ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvcoapbr GIF version

Theorem dvcoapbr 12840
Description: The chain rule for derivatives at a point. The 𝑢 # 𝐶 → (𝐺𝑢) # (𝐺𝐶) hypothesis constrains what functions work for 𝐺. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Jim Kingdon, 21-Dec-2023.)
Hypotheses
Ref Expression
dvco.f (𝜑𝐹:𝑋⟶ℂ)
dvco.x (𝜑𝑋𝑆)
dvco.g (𝜑𝐺:𝑌𝑋)
dvco.y (𝜑𝑌𝑇)
dvcoap.gap (𝜑 → ∀𝑢𝑌 (𝑢 # 𝐶 → (𝐺𝑢) # (𝐺𝐶)))
dvcobr.s (𝜑𝑆 ⊆ ℂ)
dvcobr.t (𝜑𝑇 ⊆ ℂ)
dvco.bf (𝜑 → (𝐺𝐶)(𝑆 D 𝐹)𝐾)
dvco.bg (𝜑𝐶(𝑇 D 𝐺)𝐿)
dvcoap.j 𝐽 = (MetOpen‘(abs ∘ − ))
Assertion
Ref Expression
dvcoapbr (𝜑𝐶(𝑇 D (𝐹𝐺))(𝐾 · 𝐿))
Distinct variable groups:   𝑢,𝐶   𝑢,𝐺   𝑢,𝑌
Allowed substitution hints:   𝜑(𝑢)   𝑆(𝑢)   𝑇(𝑢)   𝐹(𝑢)   𝐽(𝑢)   𝐾(𝑢)   𝐿(𝑢)   𝑋(𝑢)

Proof of Theorem dvcoapbr
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvco.bg . . . 4 (𝜑𝐶(𝑇 D 𝐺)𝐿)
2 eqid 2139 . . . . 5 (𝐽t 𝑇) = (𝐽t 𝑇)
3 dvcoap.j . . . . 5 𝐽 = (MetOpen‘(abs ∘ − ))
4 eqid 2139 . . . . 5 (𝑧 ∈ {𝑤𝑌𝑤 # 𝐶} ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (𝑧 ∈ {𝑤𝑌𝑤 # 𝐶} ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))
5 dvcobr.t . . . . 5 (𝜑𝑇 ⊆ ℂ)
6 dvco.g . . . . . 6 (𝜑𝐺:𝑌𝑋)
7 dvco.x . . . . . . 7 (𝜑𝑋𝑆)
8 dvcobr.s . . . . . . 7 (𝜑𝑆 ⊆ ℂ)
97, 8sstrd 3107 . . . . . 6 (𝜑𝑋 ⊆ ℂ)
106, 9fssd 5285 . . . . 5 (𝜑𝐺:𝑌⟶ℂ)
11 dvco.y . . . . 5 (𝜑𝑌𝑇)
122, 3, 4, 5, 10, 11eldvap 12820 . . . 4 (𝜑 → (𝐶(𝑇 D 𝐺)𝐿 ↔ (𝐶 ∈ ((int‘(𝐽t 𝑇))‘𝑌) ∧ 𝐿 ∈ ((𝑧 ∈ {𝑤𝑌𝑤 # 𝐶} ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))))
131, 12mpbid 146 . . 3 (𝜑 → (𝐶 ∈ ((int‘(𝐽t 𝑇))‘𝑌) ∧ 𝐿 ∈ ((𝑧 ∈ {𝑤𝑌𝑤 # 𝐶} ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶)))
1413simpld 111 . 2 (𝜑𝐶 ∈ ((int‘(𝐽t 𝑇))‘𝑌))
15 dvco.f . . . . . . . 8 (𝜑𝐹:𝑋⟶ℂ)
1615adantr 274 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑌𝑤 # 𝐶}) → 𝐹:𝑋⟶ℂ)
176adantr 274 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑌𝑤 # 𝐶}) → 𝐺:𝑌𝑋)
18 elrabi 2837 . . . . . . . . 9 (𝑧 ∈ {𝑤𝑌𝑤 # 𝐶} → 𝑧𝑌)
1918adantl 275 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑌𝑤 # 𝐶}) → 𝑧𝑌)
2017, 19ffvelrnd 5556 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑌𝑤 # 𝐶}) → (𝐺𝑧) ∈ 𝑋)
2116, 20ffvelrnd 5556 . . . . . 6 ((𝜑𝑧 ∈ {𝑤𝑌𝑤 # 𝐶}) → (𝐹‘(𝐺𝑧)) ∈ ℂ)
225, 10, 11dvbss 12823 . . . . . . . . . 10 (𝜑 → dom (𝑇 D 𝐺) ⊆ 𝑌)
23 cnex 7744 . . . . . . . . . . . . . 14 ℂ ∈ V
2423a1i 9 . . . . . . . . . . . . 13 (𝜑 → ℂ ∈ V)
2524, 5ssexd 4068 . . . . . . . . . . . . 13 (𝜑𝑇 ∈ V)
26 elpm2r 6560 . . . . . . . . . . . . 13 (((ℂ ∈ V ∧ 𝑇 ∈ V) ∧ (𝐺:𝑌⟶ℂ ∧ 𝑌𝑇)) → 𝐺 ∈ (ℂ ↑pm 𝑇))
2724, 25, 10, 11, 26syl22anc 1217 . . . . . . . . . . . 12 (𝜑𝐺 ∈ (ℂ ↑pm 𝑇))
28 reldvg 12817 . . . . . . . . . . . 12 ((𝑇 ⊆ ℂ ∧ 𝐺 ∈ (ℂ ↑pm 𝑇)) → Rel (𝑇 D 𝐺))
295, 27, 28syl2anc 408 . . . . . . . . . . 11 (𝜑 → Rel (𝑇 D 𝐺))
30 releldm 4774 . . . . . . . . . . 11 ((Rel (𝑇 D 𝐺) ∧ 𝐶(𝑇 D 𝐺)𝐿) → 𝐶 ∈ dom (𝑇 D 𝐺))
3129, 1, 30syl2anc 408 . . . . . . . . . 10 (𝜑𝐶 ∈ dom (𝑇 D 𝐺))
3222, 31sseldd 3098 . . . . . . . . 9 (𝜑𝐶𝑌)
3332adantr 274 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑌𝑤 # 𝐶}) → 𝐶𝑌)
3417, 33ffvelrnd 5556 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑌𝑤 # 𝐶}) → (𝐺𝐶) ∈ 𝑋)
3516, 34ffvelrnd 5556 . . . . . 6 ((𝜑𝑧 ∈ {𝑤𝑌𝑤 # 𝐶}) → (𝐹‘(𝐺𝐶)) ∈ ℂ)
3621, 35subcld 8073 . . . . 5 ((𝜑𝑧 ∈ {𝑤𝑌𝑤 # 𝐶}) → ((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) ∈ ℂ)
3710adantr 274 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑌𝑤 # 𝐶}) → 𝐺:𝑌⟶ℂ)
3837, 19ffvelrnd 5556 . . . . . 6 ((𝜑𝑧 ∈ {𝑤𝑌𝑤 # 𝐶}) → (𝐺𝑧) ∈ ℂ)
3937, 33ffvelrnd 5556 . . . . . 6 ((𝜑𝑧 ∈ {𝑤𝑌𝑤 # 𝐶}) → (𝐺𝐶) ∈ ℂ)
4038, 39subcld 8073 . . . . 5 ((𝜑𝑧 ∈ {𝑤𝑌𝑤 # 𝐶}) → ((𝐺𝑧) − (𝐺𝐶)) ∈ ℂ)
419adantr 274 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑌𝑤 # 𝐶}) → 𝑋 ⊆ ℂ)
4241, 20sseldd 3098 . . . . . 6 ((𝜑𝑧 ∈ {𝑤𝑌𝑤 # 𝐶}) → (𝐺𝑧) ∈ ℂ)
4341, 34sseldd 3098 . . . . . 6 ((𝜑𝑧 ∈ {𝑤𝑌𝑤 # 𝐶}) → (𝐺𝐶) ∈ ℂ)
44 breq1 3932 . . . . . . . . . 10 (𝑤 = 𝑧 → (𝑤 # 𝐶𝑧 # 𝐶))
4544elrab 2840 . . . . . . . . 9 (𝑧 ∈ {𝑤𝑌𝑤 # 𝐶} ↔ (𝑧𝑌𝑧 # 𝐶))
4645simprbi 273 . . . . . . . 8 (𝑧 ∈ {𝑤𝑌𝑤 # 𝐶} → 𝑧 # 𝐶)
4746adantl 275 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑌𝑤 # 𝐶}) → 𝑧 # 𝐶)
48 breq1 3932 . . . . . . . . 9 (𝑢 = 𝑧 → (𝑢 # 𝐶𝑧 # 𝐶))
49 fveq2 5421 . . . . . . . . . 10 (𝑢 = 𝑧 → (𝐺𝑢) = (𝐺𝑧))
5049breq1d 3939 . . . . . . . . 9 (𝑢 = 𝑧 → ((𝐺𝑢) # (𝐺𝐶) ↔ (𝐺𝑧) # (𝐺𝐶)))
5148, 50imbi12d 233 . . . . . . . 8 (𝑢 = 𝑧 → ((𝑢 # 𝐶 → (𝐺𝑢) # (𝐺𝐶)) ↔ (𝑧 # 𝐶 → (𝐺𝑧) # (𝐺𝐶))))
52 dvcoap.gap . . . . . . . . 9 (𝜑 → ∀𝑢𝑌 (𝑢 # 𝐶 → (𝐺𝑢) # (𝐺𝐶)))
5352adantr 274 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑌𝑤 # 𝐶}) → ∀𝑢𝑌 (𝑢 # 𝐶 → (𝐺𝑢) # (𝐺𝐶)))
5451, 53, 19rspcdva 2794 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑌𝑤 # 𝐶}) → (𝑧 # 𝐶 → (𝐺𝑧) # (𝐺𝐶)))
5547, 54mpd 13 . . . . . 6 ((𝜑𝑧 ∈ {𝑤𝑌𝑤 # 𝐶}) → (𝐺𝑧) # (𝐺𝐶))
5642, 43, 55subap0d 8406 . . . . 5 ((𝜑𝑧 ∈ {𝑤𝑌𝑤 # 𝐶}) → ((𝐺𝑧) − (𝐺𝐶)) # 0)
5736, 40, 56divclapd 8550 . . . 4 ((𝜑𝑧 ∈ {𝑤𝑌𝑤 # 𝐶}) → (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))) ∈ ℂ)
5811, 5sstrd 3107 . . . . 5 (𝜑𝑌 ⊆ ℂ)
5910, 58, 32dvlemap 12818 . . . 4 ((𝜑𝑧 ∈ {𝑤𝑌𝑤 # 𝐶}) → (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)) ∈ ℂ)
60 ssidd 3118 . . . 4 (𝜑 → ℂ ⊆ ℂ)
613cntoptopon 12701 . . . . . 6 𝐽 ∈ (TopOn‘ℂ)
62 txtopon 12431 . . . . . 6 ((𝐽 ∈ (TopOn‘ℂ) ∧ 𝐽 ∈ (TopOn‘ℂ)) → (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ × ℂ)))
6361, 61, 62mp2an 422 . . . . 5 (𝐽 ×t 𝐽) ∈ (TopOn‘(ℂ × ℂ))
6463toponrestid 12188 . . . 4 (𝐽 ×t 𝐽) = ((𝐽 ×t 𝐽) ↾t (ℂ × ℂ))
65 breq1 3932 . . . . . 6 (𝑤 = (𝐺𝑧) → (𝑤 # (𝐺𝐶) ↔ (𝐺𝑧) # (𝐺𝐶)))
6665, 20, 55elrabd 2842 . . . . 5 ((𝜑𝑧 ∈ {𝑤𝑌𝑤 # 𝐶}) → (𝐺𝑧) ∈ {𝑤𝑋𝑤 # (𝐺𝐶)})
6715adantr 274 . . . . . . . 8 ((𝜑𝑦 ∈ {𝑤𝑋𝑤 # (𝐺𝐶)}) → 𝐹:𝑋⟶ℂ)
68 elrabi 2837 . . . . . . . . 9 (𝑦 ∈ {𝑤𝑋𝑤 # (𝐺𝐶)} → 𝑦𝑋)
6968adantl 275 . . . . . . . 8 ((𝜑𝑦 ∈ {𝑤𝑋𝑤 # (𝐺𝐶)}) → 𝑦𝑋)
7067, 69ffvelrnd 5556 . . . . . . 7 ((𝜑𝑦 ∈ {𝑤𝑋𝑤 # (𝐺𝐶)}) → (𝐹𝑦) ∈ ℂ)
716adantr 274 . . . . . . . . 9 ((𝜑𝑦 ∈ {𝑤𝑋𝑤 # (𝐺𝐶)}) → 𝐺:𝑌𝑋)
7232adantr 274 . . . . . . . . 9 ((𝜑𝑦 ∈ {𝑤𝑋𝑤 # (𝐺𝐶)}) → 𝐶𝑌)
7371, 72ffvelrnd 5556 . . . . . . . 8 ((𝜑𝑦 ∈ {𝑤𝑋𝑤 # (𝐺𝐶)}) → (𝐺𝐶) ∈ 𝑋)
7467, 73ffvelrnd 5556 . . . . . . 7 ((𝜑𝑦 ∈ {𝑤𝑋𝑤 # (𝐺𝐶)}) → (𝐹‘(𝐺𝐶)) ∈ ℂ)
7570, 74subcld 8073 . . . . . 6 ((𝜑𝑦 ∈ {𝑤𝑋𝑤 # (𝐺𝐶)}) → ((𝐹𝑦) − (𝐹‘(𝐺𝐶))) ∈ ℂ)
769adantr 274 . . . . . . . 8 ((𝜑𝑦 ∈ {𝑤𝑋𝑤 # (𝐺𝐶)}) → 𝑋 ⊆ ℂ)
7776, 69sseldd 3098 . . . . . . 7 ((𝜑𝑦 ∈ {𝑤𝑋𝑤 # (𝐺𝐶)}) → 𝑦 ∈ ℂ)
7876, 73sseldd 3098 . . . . . . 7 ((𝜑𝑦 ∈ {𝑤𝑋𝑤 # (𝐺𝐶)}) → (𝐺𝐶) ∈ ℂ)
7977, 78subcld 8073 . . . . . 6 ((𝜑𝑦 ∈ {𝑤𝑋𝑤 # (𝐺𝐶)}) → (𝑦 − (𝐺𝐶)) ∈ ℂ)
80 breq1 3932 . . . . . . . . . 10 (𝑤 = 𝑦 → (𝑤 # (𝐺𝐶) ↔ 𝑦 # (𝐺𝐶)))
8180elrab 2840 . . . . . . . . 9 (𝑦 ∈ {𝑤𝑋𝑤 # (𝐺𝐶)} ↔ (𝑦𝑋𝑦 # (𝐺𝐶)))
8281simprbi 273 . . . . . . . 8 (𝑦 ∈ {𝑤𝑋𝑤 # (𝐺𝐶)} → 𝑦 # (𝐺𝐶))
8382adantl 275 . . . . . . 7 ((𝜑𝑦 ∈ {𝑤𝑋𝑤 # (𝐺𝐶)}) → 𝑦 # (𝐺𝐶))
8477, 78, 83subap0d 8406 . . . . . 6 ((𝜑𝑦 ∈ {𝑤𝑋𝑤 # (𝐺𝐶)}) → (𝑦 − (𝐺𝐶)) # 0)
8575, 79, 84divclapd 8550 . . . . 5 ((𝜑𝑦 ∈ {𝑤𝑋𝑤 # (𝐺𝐶)}) → (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))) ∈ ℂ)
86 limcresi 12804 . . . . . . 7 (𝐺 lim 𝐶) ⊆ ((𝐺 ↾ {𝑤𝑌𝑤 # 𝐶}) lim 𝐶)
876feqmptd 5474 . . . . . . . . . 10 (𝜑𝐺 = (𝑧𝑌 ↦ (𝐺𝑧)))
8887reseq1d 4818 . . . . . . . . 9 (𝜑 → (𝐺 ↾ {𝑤𝑌𝑤 # 𝐶}) = ((𝑧𝑌 ↦ (𝐺𝑧)) ↾ {𝑤𝑌𝑤 # 𝐶}))
89 ssrab2 3182 . . . . . . . . . 10 {𝑤𝑌𝑤 # 𝐶} ⊆ 𝑌
90 resmpt 4867 . . . . . . . . . 10 ({𝑤𝑌𝑤 # 𝐶} ⊆ 𝑌 → ((𝑧𝑌 ↦ (𝐺𝑧)) ↾ {𝑤𝑌𝑤 # 𝐶}) = (𝑧 ∈ {𝑤𝑌𝑤 # 𝐶} ↦ (𝐺𝑧)))
9189, 90ax-mp 5 . . . . . . . . 9 ((𝑧𝑌 ↦ (𝐺𝑧)) ↾ {𝑤𝑌𝑤 # 𝐶}) = (𝑧 ∈ {𝑤𝑌𝑤 # 𝐶} ↦ (𝐺𝑧))
9288, 91syl6eq 2188 . . . . . . . 8 (𝜑 → (𝐺 ↾ {𝑤𝑌𝑤 # 𝐶}) = (𝑧 ∈ {𝑤𝑌𝑤 # 𝐶} ↦ (𝐺𝑧)))
9392oveq1d 5789 . . . . . . 7 (𝜑 → ((𝐺 ↾ {𝑤𝑌𝑤 # 𝐶}) lim 𝐶) = ((𝑧 ∈ {𝑤𝑌𝑤 # 𝐶} ↦ (𝐺𝑧)) lim 𝐶))
9486, 93sseqtrid 3147 . . . . . 6 (𝜑 → (𝐺 lim 𝐶) ⊆ ((𝑧 ∈ {𝑤𝑌𝑤 # 𝐶} ↦ (𝐺𝑧)) lim 𝐶))
95 eqid 2139 . . . . . . . . . 10 (𝐽t 𝑌) = (𝐽t 𝑌)
9695, 3dvcnp2cntop 12832 . . . . . . . . 9 (((𝑇 ⊆ ℂ ∧ 𝐺:𝑌⟶ℂ ∧ 𝑌𝑇) ∧ 𝐶 ∈ dom (𝑇 D 𝐺)) → 𝐺 ∈ (((𝐽t 𝑌) CnP 𝐽)‘𝐶))
975, 10, 11, 31, 96syl31anc 1219 . . . . . . . 8 (𝜑𝐺 ∈ (((𝐽t 𝑌) CnP 𝐽)‘𝐶))
983, 95cnplimccntop 12808 . . . . . . . . 9 ((𝑌 ⊆ ℂ ∧ 𝐶𝑌) → (𝐺 ∈ (((𝐽t 𝑌) CnP 𝐽)‘𝐶) ↔ (𝐺:𝑌⟶ℂ ∧ (𝐺𝐶) ∈ (𝐺 lim 𝐶))))
9958, 32, 98syl2anc 408 . . . . . . . 8 (𝜑 → (𝐺 ∈ (((𝐽t 𝑌) CnP 𝐽)‘𝐶) ↔ (𝐺:𝑌⟶ℂ ∧ (𝐺𝐶) ∈ (𝐺 lim 𝐶))))
10097, 99mpbid 146 . . . . . . 7 (𝜑 → (𝐺:𝑌⟶ℂ ∧ (𝐺𝐶) ∈ (𝐺 lim 𝐶)))
101100simprd 113 . . . . . 6 (𝜑 → (𝐺𝐶) ∈ (𝐺 lim 𝐶))
10294, 101sseldd 3098 . . . . 5 (𝜑 → (𝐺𝐶) ∈ ((𝑧 ∈ {𝑤𝑌𝑤 # 𝐶} ↦ (𝐺𝑧)) lim 𝐶))
103 dvco.bf . . . . . . 7 (𝜑 → (𝐺𝐶)(𝑆 D 𝐹)𝐾)
104 eqid 2139 . . . . . . . 8 (𝐽t 𝑆) = (𝐽t 𝑆)
105 eqid 2139 . . . . . . . 8 (𝑦 ∈ {𝑤𝑋𝑤 # (𝐺𝐶)} ↦ (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) = (𝑦 ∈ {𝑤𝑋𝑤 # (𝐺𝐶)} ↦ (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))))
106104, 3, 105, 8, 15, 7eldvap 12820 . . . . . . 7 (𝜑 → ((𝐺𝐶)(𝑆 D 𝐹)𝐾 ↔ ((𝐺𝐶) ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑦 ∈ {𝑤𝑋𝑤 # (𝐺𝐶)} ↦ (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) lim (𝐺𝐶)))))
107103, 106mpbid 146 . . . . . 6 (𝜑 → ((𝐺𝐶) ∈ ((int‘(𝐽t 𝑆))‘𝑋) ∧ 𝐾 ∈ ((𝑦 ∈ {𝑤𝑋𝑤 # (𝐺𝐶)} ↦ (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) lim (𝐺𝐶))))
108107simprd 113 . . . . 5 (𝜑𝐾 ∈ ((𝑦 ∈ {𝑤𝑋𝑤 # (𝐺𝐶)} ↦ (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶)))) lim (𝐺𝐶)))
109 fveq2 5421 . . . . . . 7 (𝑦 = (𝐺𝑧) → (𝐹𝑦) = (𝐹‘(𝐺𝑧)))
110109oveq1d 5789 . . . . . 6 (𝑦 = (𝐺𝑧) → ((𝐹𝑦) − (𝐹‘(𝐺𝐶))) = ((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))))
111 oveq1 5781 . . . . . 6 (𝑦 = (𝐺𝑧) → (𝑦 − (𝐺𝐶)) = ((𝐺𝑧) − (𝐺𝐶)))
112110, 111oveq12d 5792 . . . . 5 (𝑦 = (𝐺𝑧) → (((𝐹𝑦) − (𝐹‘(𝐺𝐶))) / (𝑦 − (𝐺𝐶))) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))))
11366, 85, 102, 108, 112limccoap 12816 . . . 4 (𝜑𝐾 ∈ ((𝑧 ∈ {𝑤𝑌𝑤 # 𝐶} ↦ (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶)))) lim 𝐶))
11413simprd 113 . . . 4 (𝜑𝐿 ∈ ((𝑧 ∈ {𝑤𝑌𝑤 # 𝐶} ↦ (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) lim 𝐶))
1153mulcncntop 12723 . . . . 5 · ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
1168, 15, 7dvcl 12821 . . . . . . 7 ((𝜑 ∧ (𝐺𝐶)(𝑆 D 𝐹)𝐾) → 𝐾 ∈ ℂ)
117103, 116mpdan 417 . . . . . 6 (𝜑𝐾 ∈ ℂ)
1185, 10, 11dvcl 12821 . . . . . . 7 ((𝜑𝐶(𝑇 D 𝐺)𝐿) → 𝐿 ∈ ℂ)
1191, 118mpdan 417 . . . . . 6 (𝜑𝐿 ∈ ℂ)
120117, 119opelxpd 4572 . . . . 5 (𝜑 → ⟨𝐾, 𝐿⟩ ∈ (ℂ × ℂ))
12163toponunii 12184 . . . . . 6 (ℂ × ℂ) = (𝐽 ×t 𝐽)
122121cncnpi 12397 . . . . 5 (( · ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ∧ ⟨𝐾, 𝐿⟩ ∈ (ℂ × ℂ)) → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐾, 𝐿⟩))
123115, 120, 122sylancr 410 . . . 4 (𝜑 → · ∈ (((𝐽 ×t 𝐽) CnP 𝐽)‘⟨𝐾, 𝐿⟩))
12457, 59, 60, 60, 3, 64, 113, 114, 123limccnp2cntop 12815 . . 3 (𝜑 → (𝐾 · 𝐿) ∈ ((𝑧 ∈ {𝑤𝑌𝑤 # 𝐶} ↦ ((((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))) lim 𝐶))
12542, 43subcld 8073 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑌𝑤 # 𝐶}) → ((𝐺𝑧) − (𝐺𝐶)) ∈ ℂ)
12658adantr 274 . . . . . . . . 9 ((𝜑𝑧 ∈ {𝑤𝑌𝑤 # 𝐶}) → 𝑌 ⊆ ℂ)
127126, 19sseldd 3098 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑌𝑤 # 𝐶}) → 𝑧 ∈ ℂ)
128126, 33sseldd 3098 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑌𝑤 # 𝐶}) → 𝐶 ∈ ℂ)
129127, 128subcld 8073 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑌𝑤 # 𝐶}) → (𝑧𝐶) ∈ ℂ)
130127, 128, 47subap0d 8406 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑌𝑤 # 𝐶}) → (𝑧𝐶) # 0)
13136, 125, 129, 56, 130dmdcanap2d 8581 . . . . . 6 ((𝜑𝑧 ∈ {𝑤𝑌𝑤 # 𝐶}) → ((((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶)))
132 fvco3 5492 . . . . . . . . 9 ((𝐺:𝑌𝑋𝑧𝑌) → ((𝐹𝐺)‘𝑧) = (𝐹‘(𝐺𝑧)))
13317, 19, 132syl2anc 408 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑌𝑤 # 𝐶}) → ((𝐹𝐺)‘𝑧) = (𝐹‘(𝐺𝑧)))
134 fvco3 5492 . . . . . . . . 9 ((𝐺:𝑌𝑋𝐶𝑌) → ((𝐹𝐺)‘𝐶) = (𝐹‘(𝐺𝐶)))
13517, 33, 134syl2anc 408 . . . . . . . 8 ((𝜑𝑧 ∈ {𝑤𝑌𝑤 # 𝐶}) → ((𝐹𝐺)‘𝐶) = (𝐹‘(𝐺𝐶)))
136133, 135oveq12d 5792 . . . . . . 7 ((𝜑𝑧 ∈ {𝑤𝑌𝑤 # 𝐶}) → (((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) = ((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))))
137136oveq1d 5789 . . . . . 6 ((𝜑𝑧 ∈ {𝑤𝑌𝑤 # 𝐶}) → ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶)) = (((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / (𝑧𝐶)))
138131, 137eqtr4d 2175 . . . . 5 ((𝜑𝑧 ∈ {𝑤𝑌𝑤 # 𝐶}) → ((((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶))) = ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶)))
139138mpteq2dva 4018 . . . 4 (𝜑 → (𝑧 ∈ {𝑤𝑌𝑤 # 𝐶} ↦ ((((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))) = (𝑧 ∈ {𝑤𝑌𝑤 # 𝐶} ↦ ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶))))
140139oveq1d 5789 . . 3 (𝜑 → ((𝑧 ∈ {𝑤𝑌𝑤 # 𝐶} ↦ ((((𝐹‘(𝐺𝑧)) − (𝐹‘(𝐺𝐶))) / ((𝐺𝑧) − (𝐺𝐶))) · (((𝐺𝑧) − (𝐺𝐶)) / (𝑧𝐶)))) lim 𝐶) = ((𝑧 ∈ {𝑤𝑌𝑤 # 𝐶} ↦ ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶))
141124, 140eleqtrd 2218 . 2 (𝜑 → (𝐾 · 𝐿) ∈ ((𝑧 ∈ {𝑤𝑌𝑤 # 𝐶} ↦ ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶))
142 eqid 2139 . . 3 (𝑧 ∈ {𝑤𝑌𝑤 # 𝐶} ↦ ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶))) = (𝑧 ∈ {𝑤𝑌𝑤 # 𝐶} ↦ ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶)))
143 fco 5288 . . . 4 ((𝐹:𝑋⟶ℂ ∧ 𝐺:𝑌𝑋) → (𝐹𝐺):𝑌⟶ℂ)
14415, 6, 143syl2anc 408 . . 3 (𝜑 → (𝐹𝐺):𝑌⟶ℂ)
1452, 3, 142, 5, 144, 11eldvap 12820 . 2 (𝜑 → (𝐶(𝑇 D (𝐹𝐺))(𝐾 · 𝐿) ↔ (𝐶 ∈ ((int‘(𝐽t 𝑇))‘𝑌) ∧ (𝐾 · 𝐿) ∈ ((𝑧 ∈ {𝑤𝑌𝑤 # 𝐶} ↦ ((((𝐹𝐺)‘𝑧) − ((𝐹𝐺)‘𝐶)) / (𝑧𝐶))) lim 𝐶))))
14614, 141, 145mpbir2and 928 1 (𝜑𝐶(𝑇 D (𝐹𝐺))(𝐾 · 𝐿))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  wral 2416  {crab 2420  Vcvv 2686  wss 3071  cop 3530   class class class wbr 3929  cmpt 3989   × cxp 4537  dom cdm 4539  cres 4541  ccom 4543  Rel wrel 4544  wf 5119  cfv 5123  (class class class)co 5774  pm cpm 6543  cc 7618   · cmul 7625  cmin 7933   # cap 8343   / cdiv 8432  abscabs 10769  t crest 12120  MetOpencmopn 12154  TopOnctopon 12177  intcnt 12262   Cn ccn 12354   CnP ccnp 12355   ×t ctx 12421   lim climc 12792   D cdv 12793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740  ax-addf 7742  ax-mulf 7743
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-map 6544  df-pm 6545  df-sup 6871  df-inf 6872  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-xneg 9559  df-xadd 9560  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-rest 12122  df-topgen 12141  df-psmet 12156  df-xmet 12157  df-met 12158  df-bl 12159  df-mopn 12160  df-top 12165  df-topon 12178  df-bases 12210  df-ntr 12265  df-cn 12357  df-cnp 12358  df-tx 12422  df-cncf 12727  df-limced 12794  df-dvap 12795
This theorem is referenced by:  dvef  12856
  Copyright terms: Public domain W3C validator