Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trilpolemisumle GIF version

Theorem trilpolemisumle 12915
Description: Lemma for trilpo 12920. An upper bound for the sum of the digits beyond a certain point. (Contributed by Jim Kingdon, 28-Aug-2023.)
Hypotheses
Ref Expression
trilpolemgt1.f (𝜑𝐹:ℕ⟶{0, 1})
trilpolemgt1.a 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖))
trilpolemisumle.z 𝑍 = (ℤ𝑀)
trilpolemisumle.m (𝜑𝑀 ∈ ℕ)
Assertion
Ref Expression
trilpolemisumle (𝜑 → Σ𝑖𝑍 ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ Σ𝑖𝑍 (1 / (2↑𝑖)))
Distinct variable groups:   𝑖,𝐹   𝑖,𝑀   𝑖,𝑍   𝜑,𝑖
Allowed substitution hint:   𝐴(𝑖)

Proof of Theorem trilpolemisumle
Dummy variables 𝑛 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trilpolemisumle.z . 2 𝑍 = (ℤ𝑀)
2 trilpolemisumle.m . . 3 (𝜑𝑀 ∈ ℕ)
32nnzd 9073 . 2 (𝜑𝑀 ∈ ℤ)
41eleq2i 2181 . . . . 5 (𝑖𝑍𝑖 ∈ (ℤ𝑀))
54biimpi 119 . . . 4 (𝑖𝑍𝑖 ∈ (ℤ𝑀))
6 eluznn 9293 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑀)) → 𝑖 ∈ ℕ)
72, 5, 6syl2an 285 . . 3 ((𝜑𝑖𝑍) → 𝑖 ∈ ℕ)
8 eqid 2115 . . . 4 (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛))) = (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))
9 oveq2 5736 . . . . . 6 (𝑛 = 𝑖 → (2↑𝑛) = (2↑𝑖))
109oveq2d 5744 . . . . 5 (𝑛 = 𝑖 → (1 / (2↑𝑛)) = (1 / (2↑𝑖)))
11 fveq2 5375 . . . . 5 (𝑛 = 𝑖 → (𝐹𝑛) = (𝐹𝑖))
1210, 11oveq12d 5746 . . . 4 (𝑛 = 𝑖 → ((1 / (2↑𝑛)) · (𝐹𝑛)) = ((1 / (2↑𝑖)) · (𝐹𝑖)))
13 simpr 109 . . . 4 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
14 2rp 9345 . . . . . . . . 9 2 ∈ ℝ+
1514a1i 9 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → 2 ∈ ℝ+)
1613nnzd 9073 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℤ)
1715, 16rpexpcld 10338 . . . . . . 7 ((𝜑𝑖 ∈ ℕ) → (2↑𝑖) ∈ ℝ+)
1817rpreccld 9390 . . . . . 6 ((𝜑𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ+)
1918rpred 9379 . . . . 5 ((𝜑𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ)
20 trilpolemgt1.f . . . . . . 7 (𝜑𝐹:ℕ⟶{0, 1})
21 0re 7687 . . . . . . . . 9 0 ∈ ℝ
22 1re 7686 . . . . . . . . 9 1 ∈ ℝ
23 prssi 3644 . . . . . . . . 9 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆ ℝ)
2421, 22, 23mp2an 420 . . . . . . . 8 {0, 1} ⊆ ℝ
2524a1i 9 . . . . . . 7 (𝜑 → {0, 1} ⊆ ℝ)
2620, 25fssd 5243 . . . . . 6 (𝜑𝐹:ℕ⟶ℝ)
2726ffvelrnda 5509 . . . . 5 ((𝜑𝑖 ∈ ℕ) → (𝐹𝑖) ∈ ℝ)
2819, 27remulcld 7717 . . . 4 ((𝜑𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℝ)
298, 12, 13, 28fvmptd3 5468 . . 3 ((𝜑𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐹𝑖)))
307, 29syldan 278 . 2 ((𝜑𝑖𝑍) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐹𝑖)))
317, 28syldan 278 . 2 ((𝜑𝑖𝑍) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℝ)
32 eqid 2115 . . . 4 (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛))) = (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))
3332, 10, 13, 18fvmptd3 5468 . . 3 ((𝜑𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))‘𝑖) = (1 / (2↑𝑖)))
347, 33syldan 278 . 2 ((𝜑𝑖𝑍) → ((𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))‘𝑖) = (1 / (2↑𝑖)))
357, 19syldan 278 . 2 ((𝜑𝑖𝑍) → (1 / (2↑𝑖)) ∈ ℝ)
36 simpr 109 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → (𝐹𝑖) = 0)
3736oveq2d 5744 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → ((1 / (2↑𝑖)) · (𝐹𝑖)) = ((1 / (2↑𝑖)) · 0))
3818rpcnd 9381 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℂ)
3938adantr 272 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → (1 / (2↑𝑖)) ∈ ℂ)
4039mul01d 8071 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → ((1 / (2↑𝑖)) · 0) = 0)
4137, 40eqtrd 2147 . . . . 5 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → ((1 / (2↑𝑖)) · (𝐹𝑖)) = 0)
4218adantr 272 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → (1 / (2↑𝑖)) ∈ ℝ+)
4342rpge0d 9383 . . . . 5 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → 0 ≤ (1 / (2↑𝑖)))
4441, 43eqbrtrd 3915 . . . 4 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ (1 / (2↑𝑖)))
45 simpr 109 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → (𝐹𝑖) = 1)
4645oveq2d 5744 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → ((1 / (2↑𝑖)) · (𝐹𝑖)) = ((1 / (2↑𝑖)) · 1))
4738adantr 272 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → (1 / (2↑𝑖)) ∈ ℂ)
4847mulid1d 7704 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → ((1 / (2↑𝑖)) · 1) = (1 / (2↑𝑖)))
4946, 48eqtrd 2147 . . . . 5 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → ((1 / (2↑𝑖)) · (𝐹𝑖)) = (1 / (2↑𝑖)))
5019adantr 272 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → (1 / (2↑𝑖)) ∈ ℝ)
5150leidd 8192 . . . . 5 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → (1 / (2↑𝑖)) ≤ (1 / (2↑𝑖)))
5249, 51eqbrtrd 3915 . . . 4 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ (1 / (2↑𝑖)))
5320ffvelrnda 5509 . . . . 5 ((𝜑𝑖 ∈ ℕ) → (𝐹𝑖) ∈ {0, 1})
54 elpri 3516 . . . . 5 ((𝐹𝑖) ∈ {0, 1} → ((𝐹𝑖) = 0 ∨ (𝐹𝑖) = 1))
5553, 54syl 14 . . . 4 ((𝜑𝑖 ∈ ℕ) → ((𝐹𝑖) = 0 ∨ (𝐹𝑖) = 1))
5644, 52, 55mpjaodan 770 . . 3 ((𝜑𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ (1 / (2↑𝑖)))
577, 56syldan 278 . 2 ((𝜑𝑖𝑍) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ (1 / (2↑𝑖)))
5820, 8trilpolemclim 12913 . . 3 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))) ∈ dom ⇝ )
59 nnuz 9260 . . . 4 ℕ = (ℤ‘1)
6029, 28eqeltrd 2191 . . . . 5 ((𝜑𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))‘𝑖) ∈ ℝ)
6160recnd 7715 . . . 4 ((𝜑𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))‘𝑖) ∈ ℂ)
6259, 2, 61iserex 10997 . . 3 (𝜑 → (seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))) ∈ dom ⇝ ↔ seq𝑀( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))) ∈ dom ⇝ ))
6358, 62mpbid 146 . 2 (𝜑 → seq𝑀( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))) ∈ dom ⇝ )
64 seqex 10110 . . . 4 seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ V
65 rpreccl 9366 . . . . . . . 8 (2 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
6614, 65ax-mp 7 . . . . . . 7 (1 / 2) ∈ ℝ+
6766a1i 9 . . . . . 6 (𝜑 → (1 / 2) ∈ ℝ+)
68 1zzd 8982 . . . . . 6 (𝜑 → 1 ∈ ℤ)
6967, 68rpexpcld 10338 . . . . 5 (𝜑 → ((1 / 2)↑1) ∈ ℝ+)
70 1mhlfehlf 8839 . . . . . . 7 (1 − (1 / 2)) = (1 / 2)
7170, 66eqeltri 2187 . . . . . 6 (1 − (1 / 2)) ∈ ℝ+
7271a1i 9 . . . . 5 (𝜑 → (1 − (1 / 2)) ∈ ℝ+)
7369, 72rpdivcld 9397 . . . 4 (𝜑 → (((1 / 2)↑1) / (1 − (1 / 2))) ∈ ℝ+)
74 halfcn 8835 . . . . . 6 (1 / 2) ∈ ℂ
7574a1i 9 . . . . 5 (𝜑 → (1 / 2) ∈ ℂ)
76 halfge0 8837 . . . . . . . 8 0 ≤ (1 / 2)
77 halfre 8834 . . . . . . . . 9 (1 / 2) ∈ ℝ
7877absidi 10787 . . . . . . . 8 (0 ≤ (1 / 2) → (abs‘(1 / 2)) = (1 / 2))
7976, 78ax-mp 7 . . . . . . 7 (abs‘(1 / 2)) = (1 / 2)
80 halflt1 8838 . . . . . . 7 (1 / 2) < 1
8179, 80eqbrtri 3914 . . . . . 6 (abs‘(1 / 2)) < 1
8281a1i 9 . . . . 5 (𝜑 → (abs‘(1 / 2)) < 1)
83 1nn0 8894 . . . . . 6 1 ∈ ℕ0
8483a1i 9 . . . . 5 (𝜑 → 1 ∈ ℕ0)
85 oveq2 5736 . . . . . . . 8 (𝑛 = 𝑗 → (2↑𝑛) = (2↑𝑗))
8685oveq2d 5744 . . . . . . 7 (𝑛 = 𝑗 → (1 / (2↑𝑛)) = (1 / (2↑𝑗)))
87 elnnuz 9261 . . . . . . . . 9 (𝑗 ∈ ℕ ↔ 𝑗 ∈ (ℤ‘1))
8887biimpri 132 . . . . . . . 8 (𝑗 ∈ (ℤ‘1) → 𝑗 ∈ ℕ)
8988adantl 273 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ‘1)) → 𝑗 ∈ ℕ)
9014a1i 9 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ‘1)) → 2 ∈ ℝ+)
9189nnzd 9073 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ‘1)) → 𝑗 ∈ ℤ)
9290, 91rpexpcld 10338 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ‘1)) → (2↑𝑗) ∈ ℝ+)
9392rpreccld 9390 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ‘1)) → (1 / (2↑𝑗)) ∈ ℝ+)
9432, 86, 89, 93fvmptd3 5468 . . . . . 6 ((𝜑𝑗 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))‘𝑗) = (1 / (2↑𝑗)))
95 2cnd 8700 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ‘1)) → 2 ∈ ℂ)
9690rpap0d 9385 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ‘1)) → 2 # 0)
9795, 96, 91exprecapd 10322 . . . . . 6 ((𝜑𝑗 ∈ (ℤ‘1)) → ((1 / 2)↑𝑗) = (1 / (2↑𝑗)))
9894, 97eqtr4d 2150 . . . . 5 ((𝜑𝑗 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))‘𝑗) = ((1 / 2)↑𝑗))
9975, 82, 84, 98geolim2 11170 . . . 4 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ⇝ (((1 / 2)↑1) / (1 − (1 / 2))))
100 breldmg 4705 . . . 4 ((seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ V ∧ (((1 / 2)↑1) / (1 − (1 / 2))) ∈ ℝ+ ∧ seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ⇝ (((1 / 2)↑1) / (1 − (1 / 2)))) → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝ )
10164, 73, 99, 100mp3an2i 1303 . . 3 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝ )
10233, 38eqeltrd 2191 . . . 4 ((𝜑𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))‘𝑖) ∈ ℂ)
10359, 2, 102iserex 10997 . . 3 (𝜑 → (seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝ ↔ seq𝑀( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝ ))
104101, 103mpbid 146 . 2 (𝜑 → seq𝑀( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝ )
1051, 3, 30, 31, 34, 35, 57, 63, 104isumle 11153 1 (𝜑 → Σ𝑖𝑍 ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ Σ𝑖𝑍 (1 / (2↑𝑖)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 680   = wceq 1314  wcel 1463  Vcvv 2657  wss 3037  {cpr 3494   class class class wbr 3895  cmpt 3949  dom cdm 4499  wf 5077  cfv 5081  (class class class)co 5728  cc 7542  cr 7543  0cc0 7544  1c1 7545   + caddc 7547   · cmul 7549   < clt 7721  cle 7722  cmin 7853   / cdiv 8342  cn 8627  2c2 8678  0cn0 8878  cuz 9225  +crp 9340  seqcseq 10108  cexp 10182  abscabs 10658  cli 10936  Σcsu 11011
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462  ax-cnex 7633  ax-resscn 7634  ax-1cn 7635  ax-1re 7636  ax-icn 7637  ax-addcl 7638  ax-addrcl 7639  ax-mulcl 7640  ax-mulrcl 7641  ax-addcom 7642  ax-mulcom 7643  ax-addass 7644  ax-mulass 7645  ax-distr 7646  ax-i2m1 7647  ax-0lt1 7648  ax-1rid 7649  ax-0id 7650  ax-rnegex 7651  ax-precex 7652  ax-cnre 7653  ax-pre-ltirr 7654  ax-pre-ltwlin 7655  ax-pre-lttrn 7656  ax-pre-apti 7657  ax-pre-ltadd 7658  ax-pre-mulgt0 7659  ax-pre-mulext 7660  ax-arch 7661  ax-caucvg 7662
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rmo 2398  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-if 3441  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-id 4175  df-po 4178  df-iso 4179  df-iord 4248  df-on 4250  df-ilim 4251  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-isom 5090  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-recs 6156  df-irdg 6221  df-frec 6242  df-1o 6267  df-oadd 6271  df-er 6383  df-en 6589  df-dom 6590  df-fin 6591  df-pnf 7723  df-mnf 7724  df-xr 7725  df-ltxr 7726  df-le 7727  df-sub 7855  df-neg 7856  df-reap 8252  df-ap 8259  df-div 8343  df-inn 8628  df-2 8686  df-3 8687  df-4 8688  df-n0 8879  df-z 8956  df-uz 9226  df-q 9311  df-rp 9341  df-ico 9567  df-fz 9681  df-fzo 9810  df-seqfrec 10109  df-exp 10183  df-ihash 10412  df-cj 10504  df-re 10505  df-im 10506  df-rsqrt 10659  df-abs 10660  df-clim 10937  df-sumdc 11012
This theorem is referenced by:  trilpolemgt1  12916  trilpolemeq1  12917
  Copyright terms: Public domain W3C validator