ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumcl2lem GIF version

Theorem fsumcl2lem 11167
Description: - Lemma for finite sum closures. (The "-" before "Lemma" forces the math content to be displayed in the Statement List - NM 11-Feb-2008.) (Contributed by Mario Carneiro, 3-Jun-2014.)
Hypotheses
Ref Expression
fsumcllem.1 (𝜑𝑆 ⊆ ℂ)
fsumcllem.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
fsumcllem.3 (𝜑𝐴 ∈ Fin)
fsumcllem.4 ((𝜑𝑘𝐴) → 𝐵𝑆)
fsumcl2lem.5 (𝜑𝐴 ≠ ∅)
Assertion
Ref Expression
fsumcl2lem (𝜑 → Σ𝑘𝐴 𝐵𝑆)
Distinct variable groups:   𝐴,𝑘,𝑥,𝑦   𝑥,𝐵,𝑦   𝑆,𝑘,𝑥,𝑦   𝜑,𝑘,𝑥,𝑦
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumcl2lem
Dummy variables 𝑎 𝑓 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsumcl2lem.5 . . . 4 (𝜑𝐴 ≠ ∅)
21neneqd 2329 . . 3 (𝜑 → ¬ 𝐴 = ∅)
32pm2.21d 608 . 2 (𝜑 → (𝐴 = ∅ → Σ𝑘𝐴 𝐵𝑆))
4 fsumcllem.1 . . . . . . . . . . . 12 (𝜑𝑆 ⊆ ℂ)
54adantr 274 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → 𝑆 ⊆ ℂ)
6 fsumcllem.4 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → 𝐵𝑆)
75, 6sseldd 3098 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
87ralrimiva 2505 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
9 sumfct 11143 . . . . . . . . 9 (∀𝑘𝐴 𝐵 ∈ ℂ → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑘𝐴 𝐵)
108, 9syl 14 . . . . . . . 8 (𝜑 → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑘𝐴 𝐵)
1110adantr 274 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑘𝐴 𝐵)
12 fveq2 5421 . . . . . . . 8 (𝑚 = (𝑓𝑎) → ((𝑘𝐴𝐵)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑎)))
13 simprl 520 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ ℕ)
14 simprr 521 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
154ad2antrr 479 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → 𝑆 ⊆ ℂ)
166fmpttd 5575 . . . . . . . . . . 11 (𝜑 → (𝑘𝐴𝐵):𝐴𝑆)
1716adantr 274 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐵):𝐴𝑆)
1817ffvelrnda 5555 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ 𝑆)
1915, 18sseldd 3098 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ ℂ)
20 f1of 5367 . . . . . . . . . 10 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))⟶𝐴)
2114, 20syl 14 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
22 fvco3 5492 . . . . . . . . 9 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑎 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎) = ((𝑘𝐴𝐵)‘(𝑓𝑎)))
2321, 22sylan 281 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑎 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎) = ((𝑘𝐴𝐵)‘(𝑓𝑎)))
2412, 13, 14, 19, 23fsum3 11156 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0)))‘(♯‘𝐴)))
2511, 24eqtr3d 2174 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑘𝐴 𝐵 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0)))‘(♯‘𝐴)))
26 nnuz 9361 . . . . . . . 8 ℕ = (ℤ‘1)
2713, 26eleqtrdi 2232 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ (ℤ‘1))
28 elnnuz 9362 . . . . . . . . . . 11 (𝑥 ∈ ℕ ↔ 𝑥 ∈ (ℤ‘1))
2928biimpri 132 . . . . . . . . . 10 (𝑥 ∈ (ℤ‘1) → 𝑥 ∈ ℕ)
3029adantl 275 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) → 𝑥 ∈ ℕ)
314ad3antrrr 483 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → 𝑆 ⊆ ℂ)
3217ad2antrr 479 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → (𝑘𝐴𝐵):𝐴𝑆)
3321ad2antrr 479 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
34 fco 5288 . . . . . . . . . . . . . 14 (((𝑘𝐴𝐵):𝐴𝑆𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶𝑆)
3532, 33, 34syl2anc 408 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶𝑆)
36 1zzd 9081 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → 1 ∈ ℤ)
3713ad2antrr 479 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → (♯‘𝐴) ∈ ℕ)
3837nnzd 9172 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → (♯‘𝐴) ∈ ℤ)
39 simpr 109 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℕ)
4039adantr 274 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → 𝑥 ∈ ℕ)
4140nnzd 9172 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → 𝑥 ∈ ℤ)
4236, 38, 413jca 1161 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → (1 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ ∧ 𝑥 ∈ ℤ))
4340nnge1d 8763 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → 1 ≤ 𝑥)
44 simpr 109 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → 𝑥 ≤ (♯‘𝐴))
4543, 44jca 304 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → (1 ≤ 𝑥𝑥 ≤ (♯‘𝐴)))
46 elfz2 9797 . . . . . . . . . . . . . 14 (𝑥 ∈ (1...(♯‘𝐴)) ↔ ((1 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ (1 ≤ 𝑥𝑥 ≤ (♯‘𝐴))))
4742, 45, 46sylanbrc 413 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → 𝑥 ∈ (1...(♯‘𝐴)))
4835, 47ffvelrnd 5556 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥) ∈ 𝑆)
4931, 48sseldd 3098 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥) ∈ ℂ)
50 0cnd 7759 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ ¬ 𝑥 ≤ (♯‘𝐴)) → 0 ∈ ℂ)
5139nnzd 9172 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℤ)
5213adantr 274 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) → (♯‘𝐴) ∈ ℕ)
5352nnzd 9172 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) → (♯‘𝐴) ∈ ℤ)
54 zdcle 9127 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ) → DECID 𝑥 ≤ (♯‘𝐴))
5551, 53, 54syl2anc 408 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) → DECID 𝑥 ≤ (♯‘𝐴))
5649, 50, 55ifcldadc 3501 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) → if(𝑥 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥), 0) ∈ ℂ)
5730, 56syldan 280 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) → if(𝑥 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥), 0) ∈ ℂ)
58 breq1 3932 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝑎 ≤ (♯‘𝐴) ↔ 𝑥 ≤ (♯‘𝐴)))
59 fveq2 5421 . . . . . . . . . . 11 (𝑎 = 𝑥 → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎) = (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥))
6058, 59ifbieq1d 3494 . . . . . . . . . 10 (𝑎 = 𝑥 → if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0) = if(𝑥 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥), 0))
61 eqid 2139 . . . . . . . . . 10 (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0)) = (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0))
6260, 61fvmptg 5497 . . . . . . . . 9 ((𝑥 ∈ ℕ ∧ if(𝑥 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥), 0) ∈ ℂ) → ((𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0))‘𝑥) = if(𝑥 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥), 0))
6330, 57, 62syl2anc 408 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) → ((𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0))‘𝑥) = if(𝑥 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥), 0))
644adantr 274 . . . . . . . . . . . . 13 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑆 ⊆ ℂ)
6517, 64fssd 5285 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
6665ad2antrr 479 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
6721ad2antrr 479 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
68 fco 5288 . . . . . . . . . . 11 (((𝑘𝐴𝐵):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
6966, 67, 68syl2anc 408 . . . . . . . . . 10 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
70 1zzd 9081 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → 1 ∈ ℤ)
7113ad2antrr 479 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → (♯‘𝐴) ∈ ℕ)
7271nnzd 9172 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → (♯‘𝐴) ∈ ℤ)
73 eluzelz 9335 . . . . . . . . . . . . 13 (𝑥 ∈ (ℤ‘1) → 𝑥 ∈ ℤ)
7473ad2antlr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → 𝑥 ∈ ℤ)
7570, 72, 743jca 1161 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → (1 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ ∧ 𝑥 ∈ ℤ))
7629nnge1d 8763 . . . . . . . . . . . . 13 (𝑥 ∈ (ℤ‘1) → 1 ≤ 𝑥)
7776ad2antlr 480 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → 1 ≤ 𝑥)
78 simpr 109 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → 𝑥 ≤ (♯‘𝐴))
7977, 78jca 304 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → (1 ≤ 𝑥𝑥 ≤ (♯‘𝐴)))
8075, 79, 46sylanbrc 413 . . . . . . . . . 10 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → 𝑥 ∈ (1...(♯‘𝐴)))
8169, 80ffvelrnd 5556 . . . . . . . . 9 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥) ∈ ℂ)
82 0cnd 7759 . . . . . . . . 9 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ ¬ 𝑥 ≤ (♯‘𝐴)) → 0 ∈ ℂ)
8330, 55syldan 280 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) → DECID 𝑥 ≤ (♯‘𝐴))
8481, 82, 83ifcldadc 3501 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) → if(𝑥 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥), 0) ∈ ℂ)
8563, 84eqeltrd 2216 . . . . . . 7 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) → ((𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0))‘𝑥) ∈ ℂ)
86 elfzle2 9808 . . . . . . . . . . 11 (𝑥 ∈ (1...(♯‘𝐴)) → 𝑥 ≤ (♯‘𝐴))
8786adantl 275 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → 𝑥 ≤ (♯‘𝐴))
8887iftrued 3481 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → if(𝑥 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥), 0) = (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥))
89 elfznn 9834 . . . . . . . . . . 11 (𝑥 ∈ (1...(♯‘𝐴)) → 𝑥 ∈ ℕ)
9089anim2i 339 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ))
9190, 87, 48syl2anc 408 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥) ∈ 𝑆)
9288, 91eqeltrd 2216 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → if(𝑥 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥), 0) ∈ 𝑆)
9339, 56, 62syl2anc 408 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) → ((𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0))‘𝑥) = if(𝑥 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥), 0))
9493eleq1d 2208 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) → (((𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0))‘𝑥) ∈ 𝑆 ↔ if(𝑥 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥), 0) ∈ 𝑆))
9590, 94syl 14 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0))‘𝑥) ∈ 𝑆 ↔ if(𝑥 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥), 0) ∈ 𝑆))
9692, 95mpbird 166 . . . . . . 7 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → ((𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0))‘𝑥) ∈ 𝑆)
97 fsumcllem.2 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
9897adantlr 468 . . . . . . 7 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
99 addcl 7745 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
10099adantl 275 . . . . . . 7 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
10127, 85, 96, 98, 64, 100seq3clss 10240 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0)))‘(♯‘𝐴)) ∈ 𝑆)
10225, 101eqeltrd 2216 . . . . 5 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑘𝐴 𝐵𝑆)
103102expr 372 . . . 4 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 𝐵𝑆))
104103exlimdv 1791 . . 3 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 𝐵𝑆))
105104expimpd 360 . 2 (𝜑 → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → Σ𝑘𝐴 𝐵𝑆))
106 fsumcllem.3 . . 3 (𝜑𝐴 ∈ Fin)
107 fz1f1o 11144 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
108106, 107syl 14 . 2 (𝜑 → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
1093, 105, 108mpjaod 707 1 (𝜑 → Σ𝑘𝐴 𝐵𝑆)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  DECID wdc 819  w3a 962   = wceq 1331  wex 1468  wcel 1480  wne 2308  wral 2416  wss 3071  c0 3363  ifcif 3474   class class class wbr 3929  cmpt 3989  ccom 4543  wf 5119  1-1-ontowf1o 5122  cfv 5123  (class class class)co 5774  Fincfn 6634  cc 7618  0cc0 7620  1c1 7621   + caddc 7623  cle 7801  cn 8720  cz 9054  cuz 9326  ...cfz 9790  seqcseq 10218  chash 10521  Σcsu 11122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123
This theorem is referenced by:  fsumcllem  11168  fsumrpcl  11173
  Copyright terms: Public domain W3C validator