ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumcl2lem GIF version

Theorem fsumcl2lem 11541
Description: - Lemma for finite sum closures. (The "-" before "Lemma" forces the math content to be displayed in the Statement List - NM 11-Feb-2008.) (Contributed by Mario Carneiro, 3-Jun-2014.)
Hypotheses
Ref Expression
fsumcllem.1 (𝜑𝑆 ⊆ ℂ)
fsumcllem.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
fsumcllem.3 (𝜑𝐴 ∈ Fin)
fsumcllem.4 ((𝜑𝑘𝐴) → 𝐵𝑆)
fsumcl2lem.5 (𝜑𝐴 ≠ ∅)
Assertion
Ref Expression
fsumcl2lem (𝜑 → Σ𝑘𝐴 𝐵𝑆)
Distinct variable groups:   𝐴,𝑘,𝑥,𝑦   𝑥,𝐵,𝑦   𝑆,𝑘,𝑥,𝑦   𝜑,𝑘,𝑥,𝑦
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumcl2lem
Dummy variables 𝑎 𝑓 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsumcl2lem.5 . . . 4 (𝜑𝐴 ≠ ∅)
21neneqd 2385 . . 3 (𝜑 → ¬ 𝐴 = ∅)
32pm2.21d 620 . 2 (𝜑 → (𝐴 = ∅ → Σ𝑘𝐴 𝐵𝑆))
4 fsumcllem.1 . . . . . . . . . . . 12 (𝜑𝑆 ⊆ ℂ)
54adantr 276 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → 𝑆 ⊆ ℂ)
6 fsumcllem.4 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → 𝐵𝑆)
75, 6sseldd 3180 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
87ralrimiva 2567 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
9 sumfct 11517 . . . . . . . . 9 (∀𝑘𝐴 𝐵 ∈ ℂ → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑘𝐴 𝐵)
108, 9syl 14 . . . . . . . 8 (𝜑 → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑘𝐴 𝐵)
1110adantr 276 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑘𝐴 𝐵)
12 fveq2 5554 . . . . . . . 8 (𝑚 = (𝑓𝑎) → ((𝑘𝐴𝐵)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑎)))
13 simprl 529 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ ℕ)
14 simprr 531 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
154ad2antrr 488 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → 𝑆 ⊆ ℂ)
166fmpttd 5713 . . . . . . . . . . 11 (𝜑 → (𝑘𝐴𝐵):𝐴𝑆)
1716adantr 276 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐵):𝐴𝑆)
1817ffvelcdmda 5693 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ 𝑆)
1915, 18sseldd 3180 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ ℂ)
20 f1of 5500 . . . . . . . . . 10 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))⟶𝐴)
2114, 20syl 14 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
22 fvco3 5628 . . . . . . . . 9 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑎 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎) = ((𝑘𝐴𝐵)‘(𝑓𝑎)))
2321, 22sylan 283 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑎 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎) = ((𝑘𝐴𝐵)‘(𝑓𝑎)))
2412, 13, 14, 19, 23fsum3 11530 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0)))‘(♯‘𝐴)))
2511, 24eqtr3d 2228 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑘𝐴 𝐵 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0)))‘(♯‘𝐴)))
26 nnuz 9628 . . . . . . . 8 ℕ = (ℤ‘1)
2713, 26eleqtrdi 2286 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ (ℤ‘1))
28 elnnuz 9629 . . . . . . . . . . 11 (𝑥 ∈ ℕ ↔ 𝑥 ∈ (ℤ‘1))
2928biimpri 133 . . . . . . . . . 10 (𝑥 ∈ (ℤ‘1) → 𝑥 ∈ ℕ)
3029adantl 277 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) → 𝑥 ∈ ℕ)
314ad3antrrr 492 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → 𝑆 ⊆ ℂ)
3217ad2antrr 488 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → (𝑘𝐴𝐵):𝐴𝑆)
3321ad2antrr 488 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
34 fco 5419 . . . . . . . . . . . . . 14 (((𝑘𝐴𝐵):𝐴𝑆𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶𝑆)
3532, 33, 34syl2anc 411 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶𝑆)
36 1zzd 9344 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → 1 ∈ ℤ)
3713ad2antrr 488 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → (♯‘𝐴) ∈ ℕ)
3837nnzd 9438 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → (♯‘𝐴) ∈ ℤ)
39 simpr 110 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℕ)
4039adantr 276 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → 𝑥 ∈ ℕ)
4140nnzd 9438 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → 𝑥 ∈ ℤ)
4236, 38, 413jca 1179 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → (1 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ ∧ 𝑥 ∈ ℤ))
4340nnge1d 9025 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → 1 ≤ 𝑥)
44 simpr 110 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → 𝑥 ≤ (♯‘𝐴))
4543, 44jca 306 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → (1 ≤ 𝑥𝑥 ≤ (♯‘𝐴)))
46 elfz2 10081 . . . . . . . . . . . . . 14 (𝑥 ∈ (1...(♯‘𝐴)) ↔ ((1 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ (1 ≤ 𝑥𝑥 ≤ (♯‘𝐴))))
4742, 45, 46sylanbrc 417 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → 𝑥 ∈ (1...(♯‘𝐴)))
4835, 47ffvelcdmd 5694 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥) ∈ 𝑆)
4931, 48sseldd 3180 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥) ∈ ℂ)
50 0cnd 8012 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ ¬ 𝑥 ≤ (♯‘𝐴)) → 0 ∈ ℂ)
5139nnzd 9438 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℤ)
5213adantr 276 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) → (♯‘𝐴) ∈ ℕ)
5352nnzd 9438 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) → (♯‘𝐴) ∈ ℤ)
54 zdcle 9393 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ) → DECID 𝑥 ≤ (♯‘𝐴))
5551, 53, 54syl2anc 411 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) → DECID 𝑥 ≤ (♯‘𝐴))
5649, 50, 55ifcldadc 3586 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) → if(𝑥 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥), 0) ∈ ℂ)
5730, 56syldan 282 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) → if(𝑥 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥), 0) ∈ ℂ)
58 breq1 4032 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝑎 ≤ (♯‘𝐴) ↔ 𝑥 ≤ (♯‘𝐴)))
59 fveq2 5554 . . . . . . . . . . 11 (𝑎 = 𝑥 → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎) = (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥))
6058, 59ifbieq1d 3579 . . . . . . . . . 10 (𝑎 = 𝑥 → if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0) = if(𝑥 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥), 0))
61 eqid 2193 . . . . . . . . . 10 (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0)) = (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0))
6260, 61fvmptg 5633 . . . . . . . . 9 ((𝑥 ∈ ℕ ∧ if(𝑥 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥), 0) ∈ ℂ) → ((𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0))‘𝑥) = if(𝑥 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥), 0))
6330, 57, 62syl2anc 411 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) → ((𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0))‘𝑥) = if(𝑥 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥), 0))
644adantr 276 . . . . . . . . . . . . 13 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑆 ⊆ ℂ)
6517, 64fssd 5416 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
6665ad2antrr 488 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
6721ad2antrr 488 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
68 fco 5419 . . . . . . . . . . 11 (((𝑘𝐴𝐵):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
6966, 67, 68syl2anc 411 . . . . . . . . . 10 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
70 1zzd 9344 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → 1 ∈ ℤ)
7113ad2antrr 488 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → (♯‘𝐴) ∈ ℕ)
7271nnzd 9438 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → (♯‘𝐴) ∈ ℤ)
73 eluzelz 9601 . . . . . . . . . . . . 13 (𝑥 ∈ (ℤ‘1) → 𝑥 ∈ ℤ)
7473ad2antlr 489 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → 𝑥 ∈ ℤ)
7570, 72, 743jca 1179 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → (1 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ ∧ 𝑥 ∈ ℤ))
7629nnge1d 9025 . . . . . . . . . . . . 13 (𝑥 ∈ (ℤ‘1) → 1 ≤ 𝑥)
7776ad2antlr 489 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → 1 ≤ 𝑥)
78 simpr 110 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → 𝑥 ≤ (♯‘𝐴))
7977, 78jca 306 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → (1 ≤ 𝑥𝑥 ≤ (♯‘𝐴)))
8075, 79, 46sylanbrc 417 . . . . . . . . . 10 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → 𝑥 ∈ (1...(♯‘𝐴)))
8169, 80ffvelcdmd 5694 . . . . . . . . 9 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥) ∈ ℂ)
82 0cnd 8012 . . . . . . . . 9 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ ¬ 𝑥 ≤ (♯‘𝐴)) → 0 ∈ ℂ)
8330, 55syldan 282 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) → DECID 𝑥 ≤ (♯‘𝐴))
8481, 82, 83ifcldadc 3586 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) → if(𝑥 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥), 0) ∈ ℂ)
8563, 84eqeltrd 2270 . . . . . . 7 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) → ((𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0))‘𝑥) ∈ ℂ)
86 elfzle2 10094 . . . . . . . . . . 11 (𝑥 ∈ (1...(♯‘𝐴)) → 𝑥 ≤ (♯‘𝐴))
8786adantl 277 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → 𝑥 ≤ (♯‘𝐴))
8887iftrued 3564 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → if(𝑥 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥), 0) = (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥))
89 elfznn 10120 . . . . . . . . . . 11 (𝑥 ∈ (1...(♯‘𝐴)) → 𝑥 ∈ ℕ)
9089anim2i 342 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ))
9190, 87, 48syl2anc 411 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥) ∈ 𝑆)
9288, 91eqeltrd 2270 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → if(𝑥 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥), 0) ∈ 𝑆)
9339, 56, 62syl2anc 411 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) → ((𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0))‘𝑥) = if(𝑥 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥), 0))
9493eleq1d 2262 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) → (((𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0))‘𝑥) ∈ 𝑆 ↔ if(𝑥 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥), 0) ∈ 𝑆))
9590, 94syl 14 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0))‘𝑥) ∈ 𝑆 ↔ if(𝑥 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥), 0) ∈ 𝑆))
9692, 95mpbird 167 . . . . . . 7 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → ((𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0))‘𝑥) ∈ 𝑆)
97 fsumcllem.2 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
9897adantlr 477 . . . . . . 7 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
99 addcl 7997 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
10099adantl 277 . . . . . . 7 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
10127, 85, 96, 98, 64, 100seq3clss 10542 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0)))‘(♯‘𝐴)) ∈ 𝑆)
10225, 101eqeltrd 2270 . . . . 5 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑘𝐴 𝐵𝑆)
103102expr 375 . . . 4 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 𝐵𝑆))
104103exlimdv 1830 . . 3 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 𝐵𝑆))
105104expimpd 363 . 2 (𝜑 → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → Σ𝑘𝐴 𝐵𝑆))
106 fsumcllem.3 . . 3 (𝜑𝐴 ∈ Fin)
107 fz1f1o 11518 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
108106, 107syl 14 . 2 (𝜑 → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
1093, 105, 108mpjaod 719 1 (𝜑 → Σ𝑘𝐴 𝐵𝑆)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wex 1503  wcel 2164  wne 2364  wral 2472  wss 3153  c0 3446  ifcif 3557   class class class wbr 4029  cmpt 4090  ccom 4663  wf 5250  1-1-ontowf1o 5253  cfv 5254  (class class class)co 5918  Fincfn 6794  cc 7870  0cc0 7872  1c1 7873   + caddc 7875  cle 8055  cn 8982  cz 9317  cuz 9592  ...cfz 10074  seqcseq 10518  chash 10846  Σcsu 11496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497
This theorem is referenced by:  fsumcllem  11542  fsumrpcl  11547
  Copyright terms: Public domain W3C validator