Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trilpolemisumle GIF version

Theorem trilpolemisumle 15841
Description: Lemma for trilpo 15846. An upper bound for the sum of the digits beyond a certain point. (Contributed by Jim Kingdon, 28-Aug-2023.)
Hypotheses
Ref Expression
trilpolemgt1.f (𝜑𝐹:ℕ⟶{0, 1})
trilpolemgt1.a 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖))
trilpolemisumle.z 𝑍 = (ℤ𝑀)
trilpolemisumle.m (𝜑𝑀 ∈ ℕ)
Assertion
Ref Expression
trilpolemisumle (𝜑 → Σ𝑖𝑍 ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ Σ𝑖𝑍 (1 / (2↑𝑖)))
Distinct variable groups:   𝑖,𝐹   𝑖,𝑀   𝑖,𝑍   𝜑,𝑖
Allowed substitution hint:   𝐴(𝑖)

Proof of Theorem trilpolemisumle
Dummy variables 𝑛 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trilpolemisumle.z . 2 𝑍 = (ℤ𝑀)
2 trilpolemisumle.m . . 3 (𝜑𝑀 ∈ ℕ)
32nnzd 9476 . 2 (𝜑𝑀 ∈ ℤ)
41eleq2i 2271 . . . . 5 (𝑖𝑍𝑖 ∈ (ℤ𝑀))
54biimpi 120 . . . 4 (𝑖𝑍𝑖 ∈ (ℤ𝑀))
6 eluznn 9703 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑀)) → 𝑖 ∈ ℕ)
72, 5, 6syl2an 289 . . 3 ((𝜑𝑖𝑍) → 𝑖 ∈ ℕ)
8 eqid 2204 . . . 4 (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛))) = (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))
9 oveq2 5942 . . . . . 6 (𝑛 = 𝑖 → (2↑𝑛) = (2↑𝑖))
109oveq2d 5950 . . . . 5 (𝑛 = 𝑖 → (1 / (2↑𝑛)) = (1 / (2↑𝑖)))
11 fveq2 5570 . . . . 5 (𝑛 = 𝑖 → (𝐹𝑛) = (𝐹𝑖))
1210, 11oveq12d 5952 . . . 4 (𝑛 = 𝑖 → ((1 / (2↑𝑛)) · (𝐹𝑛)) = ((1 / (2↑𝑖)) · (𝐹𝑖)))
13 simpr 110 . . . 4 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
14 2rp 9762 . . . . . . . . 9 2 ∈ ℝ+
1514a1i 9 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → 2 ∈ ℝ+)
1613nnzd 9476 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℤ)
1715, 16rpexpcld 10823 . . . . . . 7 ((𝜑𝑖 ∈ ℕ) → (2↑𝑖) ∈ ℝ+)
1817rpreccld 9811 . . . . . 6 ((𝜑𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ+)
1918rpred 9800 . . . . 5 ((𝜑𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ)
20 trilpolemgt1.f . . . . . . 7 (𝜑𝐹:ℕ⟶{0, 1})
21 0re 8054 . . . . . . . . 9 0 ∈ ℝ
22 1re 8053 . . . . . . . . 9 1 ∈ ℝ
23 prssi 3790 . . . . . . . . 9 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆ ℝ)
2421, 22, 23mp2an 426 . . . . . . . 8 {0, 1} ⊆ ℝ
2524a1i 9 . . . . . . 7 (𝜑 → {0, 1} ⊆ ℝ)
2620, 25fssd 5432 . . . . . 6 (𝜑𝐹:ℕ⟶ℝ)
2726ffvelcdmda 5709 . . . . 5 ((𝜑𝑖 ∈ ℕ) → (𝐹𝑖) ∈ ℝ)
2819, 27remulcld 8085 . . . 4 ((𝜑𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℝ)
298, 12, 13, 28fvmptd3 5667 . . 3 ((𝜑𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐹𝑖)))
307, 29syldan 282 . 2 ((𝜑𝑖𝑍) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐹𝑖)))
317, 28syldan 282 . 2 ((𝜑𝑖𝑍) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℝ)
32 eqid 2204 . . . 4 (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛))) = (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))
3332, 10, 13, 18fvmptd3 5667 . . 3 ((𝜑𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))‘𝑖) = (1 / (2↑𝑖)))
347, 33syldan 282 . 2 ((𝜑𝑖𝑍) → ((𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))‘𝑖) = (1 / (2↑𝑖)))
357, 19syldan 282 . 2 ((𝜑𝑖𝑍) → (1 / (2↑𝑖)) ∈ ℝ)
36 simpr 110 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → (𝐹𝑖) = 0)
3736oveq2d 5950 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → ((1 / (2↑𝑖)) · (𝐹𝑖)) = ((1 / (2↑𝑖)) · 0))
3818rpcnd 9802 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℂ)
3938adantr 276 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → (1 / (2↑𝑖)) ∈ ℂ)
4039mul01d 8447 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → ((1 / (2↑𝑖)) · 0) = 0)
4137, 40eqtrd 2237 . . . . 5 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → ((1 / (2↑𝑖)) · (𝐹𝑖)) = 0)
4218adantr 276 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → (1 / (2↑𝑖)) ∈ ℝ+)
4342rpge0d 9804 . . . . 5 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → 0 ≤ (1 / (2↑𝑖)))
4441, 43eqbrtrd 4065 . . . 4 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ (1 / (2↑𝑖)))
45 simpr 110 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → (𝐹𝑖) = 1)
4645oveq2d 5950 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → ((1 / (2↑𝑖)) · (𝐹𝑖)) = ((1 / (2↑𝑖)) · 1))
4738adantr 276 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → (1 / (2↑𝑖)) ∈ ℂ)
4847mulridd 8071 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → ((1 / (2↑𝑖)) · 1) = (1 / (2↑𝑖)))
4946, 48eqtrd 2237 . . . . 5 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → ((1 / (2↑𝑖)) · (𝐹𝑖)) = (1 / (2↑𝑖)))
5019adantr 276 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → (1 / (2↑𝑖)) ∈ ℝ)
5150leidd 8569 . . . . 5 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → (1 / (2↑𝑖)) ≤ (1 / (2↑𝑖)))
5249, 51eqbrtrd 4065 . . . 4 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ (1 / (2↑𝑖)))
5320ffvelcdmda 5709 . . . . 5 ((𝜑𝑖 ∈ ℕ) → (𝐹𝑖) ∈ {0, 1})
54 elpri 3655 . . . . 5 ((𝐹𝑖) ∈ {0, 1} → ((𝐹𝑖) = 0 ∨ (𝐹𝑖) = 1))
5553, 54syl 14 . . . 4 ((𝜑𝑖 ∈ ℕ) → ((𝐹𝑖) = 0 ∨ (𝐹𝑖) = 1))
5644, 52, 55mpjaodan 799 . . 3 ((𝜑𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ (1 / (2↑𝑖)))
577, 56syldan 282 . 2 ((𝜑𝑖𝑍) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ (1 / (2↑𝑖)))
5820, 8trilpolemclim 15839 . . 3 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))) ∈ dom ⇝ )
59 nnuz 9666 . . . 4 ℕ = (ℤ‘1)
6029, 28eqeltrd 2281 . . . . 5 ((𝜑𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))‘𝑖) ∈ ℝ)
6160recnd 8083 . . . 4 ((𝜑𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))‘𝑖) ∈ ℂ)
6259, 2, 61iserex 11569 . . 3 (𝜑 → (seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))) ∈ dom ⇝ ↔ seq𝑀( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))) ∈ dom ⇝ ))
6358, 62mpbid 147 . 2 (𝜑 → seq𝑀( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))) ∈ dom ⇝ )
64 seqex 10575 . . . 4 seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ V
65 rpreccl 9784 . . . . . . . 8 (2 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
6614, 65ax-mp 5 . . . . . . 7 (1 / 2) ∈ ℝ+
6766a1i 9 . . . . . 6 (𝜑 → (1 / 2) ∈ ℝ+)
68 1zzd 9381 . . . . . 6 (𝜑 → 1 ∈ ℤ)
6967, 68rpexpcld 10823 . . . . 5 (𝜑 → ((1 / 2)↑1) ∈ ℝ+)
70 1mhlfehlf 9237 . . . . . . 7 (1 − (1 / 2)) = (1 / 2)
7170, 66eqeltri 2277 . . . . . 6 (1 − (1 / 2)) ∈ ℝ+
7271a1i 9 . . . . 5 (𝜑 → (1 − (1 / 2)) ∈ ℝ+)
7369, 72rpdivcld 9818 . . . 4 (𝜑 → (((1 / 2)↑1) / (1 − (1 / 2))) ∈ ℝ+)
74 halfcn 9233 . . . . . 6 (1 / 2) ∈ ℂ
7574a1i 9 . . . . 5 (𝜑 → (1 / 2) ∈ ℂ)
76 halfge0 9235 . . . . . . . 8 0 ≤ (1 / 2)
77 halfre 9232 . . . . . . . . 9 (1 / 2) ∈ ℝ
7877absidi 11356 . . . . . . . 8 (0 ≤ (1 / 2) → (abs‘(1 / 2)) = (1 / 2))
7976, 78ax-mp 5 . . . . . . 7 (abs‘(1 / 2)) = (1 / 2)
80 halflt1 9236 . . . . . . 7 (1 / 2) < 1
8179, 80eqbrtri 4064 . . . . . 6 (abs‘(1 / 2)) < 1
8281a1i 9 . . . . 5 (𝜑 → (abs‘(1 / 2)) < 1)
83 1nn0 9293 . . . . . 6 1 ∈ ℕ0
8483a1i 9 . . . . 5 (𝜑 → 1 ∈ ℕ0)
85 oveq2 5942 . . . . . . . 8 (𝑛 = 𝑗 → (2↑𝑛) = (2↑𝑗))
8685oveq2d 5950 . . . . . . 7 (𝑛 = 𝑗 → (1 / (2↑𝑛)) = (1 / (2↑𝑗)))
87 elnnuz 9667 . . . . . . . . 9 (𝑗 ∈ ℕ ↔ 𝑗 ∈ (ℤ‘1))
8887biimpri 133 . . . . . . . 8 (𝑗 ∈ (ℤ‘1) → 𝑗 ∈ ℕ)
8988adantl 277 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ‘1)) → 𝑗 ∈ ℕ)
9014a1i 9 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ‘1)) → 2 ∈ ℝ+)
9189nnzd 9476 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ‘1)) → 𝑗 ∈ ℤ)
9290, 91rpexpcld 10823 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ‘1)) → (2↑𝑗) ∈ ℝ+)
9392rpreccld 9811 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ‘1)) → (1 / (2↑𝑗)) ∈ ℝ+)
9432, 86, 89, 93fvmptd3 5667 . . . . . 6 ((𝜑𝑗 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))‘𝑗) = (1 / (2↑𝑗)))
95 2cnd 9091 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ‘1)) → 2 ∈ ℂ)
9690rpap0d 9806 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ‘1)) → 2 # 0)
9795, 96, 91exprecapd 10807 . . . . . 6 ((𝜑𝑗 ∈ (ℤ‘1)) → ((1 / 2)↑𝑗) = (1 / (2↑𝑗)))
9894, 97eqtr4d 2240 . . . . 5 ((𝜑𝑗 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))‘𝑗) = ((1 / 2)↑𝑗))
9975, 82, 84, 98geolim2 11742 . . . 4 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ⇝ (((1 / 2)↑1) / (1 − (1 / 2))))
100 breldmg 4882 . . . 4 ((seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ V ∧ (((1 / 2)↑1) / (1 − (1 / 2))) ∈ ℝ+ ∧ seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ⇝ (((1 / 2)↑1) / (1 − (1 / 2)))) → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝ )
10164, 73, 99, 100mp3an2i 1354 . . 3 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝ )
10233, 38eqeltrd 2281 . . . 4 ((𝜑𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))‘𝑖) ∈ ℂ)
10359, 2, 102iserex 11569 . . 3 (𝜑 → (seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝ ↔ seq𝑀( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝ ))
104101, 103mpbid 147 . 2 (𝜑 → seq𝑀( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝ )
1051, 3, 30, 31, 34, 35, 57, 63, 104isumle 11725 1 (𝜑 → Σ𝑖𝑍 ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ Σ𝑖𝑍 (1 / (2↑𝑖)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1372  wcel 2175  Vcvv 2771  wss 3165  {cpr 3633   class class class wbr 4043  cmpt 4104  dom cdm 4673  wf 5264  cfv 5268  (class class class)co 5934  cc 7905  cr 7906  0cc0 7907  1c1 7908   + caddc 7910   · cmul 7912   < clt 8089  cle 8090  cmin 8225   / cdiv 8727  cn 9018  2c2 9069  0cn0 9277  cuz 9630  +crp 9757  seqcseq 10573  cexp 10664  abscabs 11227  cli 11508  Σcsu 11583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-mulrcl 8006  ax-addcom 8007  ax-mulcom 8008  ax-addass 8009  ax-mulass 8010  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-1rid 8014  ax-0id 8015  ax-rnegex 8016  ax-precex 8017  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-apti 8022  ax-pre-ltadd 8023  ax-pre-mulgt0 8024  ax-pre-mulext 8025  ax-arch 8026  ax-caucvg 8027
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-po 4341  df-iso 4342  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-isom 5277  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-recs 6381  df-irdg 6446  df-frec 6467  df-1o 6492  df-oadd 6496  df-er 6610  df-en 6818  df-dom 6819  df-fin 6820  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-reap 8630  df-ap 8637  df-div 8728  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-n0 9278  df-z 9355  df-uz 9631  df-q 9723  df-rp 9758  df-ico 9998  df-fz 10113  df-fzo 10247  df-seqfrec 10574  df-exp 10665  df-ihash 10902  df-cj 11072  df-re 11073  df-im 11074  df-rsqrt 11228  df-abs 11229  df-clim 11509  df-sumdc 11584
This theorem is referenced by:  trilpolemgt1  15842  trilpolemeq1  15843
  Copyright terms: Public domain W3C validator