Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  trilpolemisumle GIF version

Theorem trilpolemisumle 15171
Description: Lemma for trilpo 15176. An upper bound for the sum of the digits beyond a certain point. (Contributed by Jim Kingdon, 28-Aug-2023.)
Hypotheses
Ref Expression
trilpolemgt1.f (𝜑𝐹:ℕ⟶{0, 1})
trilpolemgt1.a 𝐴 = Σ𝑖 ∈ ℕ ((1 / (2↑𝑖)) · (𝐹𝑖))
trilpolemisumle.z 𝑍 = (ℤ𝑀)
trilpolemisumle.m (𝜑𝑀 ∈ ℕ)
Assertion
Ref Expression
trilpolemisumle (𝜑 → Σ𝑖𝑍 ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ Σ𝑖𝑍 (1 / (2↑𝑖)))
Distinct variable groups:   𝑖,𝐹   𝑖,𝑀   𝑖,𝑍   𝜑,𝑖
Allowed substitution hint:   𝐴(𝑖)

Proof of Theorem trilpolemisumle
Dummy variables 𝑛 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 trilpolemisumle.z . 2 𝑍 = (ℤ𝑀)
2 trilpolemisumle.m . . 3 (𝜑𝑀 ∈ ℕ)
32nnzd 9392 . 2 (𝜑𝑀 ∈ ℤ)
41eleq2i 2256 . . . . 5 (𝑖𝑍𝑖 ∈ (ℤ𝑀))
54biimpi 120 . . . 4 (𝑖𝑍𝑖 ∈ (ℤ𝑀))
6 eluznn 9618 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑖 ∈ (ℤ𝑀)) → 𝑖 ∈ ℕ)
72, 5, 6syl2an 289 . . 3 ((𝜑𝑖𝑍) → 𝑖 ∈ ℕ)
8 eqid 2189 . . . 4 (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛))) = (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))
9 oveq2 5899 . . . . . 6 (𝑛 = 𝑖 → (2↑𝑛) = (2↑𝑖))
109oveq2d 5907 . . . . 5 (𝑛 = 𝑖 → (1 / (2↑𝑛)) = (1 / (2↑𝑖)))
11 fveq2 5530 . . . . 5 (𝑛 = 𝑖 → (𝐹𝑛) = (𝐹𝑖))
1210, 11oveq12d 5909 . . . 4 (𝑛 = 𝑖 → ((1 / (2↑𝑛)) · (𝐹𝑛)) = ((1 / (2↑𝑖)) · (𝐹𝑖)))
13 simpr 110 . . . 4 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℕ)
14 2rp 9676 . . . . . . . . 9 2 ∈ ℝ+
1514a1i 9 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → 2 ∈ ℝ+)
1613nnzd 9392 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → 𝑖 ∈ ℤ)
1715, 16rpexpcld 10696 . . . . . . 7 ((𝜑𝑖 ∈ ℕ) → (2↑𝑖) ∈ ℝ+)
1817rpreccld 9725 . . . . . 6 ((𝜑𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ+)
1918rpred 9714 . . . . 5 ((𝜑𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℝ)
20 trilpolemgt1.f . . . . . . 7 (𝜑𝐹:ℕ⟶{0, 1})
21 0re 7975 . . . . . . . . 9 0 ∈ ℝ
22 1re 7974 . . . . . . . . 9 1 ∈ ℝ
23 prssi 3765 . . . . . . . . 9 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → {0, 1} ⊆ ℝ)
2421, 22, 23mp2an 426 . . . . . . . 8 {0, 1} ⊆ ℝ
2524a1i 9 . . . . . . 7 (𝜑 → {0, 1} ⊆ ℝ)
2620, 25fssd 5393 . . . . . 6 (𝜑𝐹:ℕ⟶ℝ)
2726ffvelcdmda 5667 . . . . 5 ((𝜑𝑖 ∈ ℕ) → (𝐹𝑖) ∈ ℝ)
2819, 27remulcld 8006 . . . 4 ((𝜑𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℝ)
298, 12, 13, 28fvmptd3 5625 . . 3 ((𝜑𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐹𝑖)))
307, 29syldan 282 . 2 ((𝜑𝑖𝑍) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))‘𝑖) = ((1 / (2↑𝑖)) · (𝐹𝑖)))
317, 28syldan 282 . 2 ((𝜑𝑖𝑍) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ∈ ℝ)
32 eqid 2189 . . . 4 (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛))) = (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))
3332, 10, 13, 18fvmptd3 5625 . . 3 ((𝜑𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))‘𝑖) = (1 / (2↑𝑖)))
347, 33syldan 282 . 2 ((𝜑𝑖𝑍) → ((𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))‘𝑖) = (1 / (2↑𝑖)))
357, 19syldan 282 . 2 ((𝜑𝑖𝑍) → (1 / (2↑𝑖)) ∈ ℝ)
36 simpr 110 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → (𝐹𝑖) = 0)
3736oveq2d 5907 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → ((1 / (2↑𝑖)) · (𝐹𝑖)) = ((1 / (2↑𝑖)) · 0))
3818rpcnd 9716 . . . . . . . 8 ((𝜑𝑖 ∈ ℕ) → (1 / (2↑𝑖)) ∈ ℂ)
3938adantr 276 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → (1 / (2↑𝑖)) ∈ ℂ)
4039mul01d 8368 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → ((1 / (2↑𝑖)) · 0) = 0)
4137, 40eqtrd 2222 . . . . 5 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → ((1 / (2↑𝑖)) · (𝐹𝑖)) = 0)
4218adantr 276 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → (1 / (2↑𝑖)) ∈ ℝ+)
4342rpge0d 9718 . . . . 5 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → 0 ≤ (1 / (2↑𝑖)))
4441, 43eqbrtrd 4040 . . . 4 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 0) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ (1 / (2↑𝑖)))
45 simpr 110 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → (𝐹𝑖) = 1)
4645oveq2d 5907 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → ((1 / (2↑𝑖)) · (𝐹𝑖)) = ((1 / (2↑𝑖)) · 1))
4738adantr 276 . . . . . . 7 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → (1 / (2↑𝑖)) ∈ ℂ)
4847mulridd 7992 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → ((1 / (2↑𝑖)) · 1) = (1 / (2↑𝑖)))
4946, 48eqtrd 2222 . . . . 5 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → ((1 / (2↑𝑖)) · (𝐹𝑖)) = (1 / (2↑𝑖)))
5019adantr 276 . . . . . 6 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → (1 / (2↑𝑖)) ∈ ℝ)
5150leidd 8489 . . . . 5 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → (1 / (2↑𝑖)) ≤ (1 / (2↑𝑖)))
5249, 51eqbrtrd 4040 . . . 4 (((𝜑𝑖 ∈ ℕ) ∧ (𝐹𝑖) = 1) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ (1 / (2↑𝑖)))
5320ffvelcdmda 5667 . . . . 5 ((𝜑𝑖 ∈ ℕ) → (𝐹𝑖) ∈ {0, 1})
54 elpri 3630 . . . . 5 ((𝐹𝑖) ∈ {0, 1} → ((𝐹𝑖) = 0 ∨ (𝐹𝑖) = 1))
5553, 54syl 14 . . . 4 ((𝜑𝑖 ∈ ℕ) → ((𝐹𝑖) = 0 ∨ (𝐹𝑖) = 1))
5644, 52, 55mpjaodan 799 . . 3 ((𝜑𝑖 ∈ ℕ) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ (1 / (2↑𝑖)))
577, 56syldan 282 . 2 ((𝜑𝑖𝑍) → ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ (1 / (2↑𝑖)))
5820, 8trilpolemclim 15169 . . 3 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))) ∈ dom ⇝ )
59 nnuz 9581 . . . 4 ℕ = (ℤ‘1)
6029, 28eqeltrd 2266 . . . . 5 ((𝜑𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))‘𝑖) ∈ ℝ)
6160recnd 8004 . . . 4 ((𝜑𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))‘𝑖) ∈ ℂ)
6259, 2, 61iserex 11365 . . 3 (𝜑 → (seq1( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))) ∈ dom ⇝ ↔ seq𝑀( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))) ∈ dom ⇝ ))
6358, 62mpbid 147 . 2 (𝜑 → seq𝑀( + , (𝑛 ∈ ℕ ↦ ((1 / (2↑𝑛)) · (𝐹𝑛)))) ∈ dom ⇝ )
64 seqex 10465 . . . 4 seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ V
65 rpreccl 9698 . . . . . . . 8 (2 ∈ ℝ+ → (1 / 2) ∈ ℝ+)
6614, 65ax-mp 5 . . . . . . 7 (1 / 2) ∈ ℝ+
6766a1i 9 . . . . . 6 (𝜑 → (1 / 2) ∈ ℝ+)
68 1zzd 9298 . . . . . 6 (𝜑 → 1 ∈ ℤ)
6967, 68rpexpcld 10696 . . . . 5 (𝜑 → ((1 / 2)↑1) ∈ ℝ+)
70 1mhlfehlf 9155 . . . . . . 7 (1 − (1 / 2)) = (1 / 2)
7170, 66eqeltri 2262 . . . . . 6 (1 − (1 / 2)) ∈ ℝ+
7271a1i 9 . . . . 5 (𝜑 → (1 − (1 / 2)) ∈ ℝ+)
7369, 72rpdivcld 9732 . . . 4 (𝜑 → (((1 / 2)↑1) / (1 − (1 / 2))) ∈ ℝ+)
74 halfcn 9151 . . . . . 6 (1 / 2) ∈ ℂ
7574a1i 9 . . . . 5 (𝜑 → (1 / 2) ∈ ℂ)
76 halfge0 9153 . . . . . . . 8 0 ≤ (1 / 2)
77 halfre 9150 . . . . . . . . 9 (1 / 2) ∈ ℝ
7877absidi 11153 . . . . . . . 8 (0 ≤ (1 / 2) → (abs‘(1 / 2)) = (1 / 2))
7976, 78ax-mp 5 . . . . . . 7 (abs‘(1 / 2)) = (1 / 2)
80 halflt1 9154 . . . . . . 7 (1 / 2) < 1
8179, 80eqbrtri 4039 . . . . . 6 (abs‘(1 / 2)) < 1
8281a1i 9 . . . . 5 (𝜑 → (abs‘(1 / 2)) < 1)
83 1nn0 9210 . . . . . 6 1 ∈ ℕ0
8483a1i 9 . . . . 5 (𝜑 → 1 ∈ ℕ0)
85 oveq2 5899 . . . . . . . 8 (𝑛 = 𝑗 → (2↑𝑛) = (2↑𝑗))
8685oveq2d 5907 . . . . . . 7 (𝑛 = 𝑗 → (1 / (2↑𝑛)) = (1 / (2↑𝑗)))
87 elnnuz 9582 . . . . . . . . 9 (𝑗 ∈ ℕ ↔ 𝑗 ∈ (ℤ‘1))
8887biimpri 133 . . . . . . . 8 (𝑗 ∈ (ℤ‘1) → 𝑗 ∈ ℕ)
8988adantl 277 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ‘1)) → 𝑗 ∈ ℕ)
9014a1i 9 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ‘1)) → 2 ∈ ℝ+)
9189nnzd 9392 . . . . . . . . 9 ((𝜑𝑗 ∈ (ℤ‘1)) → 𝑗 ∈ ℤ)
9290, 91rpexpcld 10696 . . . . . . . 8 ((𝜑𝑗 ∈ (ℤ‘1)) → (2↑𝑗) ∈ ℝ+)
9392rpreccld 9725 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ‘1)) → (1 / (2↑𝑗)) ∈ ℝ+)
9432, 86, 89, 93fvmptd3 5625 . . . . . 6 ((𝜑𝑗 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))‘𝑗) = (1 / (2↑𝑗)))
95 2cnd 9010 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ‘1)) → 2 ∈ ℂ)
9690rpap0d 9720 . . . . . . 7 ((𝜑𝑗 ∈ (ℤ‘1)) → 2 # 0)
9795, 96, 91exprecapd 10680 . . . . . 6 ((𝜑𝑗 ∈ (ℤ‘1)) → ((1 / 2)↑𝑗) = (1 / (2↑𝑗)))
9894, 97eqtr4d 2225 . . . . 5 ((𝜑𝑗 ∈ (ℤ‘1)) → ((𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))‘𝑗) = ((1 / 2)↑𝑗))
9975, 82, 84, 98geolim2 11538 . . . 4 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ⇝ (((1 / 2)↑1) / (1 − (1 / 2))))
100 breldmg 4848 . . . 4 ((seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ V ∧ (((1 / 2)↑1) / (1 − (1 / 2))) ∈ ℝ+ ∧ seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ⇝ (((1 / 2)↑1) / (1 − (1 / 2)))) → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝ )
10164, 73, 99, 100mp3an2i 1353 . . 3 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝ )
10233, 38eqeltrd 2266 . . . 4 ((𝜑𝑖 ∈ ℕ) → ((𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))‘𝑖) ∈ ℂ)
10359, 2, 102iserex 11365 . . 3 (𝜑 → (seq1( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝ ↔ seq𝑀( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝ ))
104101, 103mpbid 147 . 2 (𝜑 → seq𝑀( + , (𝑛 ∈ ℕ ↦ (1 / (2↑𝑛)))) ∈ dom ⇝ )
1051, 3, 30, 31, 34, 35, 57, 63, 104isumle 11521 1 (𝜑 → Σ𝑖𝑍 ((1 / (2↑𝑖)) · (𝐹𝑖)) ≤ Σ𝑖𝑍 (1 / (2↑𝑖)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709   = wceq 1364  wcel 2160  Vcvv 2752  wss 3144  {cpr 3608   class class class wbr 4018  cmpt 4079  dom cdm 4641  wf 5227  cfv 5231  (class class class)co 5891  cc 7827  cr 7828  0cc0 7829  1c1 7830   + caddc 7832   · cmul 7834   < clt 8010  cle 8011  cmin 8146   / cdiv 8647  cn 8937  2c2 8988  0cn0 9194  cuz 9546  +crp 9671  seqcseq 10463  cexp 10537  abscabs 11024  cli 11304  Σcsu 11379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4189  ax-pr 4224  ax-un 4448  ax-setind 4551  ax-iinf 4602  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-mulrcl 7928  ax-addcom 7929  ax-mulcom 7930  ax-addass 7931  ax-mulass 7932  ax-distr 7933  ax-i2m1 7934  ax-0lt1 7935  ax-1rid 7936  ax-0id 7937  ax-rnegex 7938  ax-precex 7939  ax-cnre 7940  ax-pre-ltirr 7941  ax-pre-ltwlin 7942  ax-pre-lttrn 7943  ax-pre-apti 7944  ax-pre-ltadd 7945  ax-pre-mulgt0 7946  ax-pre-mulext 7947  ax-arch 7948  ax-caucvg 7949
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-if 3550  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-id 4308  df-po 4311  df-iso 4312  df-iord 4381  df-on 4383  df-ilim 4384  df-suc 4386  df-iom 4605  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5233  df-fn 5234  df-f 5235  df-f1 5236  df-fo 5237  df-f1o 5238  df-fv 5239  df-isom 5240  df-riota 5847  df-ov 5894  df-oprab 5895  df-mpo 5896  df-1st 6159  df-2nd 6160  df-recs 6324  df-irdg 6389  df-frec 6410  df-1o 6435  df-oadd 6439  df-er 6553  df-en 6759  df-dom 6760  df-fin 6761  df-pnf 8012  df-mnf 8013  df-xr 8014  df-ltxr 8015  df-le 8016  df-sub 8148  df-neg 8149  df-reap 8550  df-ap 8557  df-div 8648  df-inn 8938  df-2 8996  df-3 8997  df-4 8998  df-n0 9195  df-z 9272  df-uz 9547  df-q 9638  df-rp 9672  df-ico 9912  df-fz 10027  df-fzo 10161  df-seqfrec 10464  df-exp 10538  df-ihash 10774  df-cj 10869  df-re 10870  df-im 10871  df-rsqrt 11025  df-abs 11026  df-clim 11305  df-sumdc 11380
This theorem is referenced by:  trilpolemgt1  15172  trilpolemeq1  15173
  Copyright terms: Public domain W3C validator