Step | Hyp | Ref
| Expression |
1 | | trilpolemisumle.z |
. 2
β’ π =
(β€β₯βπ) |
2 | | trilpolemisumle.m |
. . 3
β’ (π β π β β) |
3 | 2 | nnzd 9376 |
. 2
β’ (π β π β β€) |
4 | 1 | eleq2i 2244 |
. . . . 5
β’ (π β π β π β (β€β₯βπ)) |
5 | 4 | biimpi 120 |
. . . 4
β’ (π β π β π β (β€β₯βπ)) |
6 | | eluznn 9602 |
. . . 4
β’ ((π β β β§ π β
(β€β₯βπ)) β π β β) |
7 | 2, 5, 6 | syl2an 289 |
. . 3
β’ ((π β§ π β π) β π β β) |
8 | | eqid 2177 |
. . . 4
β’ (π β β β¦ ((1 /
(2βπ)) Β· (πΉβπ))) = (π β β β¦ ((1 / (2βπ)) Β· (πΉβπ))) |
9 | | oveq2 5885 |
. . . . . 6
β’ (π = π β (2βπ) = (2βπ)) |
10 | 9 | oveq2d 5893 |
. . . . 5
β’ (π = π β (1 / (2βπ)) = (1 / (2βπ))) |
11 | | fveq2 5517 |
. . . . 5
β’ (π = π β (πΉβπ) = (πΉβπ)) |
12 | 10, 11 | oveq12d 5895 |
. . . 4
β’ (π = π β ((1 / (2βπ)) Β· (πΉβπ)) = ((1 / (2βπ)) Β· (πΉβπ))) |
13 | | simpr 110 |
. . . 4
β’ ((π β§ π β β) β π β β) |
14 | | 2rp 9660 |
. . . . . . . . 9
β’ 2 β
β+ |
15 | 14 | a1i 9 |
. . . . . . . 8
β’ ((π β§ π β β) β 2 β
β+) |
16 | 13 | nnzd 9376 |
. . . . . . . 8
β’ ((π β§ π β β) β π β β€) |
17 | 15, 16 | rpexpcld 10680 |
. . . . . . 7
β’ ((π β§ π β β) β (2βπ) β
β+) |
18 | 17 | rpreccld 9709 |
. . . . . 6
β’ ((π β§ π β β) β (1 / (2βπ)) β
β+) |
19 | 18 | rpred 9698 |
. . . . 5
β’ ((π β§ π β β) β (1 / (2βπ)) β
β) |
20 | | trilpolemgt1.f |
. . . . . . 7
β’ (π β πΉ:ββΆ{0, 1}) |
21 | | 0re 7959 |
. . . . . . . . 9
β’ 0 β
β |
22 | | 1re 7958 |
. . . . . . . . 9
β’ 1 β
β |
23 | | prssi 3752 |
. . . . . . . . 9
β’ ((0
β β β§ 1 β β) β {0, 1} β
β) |
24 | 21, 22, 23 | mp2an 426 |
. . . . . . . 8
β’ {0, 1}
β β |
25 | 24 | a1i 9 |
. . . . . . 7
β’ (π β {0, 1} β
β) |
26 | 20, 25 | fssd 5380 |
. . . . . 6
β’ (π β πΉ:ββΆβ) |
27 | 26 | ffvelcdmda 5653 |
. . . . 5
β’ ((π β§ π β β) β (πΉβπ) β β) |
28 | 19, 27 | remulcld 7990 |
. . . 4
β’ ((π β§ π β β) β ((1 / (2βπ)) Β· (πΉβπ)) β β) |
29 | 8, 12, 13, 28 | fvmptd3 5611 |
. . 3
β’ ((π β§ π β β) β ((π β β β¦ ((1 / (2βπ)) Β· (πΉβπ)))βπ) = ((1 / (2βπ)) Β· (πΉβπ))) |
30 | 7, 29 | syldan 282 |
. 2
β’ ((π β§ π β π) β ((π β β β¦ ((1 / (2βπ)) Β· (πΉβπ)))βπ) = ((1 / (2βπ)) Β· (πΉβπ))) |
31 | 7, 28 | syldan 282 |
. 2
β’ ((π β§ π β π) β ((1 / (2βπ)) Β· (πΉβπ)) β β) |
32 | | eqid 2177 |
. . . 4
β’ (π β β β¦ (1 /
(2βπ))) = (π β β β¦ (1 /
(2βπ))) |
33 | 32, 10, 13, 18 | fvmptd3 5611 |
. . 3
β’ ((π β§ π β β) β ((π β β β¦ (1 / (2βπ)))βπ) = (1 / (2βπ))) |
34 | 7, 33 | syldan 282 |
. 2
β’ ((π β§ π β π) β ((π β β β¦ (1 / (2βπ)))βπ) = (1 / (2βπ))) |
35 | 7, 19 | syldan 282 |
. 2
β’ ((π β§ π β π) β (1 / (2βπ)) β β) |
36 | | simpr 110 |
. . . . . . 7
β’ (((π β§ π β β) β§ (πΉβπ) = 0) β (πΉβπ) = 0) |
37 | 36 | oveq2d 5893 |
. . . . . 6
β’ (((π β§ π β β) β§ (πΉβπ) = 0) β ((1 / (2βπ)) Β· (πΉβπ)) = ((1 / (2βπ)) Β· 0)) |
38 | 18 | rpcnd 9700 |
. . . . . . . 8
β’ ((π β§ π β β) β (1 / (2βπ)) β
β) |
39 | 38 | adantr 276 |
. . . . . . 7
β’ (((π β§ π β β) β§ (πΉβπ) = 0) β (1 / (2βπ)) β β) |
40 | 39 | mul01d 8352 |
. . . . . 6
β’ (((π β§ π β β) β§ (πΉβπ) = 0) β ((1 / (2βπ)) Β· 0) =
0) |
41 | 37, 40 | eqtrd 2210 |
. . . . 5
β’ (((π β§ π β β) β§ (πΉβπ) = 0) β ((1 / (2βπ)) Β· (πΉβπ)) = 0) |
42 | 18 | adantr 276 |
. . . . . 6
β’ (((π β§ π β β) β§ (πΉβπ) = 0) β (1 / (2βπ)) β
β+) |
43 | 42 | rpge0d 9702 |
. . . . 5
β’ (((π β§ π β β) β§ (πΉβπ) = 0) β 0 β€ (1 / (2βπ))) |
44 | 41, 43 | eqbrtrd 4027 |
. . . 4
β’ (((π β§ π β β) β§ (πΉβπ) = 0) β ((1 / (2βπ)) Β· (πΉβπ)) β€ (1 / (2βπ))) |
45 | | simpr 110 |
. . . . . . 7
β’ (((π β§ π β β) β§ (πΉβπ) = 1) β (πΉβπ) = 1) |
46 | 45 | oveq2d 5893 |
. . . . . 6
β’ (((π β§ π β β) β§ (πΉβπ) = 1) β ((1 / (2βπ)) Β· (πΉβπ)) = ((1 / (2βπ)) Β· 1)) |
47 | 38 | adantr 276 |
. . . . . . 7
β’ (((π β§ π β β) β§ (πΉβπ) = 1) β (1 / (2βπ)) β β) |
48 | 47 | mulridd 7976 |
. . . . . 6
β’ (((π β§ π β β) β§ (πΉβπ) = 1) β ((1 / (2βπ)) Β· 1) = (1 /
(2βπ))) |
49 | 46, 48 | eqtrd 2210 |
. . . . 5
β’ (((π β§ π β β) β§ (πΉβπ) = 1) β ((1 / (2βπ)) Β· (πΉβπ)) = (1 / (2βπ))) |
50 | 19 | adantr 276 |
. . . . . 6
β’ (((π β§ π β β) β§ (πΉβπ) = 1) β (1 / (2βπ)) β β) |
51 | 50 | leidd 8473 |
. . . . 5
β’ (((π β§ π β β) β§ (πΉβπ) = 1) β (1 / (2βπ)) β€ (1 / (2βπ))) |
52 | 49, 51 | eqbrtrd 4027 |
. . . 4
β’ (((π β§ π β β) β§ (πΉβπ) = 1) β ((1 / (2βπ)) Β· (πΉβπ)) β€ (1 / (2βπ))) |
53 | 20 | ffvelcdmda 5653 |
. . . . 5
β’ ((π β§ π β β) β (πΉβπ) β {0, 1}) |
54 | | elpri 3617 |
. . . . 5
β’ ((πΉβπ) β {0, 1} β ((πΉβπ) = 0 β¨ (πΉβπ) = 1)) |
55 | 53, 54 | syl 14 |
. . . 4
β’ ((π β§ π β β) β ((πΉβπ) = 0 β¨ (πΉβπ) = 1)) |
56 | 44, 52, 55 | mpjaodan 798 |
. . 3
β’ ((π β§ π β β) β ((1 / (2βπ)) Β· (πΉβπ)) β€ (1 / (2βπ))) |
57 | 7, 56 | syldan 282 |
. 2
β’ ((π β§ π β π) β ((1 / (2βπ)) Β· (πΉβπ)) β€ (1 / (2βπ))) |
58 | 20, 8 | trilpolemclim 14823 |
. . 3
β’ (π β seq1( + , (π β β β¦ ((1 /
(2βπ)) Β· (πΉβπ)))) β dom β ) |
59 | | nnuz 9565 |
. . . 4
β’ β =
(β€β₯β1) |
60 | 29, 28 | eqeltrd 2254 |
. . . . 5
β’ ((π β§ π β β) β ((π β β β¦ ((1 / (2βπ)) Β· (πΉβπ)))βπ) β β) |
61 | 60 | recnd 7988 |
. . . 4
β’ ((π β§ π β β) β ((π β β β¦ ((1 / (2βπ)) Β· (πΉβπ)))βπ) β β) |
62 | 59, 2, 61 | iserex 11349 |
. . 3
β’ (π β (seq1( + , (π β β β¦ ((1 /
(2βπ)) Β· (πΉβπ)))) β dom β β seqπ( + , (π β β β¦ ((1 / (2βπ)) Β· (πΉβπ)))) β dom β )) |
63 | 58, 62 | mpbid 147 |
. 2
β’ (π β seqπ( + , (π β β β¦ ((1 / (2βπ)) Β· (πΉβπ)))) β dom β ) |
64 | | seqex 10449 |
. . . 4
β’ seq1( + ,
(π β β β¦
(1 / (2βπ)))) β
V |
65 | | rpreccl 9682 |
. . . . . . . 8
β’ (2 β
β+ β (1 / 2) β β+) |
66 | 14, 65 | ax-mp 5 |
. . . . . . 7
β’ (1 / 2)
β β+ |
67 | 66 | a1i 9 |
. . . . . 6
β’ (π β (1 / 2) β
β+) |
68 | | 1zzd 9282 |
. . . . . 6
β’ (π β 1 β
β€) |
69 | 67, 68 | rpexpcld 10680 |
. . . . 5
β’ (π β ((1 / 2)β1) β
β+) |
70 | | 1mhlfehlf 9139 |
. . . . . . 7
β’ (1
β (1 / 2)) = (1 / 2) |
71 | 70, 66 | eqeltri 2250 |
. . . . . 6
β’ (1
β (1 / 2)) β β+ |
72 | 71 | a1i 9 |
. . . . 5
β’ (π β (1 β (1 / 2)) β
β+) |
73 | 69, 72 | rpdivcld 9716 |
. . . 4
β’ (π β (((1 / 2)β1) / (1
β (1 / 2))) β β+) |
74 | | halfcn 9135 |
. . . . . 6
β’ (1 / 2)
β β |
75 | 74 | a1i 9 |
. . . . 5
β’ (π β (1 / 2) β
β) |
76 | | halfge0 9137 |
. . . . . . . 8
β’ 0 β€ (1
/ 2) |
77 | | halfre 9134 |
. . . . . . . . 9
β’ (1 / 2)
β β |
78 | 77 | absidi 11137 |
. . . . . . . 8
β’ (0 β€
(1 / 2) β (absβ(1 / 2)) = (1 / 2)) |
79 | 76, 78 | ax-mp 5 |
. . . . . . 7
β’
(absβ(1 / 2)) = (1 / 2) |
80 | | halflt1 9138 |
. . . . . . 7
β’ (1 / 2)
< 1 |
81 | 79, 80 | eqbrtri 4026 |
. . . . . 6
β’
(absβ(1 / 2)) < 1 |
82 | 81 | a1i 9 |
. . . . 5
β’ (π β (absβ(1 / 2)) <
1) |
83 | | 1nn0 9194 |
. . . . . 6
β’ 1 β
β0 |
84 | 83 | a1i 9 |
. . . . 5
β’ (π β 1 β
β0) |
85 | | oveq2 5885 |
. . . . . . . 8
β’ (π = π β (2βπ) = (2βπ)) |
86 | 85 | oveq2d 5893 |
. . . . . . 7
β’ (π = π β (1 / (2βπ)) = (1 / (2βπ))) |
87 | | elnnuz 9566 |
. . . . . . . . 9
β’ (π β β β π β
(β€β₯β1)) |
88 | 87 | biimpri 133 |
. . . . . . . 8
β’ (π β
(β€β₯β1) β π β β) |
89 | 88 | adantl 277 |
. . . . . . 7
β’ ((π β§ π β (β€β₯β1))
β π β
β) |
90 | 14 | a1i 9 |
. . . . . . . . 9
β’ ((π β§ π β (β€β₯β1))
β 2 β β+) |
91 | 89 | nnzd 9376 |
. . . . . . . . 9
β’ ((π β§ π β (β€β₯β1))
β π β
β€) |
92 | 90, 91 | rpexpcld 10680 |
. . . . . . . 8
β’ ((π β§ π β (β€β₯β1))
β (2βπ) β
β+) |
93 | 92 | rpreccld 9709 |
. . . . . . 7
β’ ((π β§ π β (β€β₯β1))
β (1 / (2βπ))
β β+) |
94 | 32, 86, 89, 93 | fvmptd3 5611 |
. . . . . 6
β’ ((π β§ π β (β€β₯β1))
β ((π β β
β¦ (1 / (2βπ)))βπ) = (1 / (2βπ))) |
95 | | 2cnd 8994 |
. . . . . . 7
β’ ((π β§ π β (β€β₯β1))
β 2 β β) |
96 | 90 | rpap0d 9704 |
. . . . . . 7
β’ ((π β§ π β (β€β₯β1))
β 2 # 0) |
97 | 95, 96, 91 | exprecapd 10664 |
. . . . . 6
β’ ((π β§ π β (β€β₯β1))
β ((1 / 2)βπ) =
(1 / (2βπ))) |
98 | 94, 97 | eqtr4d 2213 |
. . . . 5
β’ ((π β§ π β (β€β₯β1))
β ((π β β
β¦ (1 / (2βπ)))βπ) = ((1 / 2)βπ)) |
99 | 75, 82, 84, 98 | geolim2 11522 |
. . . 4
β’ (π β seq1( + , (π β β β¦ (1 /
(2βπ)))) β (((1
/ 2)β1) / (1 β (1 / 2)))) |
100 | | breldmg 4835 |
. . . 4
β’ ((seq1( +
, (π β β β¦
(1 / (2βπ)))) β V
β§ (((1 / 2)β1) / (1 β (1 / 2))) β β+ β§
seq1( + , (π β β
β¦ (1 / (2βπ))))
β (((1 / 2)β1) / (1 β (1 / 2)))) β seq1( + , (π β β β¦ (1 /
(2βπ)))) β dom
β ) |
101 | 64, 73, 99, 100 | mp3an2i 1342 |
. . 3
β’ (π β seq1( + , (π β β β¦ (1 /
(2βπ)))) β dom
β ) |
102 | 33, 38 | eqeltrd 2254 |
. . . 4
β’ ((π β§ π β β) β ((π β β β¦ (1 / (2βπ)))βπ) β β) |
103 | 59, 2, 102 | iserex 11349 |
. . 3
β’ (π β (seq1( + , (π β β β¦ (1 /
(2βπ)))) β dom
β β seqπ( + ,
(π β β β¦
(1 / (2βπ)))) β
dom β )) |
104 | 101, 103 | mpbid 147 |
. 2
β’ (π β seqπ( + , (π β β β¦ (1 / (2βπ)))) β dom β
) |
105 | 1, 3, 30, 31, 34, 35, 57, 63, 104 | isumle 11505 |
1
β’ (π β Ξ£π β π ((1 / (2βπ)) Β· (πΉβπ)) β€ Ξ£π β π (1 / (2βπ))) |