Step | Hyp | Ref
| Expression |
1 | | dvco.bg |
. . . 4
⊢ (𝜑 → 𝐶(𝑇 D 𝐺)𝐿) |
2 | | eqid 2157 |
. . . . 5
⊢ (𝐽 ↾t 𝑇) = (𝐽 ↾t 𝑇) |
3 | | dvcoap.j |
. . . . 5
⊢ 𝐽 = (MetOpen‘(abs ∘
− )) |
4 | | eqid 2157 |
. . . . 5
⊢ (𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶} ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) = (𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶} ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) |
5 | | dvcobr.t |
. . . . 5
⊢ (𝜑 → 𝑇 ⊆ ℂ) |
6 | | dvco.g |
. . . . . 6
⊢ (𝜑 → 𝐺:𝑌⟶𝑋) |
7 | | dvco.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ⊆ 𝑆) |
8 | | dvcobr.s |
. . . . . . 7
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
9 | 7, 8 | sstrd 3138 |
. . . . . 6
⊢ (𝜑 → 𝑋 ⊆ ℂ) |
10 | 6, 9 | fssd 5331 |
. . . . 5
⊢ (𝜑 → 𝐺:𝑌⟶ℂ) |
11 | | dvco.y |
. . . . 5
⊢ (𝜑 → 𝑌 ⊆ 𝑇) |
12 | 2, 3, 4, 5, 10, 11 | eldvap 13022 |
. . . 4
⊢ (𝜑 → (𝐶(𝑇 D 𝐺)𝐿 ↔ (𝐶 ∈ ((int‘(𝐽 ↾t 𝑇))‘𝑌) ∧ 𝐿 ∈ ((𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶} ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)))) |
13 | 1, 12 | mpbid 146 |
. . 3
⊢ (𝜑 → (𝐶 ∈ ((int‘(𝐽 ↾t 𝑇))‘𝑌) ∧ 𝐿 ∈ ((𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶} ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶))) |
14 | 13 | simpld 111 |
. 2
⊢ (𝜑 → 𝐶 ∈ ((int‘(𝐽 ↾t 𝑇))‘𝑌)) |
15 | | dvco.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
16 | 15 | adantr 274 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) → 𝐹:𝑋⟶ℂ) |
17 | 6 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) → 𝐺:𝑌⟶𝑋) |
18 | | elrabi 2865 |
. . . . . . . . 9
⊢ (𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶} → 𝑧 ∈ 𝑌) |
19 | 18 | adantl 275 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) → 𝑧 ∈ 𝑌) |
20 | 17, 19 | ffvelrnd 5602 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) → (𝐺‘𝑧) ∈ 𝑋) |
21 | 16, 20 | ffvelrnd 5602 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) → (𝐹‘(𝐺‘𝑧)) ∈ ℂ) |
22 | 5, 10, 11 | dvbss 13025 |
. . . . . . . . . 10
⊢ (𝜑 → dom (𝑇 D 𝐺) ⊆ 𝑌) |
23 | | cnex 7850 |
. . . . . . . . . . . . . 14
⊢ ℂ
∈ V |
24 | 23 | a1i 9 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ℂ ∈
V) |
25 | 24, 5 | ssexd 4104 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑇 ∈ V) |
26 | | elpm2r 6608 |
. . . . . . . . . . . . 13
⊢
(((ℂ ∈ V ∧ 𝑇 ∈ V) ∧ (𝐺:𝑌⟶ℂ ∧ 𝑌 ⊆ 𝑇)) → 𝐺 ∈ (ℂ ↑pm
𝑇)) |
27 | 24, 25, 10, 11, 26 | syl22anc 1221 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐺 ∈ (ℂ ↑pm
𝑇)) |
28 | | reldvg 13019 |
. . . . . . . . . . . 12
⊢ ((𝑇 ⊆ ℂ ∧ 𝐺 ∈ (ℂ
↑pm 𝑇)) → Rel (𝑇 D 𝐺)) |
29 | 5, 27, 28 | syl2anc 409 |
. . . . . . . . . . 11
⊢ (𝜑 → Rel (𝑇 D 𝐺)) |
30 | | releldm 4820 |
. . . . . . . . . . 11
⊢ ((Rel
(𝑇 D 𝐺) ∧ 𝐶(𝑇 D 𝐺)𝐿) → 𝐶 ∈ dom (𝑇 D 𝐺)) |
31 | 29, 1, 30 | syl2anc 409 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ dom (𝑇 D 𝐺)) |
32 | 22, 31 | sseldd 3129 |
. . . . . . . . 9
⊢ (𝜑 → 𝐶 ∈ 𝑌) |
33 | 32 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) → 𝐶 ∈ 𝑌) |
34 | 17, 33 | ffvelrnd 5602 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) → (𝐺‘𝐶) ∈ 𝑋) |
35 | 16, 34 | ffvelrnd 5602 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) → (𝐹‘(𝐺‘𝐶)) ∈ ℂ) |
36 | 21, 35 | subcld 8180 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) → ((𝐹‘(𝐺‘𝑧)) − (𝐹‘(𝐺‘𝐶))) ∈ ℂ) |
37 | 10 | adantr 274 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) → 𝐺:𝑌⟶ℂ) |
38 | 37, 19 | ffvelrnd 5602 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) → (𝐺‘𝑧) ∈ ℂ) |
39 | 37, 33 | ffvelrnd 5602 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) → (𝐺‘𝐶) ∈ ℂ) |
40 | 38, 39 | subcld 8180 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) → ((𝐺‘𝑧) − (𝐺‘𝐶)) ∈ ℂ) |
41 | 9 | adantr 274 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) → 𝑋 ⊆ ℂ) |
42 | 41, 20 | sseldd 3129 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) → (𝐺‘𝑧) ∈ ℂ) |
43 | 41, 34 | sseldd 3129 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) → (𝐺‘𝐶) ∈ ℂ) |
44 | | breq1 3968 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑧 → (𝑤 # 𝐶 ↔ 𝑧 # 𝐶)) |
45 | 44 | elrab 2868 |
. . . . . . . . 9
⊢ (𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶} ↔ (𝑧 ∈ 𝑌 ∧ 𝑧 # 𝐶)) |
46 | 45 | simprbi 273 |
. . . . . . . 8
⊢ (𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶} → 𝑧 # 𝐶) |
47 | 46 | adantl 275 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) → 𝑧 # 𝐶) |
48 | | breq1 3968 |
. . . . . . . . 9
⊢ (𝑢 = 𝑧 → (𝑢 # 𝐶 ↔ 𝑧 # 𝐶)) |
49 | | fveq2 5467 |
. . . . . . . . . 10
⊢ (𝑢 = 𝑧 → (𝐺‘𝑢) = (𝐺‘𝑧)) |
50 | 49 | breq1d 3975 |
. . . . . . . . 9
⊢ (𝑢 = 𝑧 → ((𝐺‘𝑢) # (𝐺‘𝐶) ↔ (𝐺‘𝑧) # (𝐺‘𝐶))) |
51 | 48, 50 | imbi12d 233 |
. . . . . . . 8
⊢ (𝑢 = 𝑧 → ((𝑢 # 𝐶 → (𝐺‘𝑢) # (𝐺‘𝐶)) ↔ (𝑧 # 𝐶 → (𝐺‘𝑧) # (𝐺‘𝐶)))) |
52 | | dvcoap.gap |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑢 ∈ 𝑌 (𝑢 # 𝐶 → (𝐺‘𝑢) # (𝐺‘𝐶))) |
53 | 52 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) → ∀𝑢 ∈ 𝑌 (𝑢 # 𝐶 → (𝐺‘𝑢) # (𝐺‘𝐶))) |
54 | 51, 53, 19 | rspcdva 2821 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) → (𝑧 # 𝐶 → (𝐺‘𝑧) # (𝐺‘𝐶))) |
55 | 47, 54 | mpd 13 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) → (𝐺‘𝑧) # (𝐺‘𝐶)) |
56 | 42, 43, 55 | subap0d 8513 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) → ((𝐺‘𝑧) − (𝐺‘𝐶)) # 0) |
57 | 36, 40, 56 | divclapd 8657 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) → (((𝐹‘(𝐺‘𝑧)) − (𝐹‘(𝐺‘𝐶))) / ((𝐺‘𝑧) − (𝐺‘𝐶))) ∈ ℂ) |
58 | 11, 5 | sstrd 3138 |
. . . . 5
⊢ (𝜑 → 𝑌 ⊆ ℂ) |
59 | 10, 58, 32 | dvlemap 13020 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) → (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)) ∈ ℂ) |
60 | | ssidd 3149 |
. . . 4
⊢ (𝜑 → ℂ ⊆
ℂ) |
61 | 3 | cntoptopon 12903 |
. . . . . 6
⊢ 𝐽 ∈
(TopOn‘ℂ) |
62 | | txtopon 12633 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘ℂ)
∧ 𝐽 ∈
(TopOn‘ℂ)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ ×
ℂ))) |
63 | 61, 61, 62 | mp2an 423 |
. . . . 5
⊢ (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ
× ℂ)) |
64 | 63 | toponrestid 12390 |
. . . 4
⊢ (𝐽 ×t 𝐽) = ((𝐽 ×t 𝐽) ↾t (ℂ ×
ℂ)) |
65 | | breq1 3968 |
. . . . . 6
⊢ (𝑤 = (𝐺‘𝑧) → (𝑤 # (𝐺‘𝐶) ↔ (𝐺‘𝑧) # (𝐺‘𝐶))) |
66 | 65, 20, 55 | elrabd 2870 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) → (𝐺‘𝑧) ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # (𝐺‘𝐶)}) |
67 | 15 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # (𝐺‘𝐶)}) → 𝐹:𝑋⟶ℂ) |
68 | | elrabi 2865 |
. . . . . . . . 9
⊢ (𝑦 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # (𝐺‘𝐶)} → 𝑦 ∈ 𝑋) |
69 | 68 | adantl 275 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # (𝐺‘𝐶)}) → 𝑦 ∈ 𝑋) |
70 | 67, 69 | ffvelrnd 5602 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # (𝐺‘𝐶)}) → (𝐹‘𝑦) ∈ ℂ) |
71 | 6 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # (𝐺‘𝐶)}) → 𝐺:𝑌⟶𝑋) |
72 | 32 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # (𝐺‘𝐶)}) → 𝐶 ∈ 𝑌) |
73 | 71, 72 | ffvelrnd 5602 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # (𝐺‘𝐶)}) → (𝐺‘𝐶) ∈ 𝑋) |
74 | 67, 73 | ffvelrnd 5602 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # (𝐺‘𝐶)}) → (𝐹‘(𝐺‘𝐶)) ∈ ℂ) |
75 | 70, 74 | subcld 8180 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # (𝐺‘𝐶)}) → ((𝐹‘𝑦) − (𝐹‘(𝐺‘𝐶))) ∈ ℂ) |
76 | 9 | adantr 274 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # (𝐺‘𝐶)}) → 𝑋 ⊆ ℂ) |
77 | 76, 69 | sseldd 3129 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # (𝐺‘𝐶)}) → 𝑦 ∈ ℂ) |
78 | 76, 73 | sseldd 3129 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # (𝐺‘𝐶)}) → (𝐺‘𝐶) ∈ ℂ) |
79 | 77, 78 | subcld 8180 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # (𝐺‘𝐶)}) → (𝑦 − (𝐺‘𝐶)) ∈ ℂ) |
80 | | breq1 3968 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑦 → (𝑤 # (𝐺‘𝐶) ↔ 𝑦 # (𝐺‘𝐶))) |
81 | 80 | elrab 2868 |
. . . . . . . . 9
⊢ (𝑦 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # (𝐺‘𝐶)} ↔ (𝑦 ∈ 𝑋 ∧ 𝑦 # (𝐺‘𝐶))) |
82 | 81 | simprbi 273 |
. . . . . . . 8
⊢ (𝑦 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # (𝐺‘𝐶)} → 𝑦 # (𝐺‘𝐶)) |
83 | 82 | adantl 275 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # (𝐺‘𝐶)}) → 𝑦 # (𝐺‘𝐶)) |
84 | 77, 78, 83 | subap0d 8513 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # (𝐺‘𝐶)}) → (𝑦 − (𝐺‘𝐶)) # 0) |
85 | 75, 79, 84 | divclapd 8657 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # (𝐺‘𝐶)}) → (((𝐹‘𝑦) − (𝐹‘(𝐺‘𝐶))) / (𝑦 − (𝐺‘𝐶))) ∈ ℂ) |
86 | | limcresi 13006 |
. . . . . . 7
⊢ (𝐺 limℂ 𝐶) ⊆ ((𝐺 ↾ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) limℂ 𝐶) |
87 | 6 | feqmptd 5520 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐺 = (𝑧 ∈ 𝑌 ↦ (𝐺‘𝑧))) |
88 | 87 | reseq1d 4864 |
. . . . . . . . 9
⊢ (𝜑 → (𝐺 ↾ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) = ((𝑧 ∈ 𝑌 ↦ (𝐺‘𝑧)) ↾ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶})) |
89 | | ssrab2 3213 |
. . . . . . . . . 10
⊢ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶} ⊆ 𝑌 |
90 | | resmpt 4913 |
. . . . . . . . . 10
⊢ ({𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶} ⊆ 𝑌 → ((𝑧 ∈ 𝑌 ↦ (𝐺‘𝑧)) ↾ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) = (𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶} ↦ (𝐺‘𝑧))) |
91 | 89, 90 | ax-mp 5 |
. . . . . . . . 9
⊢ ((𝑧 ∈ 𝑌 ↦ (𝐺‘𝑧)) ↾ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) = (𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶} ↦ (𝐺‘𝑧)) |
92 | 88, 91 | eqtrdi 2206 |
. . . . . . . 8
⊢ (𝜑 → (𝐺 ↾ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) = (𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶} ↦ (𝐺‘𝑧))) |
93 | 92 | oveq1d 5836 |
. . . . . . 7
⊢ (𝜑 → ((𝐺 ↾ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) limℂ 𝐶) = ((𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶} ↦ (𝐺‘𝑧)) limℂ 𝐶)) |
94 | 86, 93 | sseqtrid 3178 |
. . . . . 6
⊢ (𝜑 → (𝐺 limℂ 𝐶) ⊆ ((𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶} ↦ (𝐺‘𝑧)) limℂ 𝐶)) |
95 | | eqid 2157 |
. . . . . . . . . 10
⊢ (𝐽 ↾t 𝑌) = (𝐽 ↾t 𝑌) |
96 | 95, 3 | dvcnp2cntop 13034 |
. . . . . . . . 9
⊢ (((𝑇 ⊆ ℂ ∧ 𝐺:𝑌⟶ℂ ∧ 𝑌 ⊆ 𝑇) ∧ 𝐶 ∈ dom (𝑇 D 𝐺)) → 𝐺 ∈ (((𝐽 ↾t 𝑌) CnP 𝐽)‘𝐶)) |
97 | 5, 10, 11, 31, 96 | syl31anc 1223 |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ (((𝐽 ↾t 𝑌) CnP 𝐽)‘𝐶)) |
98 | 3, 95 | cnplimccntop 13010 |
. . . . . . . . 9
⊢ ((𝑌 ⊆ ℂ ∧ 𝐶 ∈ 𝑌) → (𝐺 ∈ (((𝐽 ↾t 𝑌) CnP 𝐽)‘𝐶) ↔ (𝐺:𝑌⟶ℂ ∧ (𝐺‘𝐶) ∈ (𝐺 limℂ 𝐶)))) |
99 | 58, 32, 98 | syl2anc 409 |
. . . . . . . 8
⊢ (𝜑 → (𝐺 ∈ (((𝐽 ↾t 𝑌) CnP 𝐽)‘𝐶) ↔ (𝐺:𝑌⟶ℂ ∧ (𝐺‘𝐶) ∈ (𝐺 limℂ 𝐶)))) |
100 | 97, 99 | mpbid 146 |
. . . . . . 7
⊢ (𝜑 → (𝐺:𝑌⟶ℂ ∧ (𝐺‘𝐶) ∈ (𝐺 limℂ 𝐶))) |
101 | 100 | simprd 113 |
. . . . . 6
⊢ (𝜑 → (𝐺‘𝐶) ∈ (𝐺 limℂ 𝐶)) |
102 | 94, 101 | sseldd 3129 |
. . . . 5
⊢ (𝜑 → (𝐺‘𝐶) ∈ ((𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶} ↦ (𝐺‘𝑧)) limℂ 𝐶)) |
103 | | dvco.bf |
. . . . . . 7
⊢ (𝜑 → (𝐺‘𝐶)(𝑆 D 𝐹)𝐾) |
104 | | eqid 2157 |
. . . . . . . 8
⊢ (𝐽 ↾t 𝑆) = (𝐽 ↾t 𝑆) |
105 | | eqid 2157 |
. . . . . . . 8
⊢ (𝑦 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # (𝐺‘𝐶)} ↦ (((𝐹‘𝑦) − (𝐹‘(𝐺‘𝐶))) / (𝑦 − (𝐺‘𝐶)))) = (𝑦 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # (𝐺‘𝐶)} ↦ (((𝐹‘𝑦) − (𝐹‘(𝐺‘𝐶))) / (𝑦 − (𝐺‘𝐶)))) |
106 | 104, 3, 105, 8, 15, 7 | eldvap 13022 |
. . . . . . 7
⊢ (𝜑 → ((𝐺‘𝐶)(𝑆 D 𝐹)𝐾 ↔ ((𝐺‘𝐶) ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑦 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # (𝐺‘𝐶)} ↦ (((𝐹‘𝑦) − (𝐹‘(𝐺‘𝐶))) / (𝑦 − (𝐺‘𝐶)))) limℂ (𝐺‘𝐶))))) |
107 | 103, 106 | mpbid 146 |
. . . . . 6
⊢ (𝜑 → ((𝐺‘𝐶) ∈ ((int‘(𝐽 ↾t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑦 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # (𝐺‘𝐶)} ↦ (((𝐹‘𝑦) − (𝐹‘(𝐺‘𝐶))) / (𝑦 − (𝐺‘𝐶)))) limℂ (𝐺‘𝐶)))) |
108 | 107 | simprd 113 |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ ((𝑦 ∈ {𝑤 ∈ 𝑋 ∣ 𝑤 # (𝐺‘𝐶)} ↦ (((𝐹‘𝑦) − (𝐹‘(𝐺‘𝐶))) / (𝑦 − (𝐺‘𝐶)))) limℂ (𝐺‘𝐶))) |
109 | | fveq2 5467 |
. . . . . . 7
⊢ (𝑦 = (𝐺‘𝑧) → (𝐹‘𝑦) = (𝐹‘(𝐺‘𝑧))) |
110 | 109 | oveq1d 5836 |
. . . . . 6
⊢ (𝑦 = (𝐺‘𝑧) → ((𝐹‘𝑦) − (𝐹‘(𝐺‘𝐶))) = ((𝐹‘(𝐺‘𝑧)) − (𝐹‘(𝐺‘𝐶)))) |
111 | | oveq1 5828 |
. . . . . 6
⊢ (𝑦 = (𝐺‘𝑧) → (𝑦 − (𝐺‘𝐶)) = ((𝐺‘𝑧) − (𝐺‘𝐶))) |
112 | 110, 111 | oveq12d 5839 |
. . . . 5
⊢ (𝑦 = (𝐺‘𝑧) → (((𝐹‘𝑦) − (𝐹‘(𝐺‘𝐶))) / (𝑦 − (𝐺‘𝐶))) = (((𝐹‘(𝐺‘𝑧)) − (𝐹‘(𝐺‘𝐶))) / ((𝐺‘𝑧) − (𝐺‘𝐶)))) |
113 | 66, 85, 102, 108, 112 | limccoap 13018 |
. . . 4
⊢ (𝜑 → 𝐾 ∈ ((𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶} ↦ (((𝐹‘(𝐺‘𝑧)) − (𝐹‘(𝐺‘𝐶))) / ((𝐺‘𝑧) − (𝐺‘𝐶)))) limℂ 𝐶)) |
114 | 13 | simprd 113 |
. . . 4
⊢ (𝜑 → 𝐿 ∈ ((𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶} ↦ (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
115 | 3 | mulcncntop 12925 |
. . . . 5
⊢ ·
∈ ((𝐽
×t 𝐽) Cn
𝐽) |
116 | 8, 15, 7 | dvcl 13023 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐺‘𝐶)(𝑆 D 𝐹)𝐾) → 𝐾 ∈ ℂ) |
117 | 103, 116 | mpdan 418 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ ℂ) |
118 | 5, 10, 11 | dvcl 13023 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶(𝑇 D 𝐺)𝐿) → 𝐿 ∈ ℂ) |
119 | 1, 118 | mpdan 418 |
. . . . . 6
⊢ (𝜑 → 𝐿 ∈ ℂ) |
120 | 117, 119 | opelxpd 4618 |
. . . . 5
⊢ (𝜑 → 〈𝐾, 𝐿〉 ∈ (ℂ ×
ℂ)) |
121 | 63 | toponunii 12386 |
. . . . . 6
⊢ (ℂ
× ℂ) = ∪ (𝐽 ×t 𝐽) |
122 | 121 | cncnpi 12599 |
. . . . 5
⊢ ((
· ∈ ((𝐽
×t 𝐽) Cn
𝐽) ∧ 〈𝐾, 𝐿〉 ∈ (ℂ × ℂ))
→ · ∈ (((𝐽
×t 𝐽) CnP
𝐽)‘〈𝐾, 𝐿〉)) |
123 | 115, 120,
122 | sylancr 411 |
. . . 4
⊢ (𝜑 → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘〈𝐾, 𝐿〉)) |
124 | 57, 59, 60, 60, 3, 64, 113, 114, 123 | limccnp2cntop 13017 |
. . 3
⊢ (𝜑 → (𝐾 · 𝐿) ∈ ((𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶} ↦ ((((𝐹‘(𝐺‘𝑧)) − (𝐹‘(𝐺‘𝐶))) / ((𝐺‘𝑧) − (𝐺‘𝐶))) · (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)))) limℂ 𝐶)) |
125 | 42, 43 | subcld 8180 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) → ((𝐺‘𝑧) − (𝐺‘𝐶)) ∈ ℂ) |
126 | 58 | adantr 274 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) → 𝑌 ⊆ ℂ) |
127 | 126, 19 | sseldd 3129 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) → 𝑧 ∈ ℂ) |
128 | 126, 33 | sseldd 3129 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) → 𝐶 ∈ ℂ) |
129 | 127, 128 | subcld 8180 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) → (𝑧 − 𝐶) ∈ ℂ) |
130 | 127, 128,
47 | subap0d 8513 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) → (𝑧 − 𝐶) # 0) |
131 | 36, 125, 129, 56, 130 | dmdcanap2d 8688 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) → ((((𝐹‘(𝐺‘𝑧)) − (𝐹‘(𝐺‘𝐶))) / ((𝐺‘𝑧) − (𝐺‘𝐶))) · (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) = (((𝐹‘(𝐺‘𝑧)) − (𝐹‘(𝐺‘𝐶))) / (𝑧 − 𝐶))) |
132 | | fvco3 5538 |
. . . . . . . . 9
⊢ ((𝐺:𝑌⟶𝑋 ∧ 𝑧 ∈ 𝑌) → ((𝐹 ∘ 𝐺)‘𝑧) = (𝐹‘(𝐺‘𝑧))) |
133 | 17, 19, 132 | syl2anc 409 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) → ((𝐹 ∘ 𝐺)‘𝑧) = (𝐹‘(𝐺‘𝑧))) |
134 | | fvco3 5538 |
. . . . . . . . 9
⊢ ((𝐺:𝑌⟶𝑋 ∧ 𝐶 ∈ 𝑌) → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) |
135 | 17, 33, 134 | syl2anc 409 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) → ((𝐹 ∘ 𝐺)‘𝐶) = (𝐹‘(𝐺‘𝐶))) |
136 | 133, 135 | oveq12d 5839 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) → (((𝐹 ∘ 𝐺)‘𝑧) − ((𝐹 ∘ 𝐺)‘𝐶)) = ((𝐹‘(𝐺‘𝑧)) − (𝐹‘(𝐺‘𝐶)))) |
137 | 136 | oveq1d 5836 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) → ((((𝐹 ∘ 𝐺)‘𝑧) − ((𝐹 ∘ 𝐺)‘𝐶)) / (𝑧 − 𝐶)) = (((𝐹‘(𝐺‘𝑧)) − (𝐹‘(𝐺‘𝐶))) / (𝑧 − 𝐶))) |
138 | 131, 137 | eqtr4d 2193 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶}) → ((((𝐹‘(𝐺‘𝑧)) − (𝐹‘(𝐺‘𝐶))) / ((𝐺‘𝑧) − (𝐺‘𝐶))) · (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶))) = ((((𝐹 ∘ 𝐺)‘𝑧) − ((𝐹 ∘ 𝐺)‘𝐶)) / (𝑧 − 𝐶))) |
139 | 138 | mpteq2dva 4054 |
. . . 4
⊢ (𝜑 → (𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶} ↦ ((((𝐹‘(𝐺‘𝑧)) − (𝐹‘(𝐺‘𝐶))) / ((𝐺‘𝑧) − (𝐺‘𝐶))) · (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)))) = (𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶} ↦ ((((𝐹 ∘ 𝐺)‘𝑧) − ((𝐹 ∘ 𝐺)‘𝐶)) / (𝑧 − 𝐶)))) |
140 | 139 | oveq1d 5836 |
. . 3
⊢ (𝜑 → ((𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶} ↦ ((((𝐹‘(𝐺‘𝑧)) − (𝐹‘(𝐺‘𝐶))) / ((𝐺‘𝑧) − (𝐺‘𝐶))) · (((𝐺‘𝑧) − (𝐺‘𝐶)) / (𝑧 − 𝐶)))) limℂ 𝐶) = ((𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶} ↦ ((((𝐹 ∘ 𝐺)‘𝑧) − ((𝐹 ∘ 𝐺)‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
141 | 124, 140 | eleqtrd 2236 |
. 2
⊢ (𝜑 → (𝐾 · 𝐿) ∈ ((𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶} ↦ ((((𝐹 ∘ 𝐺)‘𝑧) − ((𝐹 ∘ 𝐺)‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)) |
142 | | eqid 2157 |
. . 3
⊢ (𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶} ↦ ((((𝐹 ∘ 𝐺)‘𝑧) − ((𝐹 ∘ 𝐺)‘𝐶)) / (𝑧 − 𝐶))) = (𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶} ↦ ((((𝐹 ∘ 𝐺)‘𝑧) − ((𝐹 ∘ 𝐺)‘𝐶)) / (𝑧 − 𝐶))) |
143 | | fco 5334 |
. . . 4
⊢ ((𝐹:𝑋⟶ℂ ∧ 𝐺:𝑌⟶𝑋) → (𝐹 ∘ 𝐺):𝑌⟶ℂ) |
144 | 15, 6, 143 | syl2anc 409 |
. . 3
⊢ (𝜑 → (𝐹 ∘ 𝐺):𝑌⟶ℂ) |
145 | 2, 3, 142, 5, 144, 11 | eldvap 13022 |
. 2
⊢ (𝜑 → (𝐶(𝑇 D (𝐹 ∘ 𝐺))(𝐾 · 𝐿) ↔ (𝐶 ∈ ((int‘(𝐽 ↾t 𝑇))‘𝑌) ∧ (𝐾 · 𝐿) ∈ ((𝑧 ∈ {𝑤 ∈ 𝑌 ∣ 𝑤 # 𝐶} ↦ ((((𝐹 ∘ 𝐺)‘𝑧) − ((𝐹 ∘ 𝐺)‘𝐶)) / (𝑧 − 𝐶))) limℂ 𝐶)))) |
146 | 14, 141, 145 | mpbir2and 929 |
1
⊢ (𝜑 → 𝐶(𝑇 D (𝐹 ∘ 𝐺))(𝐾 · 𝐿)) |