Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trilpolemisumle GIF version

Theorem trilpolemisumle 15682
Description: Lemma for trilpo 15687. An upper bound for the sum of the digits beyond a certain point. (Contributed by Jim Kingdon, 28-Aug-2023.)
Hypotheses
Ref Expression
trilpolemgt1.f (𝜑𝐹:ℕ⟶{0, 1})
trilpolemgt1.a 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖))
trilpolemisumle.z 𝑍 = (ℤ𝑀)
trilpolemisumle.m (𝜑𝑀 ∈ ℕ)
Assertion
Ref Expression
trilpolemisumle (𝜑 → Σ𝑖𝑍 ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ Σ𝑖𝑍 (1 / (2↑𝑖)))
Distinct variable groups:   𝑖,𝐹   𝑖,𝑀   𝑖,𝑍   𝜑,𝑖
Allowed substitution hint:   𝐴(𝑖)

Proof of Theorem trilpolemisumle
Dummy variables 𝑛 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trilpolemisumle.z . 2 𝑍 = (ℤ𝑀)
2 trilpolemisumle.m . . 3 (𝜑𝑀 ∈ ℕ)
32nnzd 9447 . 2 (𝜑𝑀 ∈ ℤ)
41eleq2i 2263 . . . . 5 (𝑖𝑍𝑖 ∈ (ℤ𝑀))
54biimpi 120 . . . 4 (𝑖𝑍𝑖 ∈ (ℤ𝑀))
6 eluznn 9674 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑀)) → 𝑖 ∈ ℕ)
72, 5, 6syl2an 289 . . 3 ((𝜑𝑖𝑍) → 𝑖 ∈ ℕ)
8 eqid 2196 . . . 4 (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛))) = (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))
9 oveq2 5930 . . . . . 6 (𝑛 = 𝑖 → (2↑𝑛) = (2↑𝑖))
109oveq2d 5938 . . . . 5 (𝑛 = 𝑖 → (1 / (2↑𝑛)) = (1 / (2↑𝑖)))
11 fveq2 5558 . . . . 5 (𝑛 = 𝑖 → (𝐹𝑛) = (𝐹𝑖))
1210, 11oveq12d 5940 . . . 4 (𝑛 = 𝑖 → ((1 / (2↑𝑛)) · (𝐹𝑛)) = ((1 / (2↑𝑖)) · (𝐹𝑖)))
13 simpr 110 . . . 4 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
14 2rp 9733 . . . . . . . . 9 2 ∈ ℝ+
1514a1i 9 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → 2 ∈ ℝ+)
1613nnzd 9447 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℤ)
1715, 16rpexpcld 10789 . . . . . . 7 ((𝜑𝑖 ∈ ℕ) → (2↑𝑖) ∈ ℝ+)
1817rpreccld 9782 . . . . . 6 ((𝜑𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ+)
1918rpred 9771 . . . . 5 ((𝜑𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ)
20 trilpolemgt1.f . . . . . . 7 (𝜑𝐹:ℕ⟶{0, 1})
21 0re 8026 . . . . . . . . 9 0 ∈ ℝ
22 1re 8025 . . . . . . . . 9 1 ∈ ℝ
23 prssi 3780 . . . . . . . . 9 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆ ℝ)
2421, 22, 23mp2an 426 . . . . . . . 8 {0, 1} ⊆ ℝ
2524a1i 9 . . . . . . 7 (𝜑 → {0, 1} ⊆ ℝ)
2620, 25fssd 5420 . . . . . 6 (𝜑𝐹:ℕ⟶ℝ)
2726ffvelcdmda 5697 . . . . 5 ((𝜑𝑖 ∈ ℕ) → (𝐹𝑖) ∈ ℝ)
2819, 27remulcld 8057 . . . 4 ((𝜑𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℝ)
298, 12, 13, 28fvmptd3 5655 . . 3 ((𝜑𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐹𝑖)))
307, 29syldan 282 . 2 ((𝜑𝑖𝑍) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐹𝑖)))
317, 28syldan 282 . 2 ((𝜑𝑖𝑍) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℝ)
32 eqid 2196 . . . 4 (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛))) = (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))
3332, 10, 13, 18fvmptd3 5655 . . 3 ((𝜑𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))‘𝑖) = (1 / (2↑𝑖)))
347, 33syldan 282 . 2 ((𝜑𝑖𝑍) → ((𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))‘𝑖) = (1 / (2↑𝑖)))
357, 19syldan 282 . 2 ((𝜑𝑖𝑍) → (1 / (2↑𝑖)) ∈ ℝ)
36 simpr 110 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → (𝐹𝑖) = 0)
3736oveq2d 5938 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → ((1 / (2↑𝑖)) · (𝐹𝑖)) = ((1 / (2↑𝑖)) · 0))
3818rpcnd 9773 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℂ)
3938adantr 276 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → (1 / (2↑𝑖)) ∈ ℂ)
4039mul01d 8419 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → ((1 / (2↑𝑖)) · 0) = 0)
4137, 40eqtrd 2229 . . . . 5 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → ((1 / (2↑𝑖)) · (𝐹𝑖)) = 0)
4218adantr 276 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → (1 / (2↑𝑖)) ∈ ℝ+)
4342rpge0d 9775 . . . . 5 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → 0 ≤ (1 / (2↑𝑖)))
4441, 43eqbrtrd 4055 . . . 4 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ (1 / (2↑𝑖)))
45 simpr 110 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → (𝐹𝑖) = 1)
4645oveq2d 5938 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → ((1 / (2↑𝑖)) · (𝐹𝑖)) = ((1 / (2↑𝑖)) · 1))
4738adantr 276 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → (1 / (2↑𝑖)) ∈ ℂ)
4847mulridd 8043 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → ((1 / (2↑𝑖)) · 1) = (1 / (2↑𝑖)))
4946, 48eqtrd 2229 . . . . 5 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → ((1 / (2↑𝑖)) · (𝐹𝑖)) = (1 / (2↑𝑖)))
5019adantr 276 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → (1 / (2↑𝑖)) ∈ ℝ)
5150leidd 8541 . . . . 5 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → (1 / (2↑𝑖)) ≤ (1 / (2↑𝑖)))
5249, 51eqbrtrd 4055 . . . 4 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ (1 / (2↑𝑖)))
5320ffvelcdmda 5697 . . . . 5 ((𝜑𝑖 ∈ ℕ) → (𝐹𝑖) ∈ {0, 1})
54 elpri 3645 . . . . 5 ((𝐹𝑖) ∈ {0, 1} → ((𝐹𝑖) = 0 ∨ (𝐹𝑖) = 1))
5553, 54syl 14 . . . 4 ((𝜑𝑖 ∈ ℕ) → ((𝐹𝑖) = 0 ∨ (𝐹𝑖) = 1))
5644, 52, 55mpjaodan 799 . . 3 ((𝜑𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ (1 / (2↑𝑖)))
577, 56syldan 282 . 2 ((𝜑𝑖𝑍) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ (1 / (2↑𝑖)))
5820, 8trilpolemclim 15680 . . 3 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))) ∈ dom ⇝ )
59 nnuz 9637 . . . 4 ℕ = (ℤ‘1)
6029, 28eqeltrd 2273 . . . . 5 ((𝜑𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))‘𝑖) ∈ ℝ)
6160recnd 8055 . . . 4 ((𝜑𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))‘𝑖) ∈ ℂ)
6259, 2, 61iserex 11504 . . 3 (𝜑 → (seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))) ∈ dom ⇝ ↔ seq𝑀( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))) ∈ dom ⇝ ))
6358, 62mpbid 147 . 2 (𝜑 → seq𝑀( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))) ∈ dom ⇝ )
64 seqex 10541 . . . 4 seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ V
65 rpreccl 9755 . . . . . . . 8 (2 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
6614, 65ax-mp 5 . . . . . . 7 (1 / 2) ∈ ℝ+
6766a1i 9 . . . . . 6 (𝜑 → (1 / 2) ∈ ℝ+)
68 1zzd 9353 . . . . . 6 (𝜑 → 1 ∈ ℤ)
6967, 68rpexpcld 10789 . . . . 5 (𝜑 → ((1 / 2)↑1) ∈ ℝ+)
70 1mhlfehlf 9209 . . . . . . 7 (1 − (1 / 2)) = (1 / 2)
7170, 66eqeltri 2269 . . . . . 6 (1 − (1 / 2)) ∈ ℝ+
7271a1i 9 . . . . 5 (𝜑 → (1 − (1 / 2)) ∈ ℝ+)
7369, 72rpdivcld 9789 . . . 4 (𝜑 → (((1 / 2)↑1) / (1 − (1 / 2))) ∈ ℝ+)
74 halfcn 9205 . . . . . 6 (1 / 2) ∈ ℂ
7574a1i 9 . . . . 5 (𝜑 → (1 / 2) ∈ ℂ)
76 halfge0 9207 . . . . . . . 8 0 ≤ (1 / 2)
77 halfre 9204 . . . . . . . . 9 (1 / 2) ∈ ℝ
7877absidi 11291 . . . . . . . 8 (0 ≤ (1 / 2) → (abs‘(1 / 2)) = (1 / 2))
7976, 78ax-mp 5 . . . . . . 7 (abs‘(1 / 2)) = (1 / 2)
80 halflt1 9208 . . . . . . 7 (1 / 2) < 1
8179, 80eqbrtri 4054 . . . . . 6 (abs‘(1 / 2)) < 1
8281a1i 9 . . . . 5 (𝜑 → (abs‘(1 / 2)) < 1)
83 1nn0 9265 . . . . . 6 1 ∈ ℕ0
8483a1i 9 . . . . 5 (𝜑 → 1 ∈ ℕ0)
85 oveq2 5930 . . . . . . . 8 (𝑛 = 𝑗 → (2↑𝑛) = (2↑𝑗))
8685oveq2d 5938 . . . . . . 7 (𝑛 = 𝑗 → (1 / (2↑𝑛)) = (1 / (2↑𝑗)))
87 elnnuz 9638 . . . . . . . . 9 (𝑗 ∈ ℕ ↔ 𝑗 ∈ (ℤ‘1))
8887biimpri 133 . . . . . . . 8 (𝑗 ∈ (ℤ‘1) → 𝑗 ∈ ℕ)
8988adantl 277 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ‘1)) → 𝑗 ∈ ℕ)
9014a1i 9 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ‘1)) → 2 ∈ ℝ+)
9189nnzd 9447 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ‘1)) → 𝑗 ∈ ℤ)
9290, 91rpexpcld 10789 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ‘1)) → (2↑𝑗) ∈ ℝ+)
9392rpreccld 9782 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ‘1)) → (1 / (2↑𝑗)) ∈ ℝ+)
9432, 86, 89, 93fvmptd3 5655 . . . . . 6 ((𝜑𝑗 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))‘𝑗) = (1 / (2↑𝑗)))
95 2cnd 9063 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ‘1)) → 2 ∈ ℂ)
9690rpap0d 9777 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ‘1)) → 2 # 0)
9795, 96, 91exprecapd 10773 . . . . . 6 ((𝜑𝑗 ∈ (ℤ‘1)) → ((1 / 2)↑𝑗) = (1 / (2↑𝑗)))
9894, 97eqtr4d 2232 . . . . 5 ((𝜑𝑗 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))‘𝑗) = ((1 / 2)↑𝑗))
9975, 82, 84, 98geolim2 11677 . . . 4 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ⇝ (((1 / 2)↑1) / (1 − (1 / 2))))
100 breldmg 4872 . . . 4 ((seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ V ∧ (((1 / 2)↑1) / (1 − (1 / 2))) ∈ ℝ+ ∧ seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ⇝ (((1 / 2)↑1) / (1 − (1 / 2)))) → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝ )
10164, 73, 99, 100mp3an2i 1353 . . 3 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝ )
10233, 38eqeltrd 2273 . . . 4 ((𝜑𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))‘𝑖) ∈ ℂ)
10359, 2, 102iserex 11504 . . 3 (𝜑 → (seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝ ↔ seq𝑀( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝ ))
104101, 103mpbid 147 . 2 (𝜑 → seq𝑀( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝ )
1051, 3, 30, 31, 34, 35, 57, 63, 104isumle 11660 1 (𝜑 → Σ𝑖𝑍 ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ Σ𝑖𝑍 (1 / (2↑𝑖)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1364  wcel 2167  Vcvv 2763  wss 3157  {cpr 3623   class class class wbr 4033  cmpt 4094  dom cdm 4663  wf 5254  cfv 5258  (class class class)co 5922  cc 7877  cr 7878  0cc0 7879  1c1 7880   + caddc 7882   · cmul 7884   < clt 8061  cle 8062  cmin 8197   / cdiv 8699  cn 8990  2c2 9041  0cn0 9249  cuz 9601  +crp 9728  seqcseq 10539  cexp 10630  abscabs 11162  cli 11443  Σcsu 11518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-isom 5267  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-ico 9969  df-fz 10084  df-fzo 10218  df-seqfrec 10540  df-exp 10631  df-ihash 10868  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-clim 11444  df-sumdc 11519
This theorem is referenced by:  trilpolemgt1  15683  trilpolemeq1  15684
  Copyright terms: Public domain W3C validator