ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumcl2lem GIF version

Theorem fsumcl2lem 11580
Description: - Lemma for finite sum closures. (The "-" before "Lemma" forces the math content to be displayed in the Statement List - NM 11-Feb-2008.) (Contributed by Mario Carneiro, 3-Jun-2014.)
Hypotheses
Ref Expression
fsumcllem.1 (𝜑𝑆 ⊆ ℂ)
fsumcllem.2 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
fsumcllem.3 (𝜑𝐴 ∈ Fin)
fsumcllem.4 ((𝜑𝑘𝐴) → 𝐵𝑆)
fsumcl2lem.5 (𝜑𝐴 ≠ ∅)
Assertion
Ref Expression
fsumcl2lem (𝜑 → Σ𝑘𝐴 𝐵𝑆)
Distinct variable groups:   𝐴,𝑘,𝑥,𝑦   𝑥,𝐵,𝑦   𝑆,𝑘,𝑥,𝑦   𝜑,𝑘,𝑥,𝑦
Allowed substitution hint:   𝐵(𝑘)

Proof of Theorem fsumcl2lem
Dummy variables 𝑎 𝑓 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fsumcl2lem.5 . . . 4 (𝜑𝐴 ≠ ∅)
21neneqd 2388 . . 3 (𝜑 → ¬ 𝐴 = ∅)
32pm2.21d 620 . 2 (𝜑 → (𝐴 = ∅ → Σ𝑘𝐴 𝐵𝑆))
4 fsumcllem.1 . . . . . . . . . . . 12 (𝜑𝑆 ⊆ ℂ)
54adantr 276 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → 𝑆 ⊆ ℂ)
6 fsumcllem.4 . . . . . . . . . . 11 ((𝜑𝑘𝐴) → 𝐵𝑆)
75, 6sseldd 3185 . . . . . . . . . 10 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
87ralrimiva 2570 . . . . . . . . 9 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
9 sumfct 11556 . . . . . . . . 9 (∀𝑘𝐴 𝐵 ∈ ℂ → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑘𝐴 𝐵)
108, 9syl 14 . . . . . . . 8 (𝜑 → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑘𝐴 𝐵)
1110adantr 276 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = Σ𝑘𝐴 𝐵)
12 fveq2 5561 . . . . . . . 8 (𝑚 = (𝑓𝑎) → ((𝑘𝐴𝐵)‘𝑚) = ((𝑘𝐴𝐵)‘(𝑓𝑎)))
13 simprl 529 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ ℕ)
14 simprr 531 . . . . . . . 8 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)
154ad2antrr 488 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → 𝑆 ⊆ ℂ)
166fmpttd 5720 . . . . . . . . . . 11 (𝜑 → (𝑘𝐴𝐵):𝐴𝑆)
1716adantr 276 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐵):𝐴𝑆)
1817ffvelcdmda 5700 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ 𝑆)
1915, 18sseldd 3185 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑚𝐴) → ((𝑘𝐴𝐵)‘𝑚) ∈ ℂ)
20 f1of 5507 . . . . . . . . . 10 (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴𝑓:(1...(♯‘𝐴))⟶𝐴)
2114, 20syl 14 . . . . . . . . 9 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
22 fvco3 5635 . . . . . . . . 9 ((𝑓:(1...(♯‘𝐴))⟶𝐴𝑎 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎) = ((𝑘𝐴𝐵)‘(𝑓𝑎)))
2321, 22sylan 283 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑎 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎) = ((𝑘𝐴𝐵)‘(𝑓𝑎)))
2412, 13, 14, 19, 23fsum3 11569 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑚𝐴 ((𝑘𝐴𝐵)‘𝑚) = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0)))‘(♯‘𝐴)))
2511, 24eqtr3d 2231 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑘𝐴 𝐵 = (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0)))‘(♯‘𝐴)))
26 nnuz 9654 . . . . . . . 8 ℕ = (ℤ‘1)
2713, 26eleqtrdi 2289 . . . . . . 7 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (♯‘𝐴) ∈ (ℤ‘1))
28 elnnuz 9655 . . . . . . . . . . 11 (𝑥 ∈ ℕ ↔ 𝑥 ∈ (ℤ‘1))
2928biimpri 133 . . . . . . . . . 10 (𝑥 ∈ (ℤ‘1) → 𝑥 ∈ ℕ)
3029adantl 277 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) → 𝑥 ∈ ℕ)
314ad3antrrr 492 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → 𝑆 ⊆ ℂ)
3217ad2antrr 488 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → (𝑘𝐴𝐵):𝐴𝑆)
3321ad2antrr 488 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
34 fco 5426 . . . . . . . . . . . . . 14 (((𝑘𝐴𝐵):𝐴𝑆𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶𝑆)
3532, 33, 34syl2anc 411 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶𝑆)
36 1zzd 9370 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → 1 ∈ ℤ)
3713ad2antrr 488 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → (♯‘𝐴) ∈ ℕ)
3837nnzd 9464 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → (♯‘𝐴) ∈ ℤ)
39 simpr 110 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℕ)
4039adantr 276 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → 𝑥 ∈ ℕ)
4140nnzd 9464 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → 𝑥 ∈ ℤ)
4236, 38, 413jca 1179 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → (1 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ ∧ 𝑥 ∈ ℤ))
4340nnge1d 9050 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → 1 ≤ 𝑥)
44 simpr 110 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → 𝑥 ≤ (♯‘𝐴))
4543, 44jca 306 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → (1 ≤ 𝑥𝑥 ≤ (♯‘𝐴)))
46 elfz2 10107 . . . . . . . . . . . . . 14 (𝑥 ∈ (1...(♯‘𝐴)) ↔ ((1 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ ∧ 𝑥 ∈ ℤ) ∧ (1 ≤ 𝑥𝑥 ≤ (♯‘𝐴))))
4742, 45, 46sylanbrc 417 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → 𝑥 ∈ (1...(♯‘𝐴)))
4835, 47ffvelcdmd 5701 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥) ∈ 𝑆)
4931, 48sseldd 3185 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ 𝑥 ≤ (♯‘𝐴)) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥) ∈ ℂ)
50 0cnd 8036 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) ∧ ¬ 𝑥 ≤ (♯‘𝐴)) → 0 ∈ ℂ)
5139nnzd 9464 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℤ)
5213adantr 276 . . . . . . . . . . . . 13 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) → (♯‘𝐴) ∈ ℕ)
5352nnzd 9464 . . . . . . . . . . . 12 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) → (♯‘𝐴) ∈ ℤ)
54 zdcle 9419 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ) → DECID 𝑥 ≤ (♯‘𝐴))
5551, 53, 54syl2anc 411 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) → DECID 𝑥 ≤ (♯‘𝐴))
5649, 50, 55ifcldadc 3591 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) → if(𝑥 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥), 0) ∈ ℂ)
5730, 56syldan 282 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) → if(𝑥 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥), 0) ∈ ℂ)
58 breq1 4037 . . . . . . . . . . 11 (𝑎 = 𝑥 → (𝑎 ≤ (♯‘𝐴) ↔ 𝑥 ≤ (♯‘𝐴)))
59 fveq2 5561 . . . . . . . . . . 11 (𝑎 = 𝑥 → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎) = (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥))
6058, 59ifbieq1d 3584 . . . . . . . . . 10 (𝑎 = 𝑥 → if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0) = if(𝑥 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥), 0))
61 eqid 2196 . . . . . . . . . 10 (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0)) = (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0))
6260, 61fvmptg 5640 . . . . . . . . 9 ((𝑥 ∈ ℕ ∧ if(𝑥 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥), 0) ∈ ℂ) → ((𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0))‘𝑥) = if(𝑥 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥), 0))
6330, 57, 62syl2anc 411 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) → ((𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0))‘𝑥) = if(𝑥 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥), 0))
644adantr 276 . . . . . . . . . . . . 13 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → 𝑆 ⊆ ℂ)
6517, 64fssd 5423 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
6665ad2antrr 488 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → (𝑘𝐴𝐵):𝐴⟶ℂ)
6721ad2antrr 488 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → 𝑓:(1...(♯‘𝐴))⟶𝐴)
68 fco 5426 . . . . . . . . . . 11 (((𝑘𝐴𝐵):𝐴⟶ℂ ∧ 𝑓:(1...(♯‘𝐴))⟶𝐴) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
6966, 67, 68syl2anc 411 . . . . . . . . . 10 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → ((𝑘𝐴𝐵) ∘ 𝑓):(1...(♯‘𝐴))⟶ℂ)
70 1zzd 9370 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → 1 ∈ ℤ)
7113ad2antrr 488 . . . . . . . . . . . . 13 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → (♯‘𝐴) ∈ ℕ)
7271nnzd 9464 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → (♯‘𝐴) ∈ ℤ)
73 eluzelz 9627 . . . . . . . . . . . . 13 (𝑥 ∈ (ℤ‘1) → 𝑥 ∈ ℤ)
7473ad2antlr 489 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → 𝑥 ∈ ℤ)
7570, 72, 743jca 1179 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → (1 ∈ ℤ ∧ (♯‘𝐴) ∈ ℤ ∧ 𝑥 ∈ ℤ))
7629nnge1d 9050 . . . . . . . . . . . . 13 (𝑥 ∈ (ℤ‘1) → 1 ≤ 𝑥)
7776ad2antlr 489 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → 1 ≤ 𝑥)
78 simpr 110 . . . . . . . . . . . 12 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → 𝑥 ≤ (♯‘𝐴))
7977, 78jca 306 . . . . . . . . . . 11 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → (1 ≤ 𝑥𝑥 ≤ (♯‘𝐴)))
8075, 79, 46sylanbrc 417 . . . . . . . . . 10 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → 𝑥 ∈ (1...(♯‘𝐴)))
8169, 80ffvelcdmd 5701 . . . . . . . . 9 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ 𝑥 ≤ (♯‘𝐴)) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥) ∈ ℂ)
82 0cnd 8036 . . . . . . . . 9 ((((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) ∧ ¬ 𝑥 ≤ (♯‘𝐴)) → 0 ∈ ℂ)
8330, 55syldan 282 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) → DECID 𝑥 ≤ (♯‘𝐴))
8481, 82, 83ifcldadc 3591 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) → if(𝑥 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥), 0) ∈ ℂ)
8563, 84eqeltrd 2273 . . . . . . 7 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (ℤ‘1)) → ((𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0))‘𝑥) ∈ ℂ)
86 elfzle2 10120 . . . . . . . . . . 11 (𝑥 ∈ (1...(♯‘𝐴)) → 𝑥 ≤ (♯‘𝐴))
8786adantl 277 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → 𝑥 ≤ (♯‘𝐴))
8887iftrued 3569 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → if(𝑥 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥), 0) = (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥))
89 elfznn 10146 . . . . . . . . . . 11 (𝑥 ∈ (1...(♯‘𝐴)) → 𝑥 ∈ ℕ)
9089anim2i 342 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ))
9190, 87, 48syl2anc 411 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥) ∈ 𝑆)
9288, 91eqeltrd 2273 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → if(𝑥 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥), 0) ∈ 𝑆)
9339, 56, 62syl2anc 411 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) → ((𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0))‘𝑥) = if(𝑥 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥), 0))
9493eleq1d 2265 . . . . . . . . 9 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ ℕ) → (((𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0))‘𝑥) ∈ 𝑆 ↔ if(𝑥 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥), 0) ∈ 𝑆))
9590, 94syl 14 . . . . . . . 8 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → (((𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0))‘𝑥) ∈ 𝑆 ↔ if(𝑥 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑥), 0) ∈ 𝑆))
9692, 95mpbird 167 . . . . . . 7 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ 𝑥 ∈ (1...(♯‘𝐴))) → ((𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0))‘𝑥) ∈ 𝑆)
97 fsumcllem.2 . . . . . . . 8 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
9897adantlr 477 . . . . . . 7 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
99 addcl 8021 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
10099adantl 277 . . . . . . 7 (((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
10127, 85, 96, 98, 64, 100seq3clss 10580 . . . . . 6 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → (seq1( + , (𝑎 ∈ ℕ ↦ if(𝑎 ≤ (♯‘𝐴), (((𝑘𝐴𝐵) ∘ 𝑓)‘𝑎), 0)))‘(♯‘𝐴)) ∈ 𝑆)
10225, 101eqeltrd 2273 . . . . 5 ((𝜑 ∧ ((♯‘𝐴) ∈ ℕ ∧ 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)) → Σ𝑘𝐴 𝐵𝑆)
103102expr 375 . . . 4 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 𝐵𝑆))
104103exlimdv 1833 . . 3 ((𝜑 ∧ (♯‘𝐴) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴 → Σ𝑘𝐴 𝐵𝑆))
105104expimpd 363 . 2 (𝜑 → (((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴) → Σ𝑘𝐴 𝐵𝑆))
106 fsumcllem.3 . . 3 (𝜑𝐴 ∈ Fin)
107 fz1f1o 11557 . . 3 (𝐴 ∈ Fin → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
108106, 107syl 14 . 2 (𝜑 → (𝐴 = ∅ ∨ ((♯‘𝐴) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘𝐴))–1-1-onto𝐴)))
1093, 105, 108mpjaod 719 1 (𝜑 → Σ𝑘𝐴 𝐵𝑆)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wex 1506  wcel 2167  wne 2367  wral 2475  wss 3157  c0 3451  ifcif 3562   class class class wbr 4034  cmpt 4095  ccom 4668  wf 5255  1-1-ontowf1o 5258  cfv 5259  (class class class)co 5925  Fincfn 6808  cc 7894  0cc0 7896  1c1 7897   + caddc 7899  cle 8079  cn 9007  cz 9343  cuz 9618  ...cfz 10100  seqcseq 10556  chash 10884  Σcsu 11535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-ihash 10885  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536
This theorem is referenced by:  fsumcllem  11581  fsumrpcl  11586
  Copyright terms: Public domain W3C validator