝑖) ∈ {0, 1})
54 elpri 3661 . . . . 5 ((𝐹𝑖) ∈ {0, 1} → ((𝐹𝑖) = 0 ∨ (𝐹𝑖) = 1))
5553, 54syl 14 . . . 4 ((𝜑𝑖 ∈ ℕ) → ((𝐹𝑖) = 0 ∨ (𝐹𝑖) = 1))
5644, 52, 55mpjaodan 800 . . 3 ((𝜑𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ (1 / (2↑𝑖)))
577, 56syldan 282 . 2 ((𝜑𝑖𝑍) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ (1 / (2↑𝑖)))
5820, 8trilpolemclim 16116 . . 3 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))) ∈ dom ⇝ )
59 nnuz 9704 . . . 4 ℕ = (ℤ‘1)
6029, 28eqeltrd 2283 . . . . 5 ((𝜑𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))‘𝑖) ∈ ℝ)
6160recnd 8121 . . . 4 ((𝜑𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))‘𝑖) ∈ ℂ)
6259, 2, 61iserex 11725 . . 3 (𝜑 → (seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))) ∈ dom ⇝ ↔ seq𝑀( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))) ∈ dom ⇝ ))
6358, 62mpbid 147 . 2 (𝜑 → seq𝑀( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))) ∈ dom ⇝ )
64 seqex 10616 . . . 4 seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ V
65 rpreccl 9822 . . . . . . . 8 (2 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
6614, 65ax-mp 5 . . . . . . 7 (1 / 2) ∈ ℝ+
6766a1i 9 . . . . . 6 (𝜑 → (1 / 2) ∈ ℝ+)
68 1zzd 9419 . . . . . 6 (𝜑 → 1 ∈ ℤ)
6967, 68rpexpcld 10864 . . . . 5 (𝜑 → ((1 / 2)↑1) ∈ ℝ+)
70 1mhlfehlf 9275 . . . . . . 7 (1 − (1 / 2)) = (1 / 2)
7170, 66eqeltri 2279 . . . . . 6 (1 − (1 / 2)) ∈ ℝ+
7271a1i 9 . . . . 5 (𝜑 → (1 − (1 / 2)) ∈ ℝ+)
7369, 72rpdivcld 9856 . . . 4 (𝜑 → (((1 / 2)↑1) / (1 − (1 / 2))) ∈ ℝ+)
74 halfcn 9271 . . . . . 6 (1 / 2) ∈ ℂ
7574a1i 9 . . . . 5 (𝜑 → (1 / 2) ∈ ℂ)
76 halfge0 9273 . . . . . . . 8 0 ≤ (1 / 2)
77 halfre 9270 . . . . . . . . 9 (1 / 2) ∈ ℝ
7877absidi 11512 . . . . . . . 8 (0 ≤ (1 / 2) → (abs‘(1 / 2)) = (1 / 2))
7976, 78ax-mp 5 . . . . . . 7 (abs‘(1 / 2)) = (1 / 2)
80 halflt1 9274 . . . . . . 7 (1 / 2) < 1
8179, 80eqbrtri 4072 . . . . . 6 (abs‘(1 / 2)) < 1
8281a1i 9 . . . . 5 (𝜑 → (abs‘(1 / 2)) < 1)
83 1nn0 9331 . . . . . 6 1 ∈ ℕ0
8483a1i 9 . . . . 5 (𝜑 → 1 ∈ ℕ0)
85 oveq2 5965 . . . . . . . 8 (𝑛 = 𝑗 → (2↑𝑛) = (2↑𝑗))
8685oveq2d 5973 . . . . . . 7 (𝑛 = 𝑗 → (1 / (2↑𝑛)) = (1 / (2↑𝑗)))
87 elnnuz 9705 . . . . . . . . 9 (𝑗 ∈ ℕ ↔ 𝑗 ∈ (ℤ‘1))
8887biimpri 133 . . . . . . . 8 (𝑗 ∈ (ℤ‘1) → 𝑗 ∈ ℕ)
8988adantl 277 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ‘1)) → 𝑗 ∈ ℕ)
9014a1i 9 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ‘1)) → 2 ∈ ℝ+)
9189nnzd 9514 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ‘1)) → 𝑗 ∈ ℤ)
9290, 91rpexpcld 10864 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ‘1)) → (2↑𝑗) ∈ ℝ+)
9392rpreccld 9849 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ‘1)) → (1 / (2↑𝑗)) ∈ ℝ+)
9432, 86, 89, 93fvmptd3 5686 . . . . . 6 ((𝜑𝑗 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))‘𝑗) = (1 / (2↑𝑗)))
95 2cnd 9129 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ‘1)) → 2 ∈ ℂ)
9690rpap0d 9844 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ‘1)) → 2 # 0)
9795, 96, 91exprecapd 10848 . . . . . 6 ((𝜑𝑗 ∈ (ℤ‘1)) → ((1 / 2)↑𝑗) = (1 / (2↑𝑗)))
9894, 97eqtr4d 2242 . . . . 5 ((𝜑𝑗 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))‘𝑗) = ((1 / 2)↑𝑗))
9975, 82, 84, 98geolim2 11898 . . . 4 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ⇝ (((1 / 2)↑1) / (1 − (1 / 2))))
100 breldmg 4893 . . . 4 ((seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ V ∧ (((1 / 2)↑1) / (1 − (1 / 2))) ∈ ℝ+ ∧ seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ⇝ (((1 / 2)↑1) / (1 − (1 / 2)))) → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝ )
10164, 73, 99, 100mp3an2i 1355 . . 3 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝ )
10233, 38eqeltrd 2283 . . . 4 ((𝜑𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))‘𝑖) ∈ ℂ)
10359, 2, 102iserex 11725 . . 3 (𝜑 → (seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝ ↔ seq𝑀( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝ ))
104101, 103mpbid 147 . 2 (𝜑 → seq𝑀( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝ )
1051, 3, 30, 31, 34, 35, 57, 63, 104isumle 11881 1 (𝜑 → Σ𝑖𝑍 ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ Σ𝑖𝑍 (1 / (2↑𝑖)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 710   = wceq 1373  wcel 2177  Vcvv 2773  wss 3170  {cpr 3639   class class class wbr 4051  cmpt 4113  dom cdm 4683  wf 5276  cfv 5280  (class class class)co 5957  cc 7943  cr 7944  0cc0 7945  1c1 7946   + caddc 7948   · cmul 7950   < clt 8127  cle 8128  cmin 8263   / cdiv 8765  cn 9056  2c2 9107  0cn0 9315  cuz 9668  +crp 9795  seqcseq 10614  cexp 10705  abscabs 11383  cli 11664  Σcsu 11739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063  ax-arch 8064  ax-caucvg 8065
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-isom 5289  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-irdg 6469  df-frec 6490  df-1o 6515  df-oadd 6519  df-er 6633  df-en 6841  df-dom 6842  df-fin 6843  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-n0 9316  df-z 9393  df-uz 9669  df-q 9761  df-rp 9796  df-ico 10036  df-fz 10151  df-fzo 10285  df-seqfrec 10615  df-exp 10706  df-ihash 10943  df-cj 11228  df-re 11229  df-im 11230  df-rsqrt 11384  df-abs 11385  df-clim 11665  df-sumdc 11740
This theorem is referenced by:  trilpolemgt1  16119  trilpolemeq1  16120
  Copyright terms: Public domain W3C validator