Step | Hyp | Ref
| Expression |
1 | | trilpolemisumle.z |
. 2
⊢ 𝑍 =
(ℤ≥‘𝑀) |
2 | | trilpolemisumle.m |
. . 3
⊢ (𝜑 → 𝑀 ∈ ℕ) |
3 | 2 | nnzd 9312 |
. 2
⊢ (𝜑 → 𝑀 ∈ ℤ) |
4 | 1 | eleq2i 2233 |
. . . . 5
⊢ (𝑖 ∈ 𝑍 ↔ 𝑖 ∈ (ℤ≥‘𝑀)) |
5 | 4 | biimpi 119 |
. . . 4
⊢ (𝑖 ∈ 𝑍 → 𝑖 ∈ (ℤ≥‘𝑀)) |
6 | | eluznn 9538 |
. . . 4
⊢ ((𝑀 ∈ ℕ ∧ 𝑖 ∈
(ℤ≥‘𝑀)) → 𝑖 ∈ ℕ) |
7 | 2, 5, 6 | syl2an 287 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → 𝑖 ∈ ℕ) |
8 | | eqid 2165 |
. . . 4
⊢ (𝑛 ∈ ℕ ↦ ((1 /
(2↑𝑛)) · (𝐹‘𝑛))) = (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹‘𝑛))) |
9 | | oveq2 5850 |
. . . . . 6
⊢ (𝑛 = 𝑖 → (2↑𝑛) = (2↑𝑖)) |
10 | 9 | oveq2d 5858 |
. . . . 5
⊢ (𝑛 = 𝑖 → (1 / (2↑𝑛)) = (1 / (2↑𝑖))) |
11 | | fveq2 5486 |
. . . . 5
⊢ (𝑛 = 𝑖 → (𝐹‘𝑛) = (𝐹‘𝑖)) |
12 | 10, 11 | oveq12d 5860 |
. . . 4
⊢ (𝑛 = 𝑖 → ((1 / (2↑𝑛)) · (𝐹‘𝑛)) = ((1 / (2↑𝑖)) · (𝐹‘𝑖))) |
13 | | simpr 109 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℕ) |
14 | | 2rp 9594 |
. . . . . . . . 9
⊢ 2 ∈
ℝ+ |
15 | 14 | a1i 9 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 2 ∈
ℝ+) |
16 | 13 | nnzd 9312 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → 𝑖 ∈ ℤ) |
17 | 15, 16 | rpexpcld 10612 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (2↑𝑖) ∈
ℝ+) |
18 | 17 | rpreccld 9643 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈
ℝ+) |
19 | 18 | rpred 9632 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈
ℝ) |
20 | | trilpolemgt1.f |
. . . . . . 7
⊢ (𝜑 → 𝐹:ℕ⟶{0, 1}) |
21 | | 0re 7899 |
. . . . . . . . 9
⊢ 0 ∈
ℝ |
22 | | 1re 7898 |
. . . . . . . . 9
⊢ 1 ∈
ℝ |
23 | | prssi 3731 |
. . . . . . . . 9
⊢ ((0
∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆
ℝ) |
24 | 21, 22, 23 | mp2an 423 |
. . . . . . . 8
⊢ {0, 1}
⊆ ℝ |
25 | 24 | a1i 9 |
. . . . . . 7
⊢ (𝜑 → {0, 1} ⊆
ℝ) |
26 | 20, 25 | fssd 5350 |
. . . . . 6
⊢ (𝜑 → 𝐹:ℕ⟶ℝ) |
27 | 26 | ffvelrnda 5620 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐹‘𝑖) ∈ ℝ) |
28 | 19, 27 | remulcld 7929 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ∈ ℝ) |
29 | 8, 12, 13, 28 | fvmptd3 5579 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹‘𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐹‘𝑖))) |
30 | 7, 29 | syldan 280 |
. 2
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹‘𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐹‘𝑖))) |
31 | 7, 28 | syldan 280 |
. 2
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ∈ ℝ) |
32 | | eqid 2165 |
. . . 4
⊢ (𝑛 ∈ ℕ ↦ (1 /
(2↑𝑛))) = (𝑛 ∈ ℕ ↦ (1 /
(2↑𝑛))) |
33 | 32, 10, 13, 18 | fvmptd3 5579 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))‘𝑖) = (1 / (2↑𝑖))) |
34 | 7, 33 | syldan 280 |
. 2
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ((𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))‘𝑖) = (1 / (2↑𝑖))) |
35 | 7, 19 | syldan 280 |
. 2
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → (1 / (2↑𝑖)) ∈ ℝ) |
36 | | simpr 109 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝐹‘𝑖) = 0) → (𝐹‘𝑖) = 0) |
37 | 36 | oveq2d 5858 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝐹‘𝑖) = 0) → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) = ((1 / (2↑𝑖)) · 0)) |
38 | 18 | rpcnd 9634 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈
ℂ) |
39 | 38 | adantr 274 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝐹‘𝑖) = 0) → (1 / (2↑𝑖)) ∈ ℂ) |
40 | 39 | mul01d 8291 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝐹‘𝑖) = 0) → ((1 / (2↑𝑖)) · 0) =
0) |
41 | 37, 40 | eqtrd 2198 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝐹‘𝑖) = 0) → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) = 0) |
42 | 18 | adantr 274 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝐹‘𝑖) = 0) → (1 / (2↑𝑖)) ∈
ℝ+) |
43 | 42 | rpge0d 9636 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝐹‘𝑖) = 0) → 0 ≤ (1 / (2↑𝑖))) |
44 | 41, 43 | eqbrtrd 4004 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝐹‘𝑖) = 0) → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ≤ (1 / (2↑𝑖))) |
45 | | simpr 109 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝐹‘𝑖) = 1) → (𝐹‘𝑖) = 1) |
46 | 45 | oveq2d 5858 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝐹‘𝑖) = 1) → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) = ((1 / (2↑𝑖)) · 1)) |
47 | 38 | adantr 274 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝐹‘𝑖) = 1) → (1 / (2↑𝑖)) ∈ ℂ) |
48 | 47 | mulid1d 7916 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝐹‘𝑖) = 1) → ((1 / (2↑𝑖)) · 1) = (1 /
(2↑𝑖))) |
49 | 46, 48 | eqtrd 2198 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝐹‘𝑖) = 1) → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) = (1 / (2↑𝑖))) |
50 | 19 | adantr 274 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝐹‘𝑖) = 1) → (1 / (2↑𝑖)) ∈ ℝ) |
51 | 50 | leidd 8412 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝐹‘𝑖) = 1) → (1 / (2↑𝑖)) ≤ (1 / (2↑𝑖))) |
52 | 49, 51 | eqbrtrd 4004 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ ℕ) ∧ (𝐹‘𝑖) = 1) → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ≤ (1 / (2↑𝑖))) |
53 | 20 | ffvelrnda 5620 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → (𝐹‘𝑖) ∈ {0, 1}) |
54 | | elpri 3599 |
. . . . 5
⊢ ((𝐹‘𝑖) ∈ {0, 1} → ((𝐹‘𝑖) = 0 ∨ (𝐹‘𝑖) = 1)) |
55 | 53, 54 | syl 14 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝐹‘𝑖) = 0 ∨ (𝐹‘𝑖) = 1)) |
56 | 44, 52, 55 | mpjaodan 788 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ≤ (1 / (2↑𝑖))) |
57 | 7, 56 | syldan 280 |
. 2
⊢ ((𝜑 ∧ 𝑖 ∈ 𝑍) → ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ≤ (1 / (2↑𝑖))) |
58 | 20, 8 | trilpolemclim 13915 |
. . 3
⊢ (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ ((1 /
(2↑𝑛)) · (𝐹‘𝑛)))) ∈ dom ⇝ ) |
59 | | nnuz 9501 |
. . . 4
⊢ ℕ =
(ℤ≥‘1) |
60 | 29, 28 | eqeltrd 2243 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹‘𝑛)))‘𝑖) ∈ ℝ) |
61 | 60 | recnd 7927 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹‘𝑛)))‘𝑖) ∈ ℂ) |
62 | 59, 2, 61 | iserex 11280 |
. . 3
⊢ (𝜑 → (seq1( + , (𝑛 ∈ ℕ ↦ ((1 /
(2↑𝑛)) · (𝐹‘𝑛)))) ∈ dom ⇝ ↔ seq𝑀( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹‘𝑛)))) ∈ dom ⇝ )) |
63 | 58, 62 | mpbid 146 |
. 2
⊢ (𝜑 → seq𝑀( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹‘𝑛)))) ∈ dom ⇝ ) |
64 | | seqex 10382 |
. . . 4
⊢ seq1( + ,
(𝑛 ∈ ℕ ↦
(1 / (2↑𝑛)))) ∈
V |
65 | | rpreccl 9616 |
. . . . . . . 8
⊢ (2 ∈
ℝ+ → (1 / 2) ∈ ℝ+) |
66 | 14, 65 | ax-mp 5 |
. . . . . . 7
⊢ (1 / 2)
∈ ℝ+ |
67 | 66 | a1i 9 |
. . . . . 6
⊢ (𝜑 → (1 / 2) ∈
ℝ+) |
68 | | 1zzd 9218 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℤ) |
69 | 67, 68 | rpexpcld 10612 |
. . . . 5
⊢ (𝜑 → ((1 / 2)↑1) ∈
ℝ+) |
70 | | 1mhlfehlf 9075 |
. . . . . . 7
⊢ (1
− (1 / 2)) = (1 / 2) |
71 | 70, 66 | eqeltri 2239 |
. . . . . 6
⊢ (1
− (1 / 2)) ∈ ℝ+ |
72 | 71 | a1i 9 |
. . . . 5
⊢ (𝜑 → (1 − (1 / 2)) ∈
ℝ+) |
73 | 69, 72 | rpdivcld 9650 |
. . . 4
⊢ (𝜑 → (((1 / 2)↑1) / (1
− (1 / 2))) ∈ ℝ+) |
74 | | halfcn 9071 |
. . . . . 6
⊢ (1 / 2)
∈ ℂ |
75 | 74 | a1i 9 |
. . . . 5
⊢ (𝜑 → (1 / 2) ∈
ℂ) |
76 | | halfge0 9073 |
. . . . . . . 8
⊢ 0 ≤ (1
/ 2) |
77 | | halfre 9070 |
. . . . . . . . 9
⊢ (1 / 2)
∈ ℝ |
78 | 77 | absidi 11068 |
. . . . . . . 8
⊢ (0 ≤
(1 / 2) → (abs‘(1 / 2)) = (1 / 2)) |
79 | 76, 78 | ax-mp 5 |
. . . . . . 7
⊢
(abs‘(1 / 2)) = (1 / 2) |
80 | | halflt1 9074 |
. . . . . . 7
⊢ (1 / 2)
< 1 |
81 | 79, 80 | eqbrtri 4003 |
. . . . . 6
⊢
(abs‘(1 / 2)) < 1 |
82 | 81 | a1i 9 |
. . . . 5
⊢ (𝜑 → (abs‘(1 / 2)) <
1) |
83 | | 1nn0 9130 |
. . . . . 6
⊢ 1 ∈
ℕ0 |
84 | 83 | a1i 9 |
. . . . 5
⊢ (𝜑 → 1 ∈
ℕ0) |
85 | | oveq2 5850 |
. . . . . . . 8
⊢ (𝑛 = 𝑗 → (2↑𝑛) = (2↑𝑗)) |
86 | 85 | oveq2d 5858 |
. . . . . . 7
⊢ (𝑛 = 𝑗 → (1 / (2↑𝑛)) = (1 / (2↑𝑗))) |
87 | | elnnuz 9502 |
. . . . . . . . 9
⊢ (𝑗 ∈ ℕ ↔ 𝑗 ∈
(ℤ≥‘1)) |
88 | 87 | biimpri 132 |
. . . . . . . 8
⊢ (𝑗 ∈
(ℤ≥‘1) → 𝑗 ∈ ℕ) |
89 | 88 | adantl 275 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘1))
→ 𝑗 ∈
ℕ) |
90 | 14 | a1i 9 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘1))
→ 2 ∈ ℝ+) |
91 | 89 | nnzd 9312 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘1))
→ 𝑗 ∈
ℤ) |
92 | 90, 91 | rpexpcld 10612 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘1))
→ (2↑𝑗) ∈
ℝ+) |
93 | 92 | rpreccld 9643 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘1))
→ (1 / (2↑𝑗))
∈ ℝ+) |
94 | 32, 86, 89, 93 | fvmptd3 5579 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘1))
→ ((𝑛 ∈ ℕ
↦ (1 / (2↑𝑛)))‘𝑗) = (1 / (2↑𝑗))) |
95 | | 2cnd 8930 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘1))
→ 2 ∈ ℂ) |
96 | 90 | rpap0d 9638 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘1))
→ 2 # 0) |
97 | 95, 96, 91 | exprecapd 10596 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘1))
→ ((1 / 2)↑𝑗) =
(1 / (2↑𝑗))) |
98 | 94, 97 | eqtr4d 2201 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (ℤ≥‘1))
→ ((𝑛 ∈ ℕ
↦ (1 / (2↑𝑛)))‘𝑗) = ((1 / 2)↑𝑗)) |
99 | 75, 82, 84, 98 | geolim2 11453 |
. . . 4
⊢ (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (1 /
(2↑𝑛)))) ⇝ (((1
/ 2)↑1) / (1 − (1 / 2)))) |
100 | | breldmg 4810 |
. . . 4
⊢ ((seq1( +
, (𝑛 ∈ ℕ ↦
(1 / (2↑𝑛)))) ∈ V
∧ (((1 / 2)↑1) / (1 − (1 / 2))) ∈ ℝ+ ∧
seq1( + , (𝑛 ∈ ℕ
↦ (1 / (2↑𝑛))))
⇝ (((1 / 2)↑1) / (1 − (1 / 2)))) → seq1( + , (𝑛 ∈ ℕ ↦ (1 /
(2↑𝑛)))) ∈ dom
⇝ ) |
101 | 64, 73, 99, 100 | mp3an2i 1332 |
. . 3
⊢ (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (1 /
(2↑𝑛)))) ∈ dom
⇝ ) |
102 | 33, 38 | eqeltrd 2243 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))‘𝑖) ∈ ℂ) |
103 | 59, 2, 102 | iserex 11280 |
. . 3
⊢ (𝜑 → (seq1( + , (𝑛 ∈ ℕ ↦ (1 /
(2↑𝑛)))) ∈ dom
⇝ ↔ seq𝑀( + ,
(𝑛 ∈ ℕ ↦
(1 / (2↑𝑛)))) ∈
dom ⇝ )) |
104 | 101, 103 | mpbid 146 |
. 2
⊢ (𝜑 → seq𝑀( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝
) |
105 | 1, 3, 30, 31, 34, 35, 57, 63, 104 | isumle 11436 |
1
⊢ (𝜑 → Σ𝑖 ∈ 𝑍 ((1 / (2↑𝑖)) · (𝐹‘𝑖)) ≤ Σ𝑖 ∈ 𝑍 (1 / (2↑𝑖))) |