ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodfac GIF version

Theorem fprodfac 11607
Description: Factorial using product notation. (Contributed by Scott Fenton, 15-Dec-2017.)
Assertion
Ref Expression
fprodfac (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘)
Distinct variable group:   𝐴,𝑘

Proof of Theorem fprodfac
Dummy variables 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5511 . . 3 (𝑤 = 0 → (!‘𝑤) = (!‘0))
2 oveq2 5877 . . . 4 (𝑤 = 0 → (1...𝑤) = (1...0))
32prodeq1d 11556 . . 3 (𝑤 = 0 → ∏𝑘 ∈ (1...𝑤)𝑘 = ∏𝑘 ∈ (1...0)𝑘)
41, 3eqeq12d 2192 . 2 (𝑤 = 0 → ((!‘𝑤) = ∏𝑘 ∈ (1...𝑤)𝑘 ↔ (!‘0) = ∏𝑘 ∈ (1...0)𝑘))
5 fveq2 5511 . . 3 (𝑤 = 𝑥 → (!‘𝑤) = (!‘𝑥))
6 oveq2 5877 . . . 4 (𝑤 = 𝑥 → (1...𝑤) = (1...𝑥))
76prodeq1d 11556 . . 3 (𝑤 = 𝑥 → ∏𝑘 ∈ (1...𝑤)𝑘 = ∏𝑘 ∈ (1...𝑥)𝑘)
85, 7eqeq12d 2192 . 2 (𝑤 = 𝑥 → ((!‘𝑤) = ∏𝑘 ∈ (1...𝑤)𝑘 ↔ (!‘𝑥) = ∏𝑘 ∈ (1...𝑥)𝑘))
9 fveq2 5511 . . 3 (𝑤 = (𝑥 + 1) → (!‘𝑤) = (!‘(𝑥 + 1)))
10 oveq2 5877 . . . 4 (𝑤 = (𝑥 + 1) → (1...𝑤) = (1...(𝑥 + 1)))
1110prodeq1d 11556 . . 3 (𝑤 = (𝑥 + 1) → ∏𝑘 ∈ (1...𝑤)𝑘 = ∏𝑘 ∈ (1...(𝑥 + 1))𝑘)
129, 11eqeq12d 2192 . 2 (𝑤 = (𝑥 + 1) → ((!‘𝑤) = ∏𝑘 ∈ (1...𝑤)𝑘 ↔ (!‘(𝑥 + 1)) = ∏𝑘 ∈ (1...(𝑥 + 1))𝑘))
13 fveq2 5511 . . 3 (𝑤 = 𝐴 → (!‘𝑤) = (!‘𝐴))
14 oveq2 5877 . . . 4 (𝑤 = 𝐴 → (1...𝑤) = (1...𝐴))
1514prodeq1d 11556 . . 3 (𝑤 = 𝐴 → ∏𝑘 ∈ (1...𝑤)𝑘 = ∏𝑘 ∈ (1...𝐴)𝑘)
1613, 15eqeq12d 2192 . 2 (𝑤 = 𝐴 → ((!‘𝑤) = ∏𝑘 ∈ (1...𝑤)𝑘 ↔ (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘))
17 prod0 11577 . . 3 𝑘 ∈ ∅ 𝑘 = 1
18 fz10 10032 . . . 4 (1...0) = ∅
1918prodeq1i 11553 . . 3 𝑘 ∈ (1...0)𝑘 = ∏𝑘 ∈ ∅ 𝑘
20 fac0 10692 . . 3 (!‘0) = 1
2117, 19, 203eqtr4ri 2209 . 2 (!‘0) = ∏𝑘 ∈ (1...0)𝑘
22 elnn0 9167 . . 3 (𝑥 ∈ ℕ0 ↔ (𝑥 ∈ ℕ ∨ 𝑥 = 0))
23 simpr 110 . . . . . . 7 ((𝑥 ∈ ℕ ∧ (!‘𝑥) = ∏𝑘 ∈ (1...𝑥)𝑘) → (!‘𝑥) = ∏𝑘 ∈ (1...𝑥)𝑘)
2423oveq1d 5884 . . . . . 6 ((𝑥 ∈ ℕ ∧ (!‘𝑥) = ∏𝑘 ∈ (1...𝑥)𝑘) → ((!‘𝑥) · (𝑥 + 1)) = (∏𝑘 ∈ (1...𝑥)𝑘 · (𝑥 + 1)))
25 nnnn0 9172 . . . . . . . . 9 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
26 facp1 10694 . . . . . . . . 9 (𝑥 ∈ ℕ0 → (!‘(𝑥 + 1)) = ((!‘𝑥) · (𝑥 + 1)))
2725, 26syl 14 . . . . . . . 8 (𝑥 ∈ ℕ → (!‘(𝑥 + 1)) = ((!‘𝑥) · (𝑥 + 1)))
28 elnnuz 9553 . . . . . . . . . 10 (𝑥 ∈ ℕ ↔ 𝑥 ∈ (ℤ‘1))
2928biimpi 120 . . . . . . . . 9 (𝑥 ∈ ℕ → 𝑥 ∈ (ℤ‘1))
30 elfzelz 10011 . . . . . . . . . . 11 (𝑘 ∈ (1...(𝑥 + 1)) → 𝑘 ∈ ℤ)
3130zcnd 9365 . . . . . . . . . 10 (𝑘 ∈ (1...(𝑥 + 1)) → 𝑘 ∈ ℂ)
3231adantl 277 . . . . . . . . 9 ((𝑥 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑥 + 1))) → 𝑘 ∈ ℂ)
33 id 19 . . . . . . . . 9 (𝑘 = (𝑥 + 1) → 𝑘 = (𝑥 + 1))
3429, 32, 33fprodp1 11592 . . . . . . . 8 (𝑥 ∈ ℕ → ∏𝑘 ∈ (1...(𝑥 + 1))𝑘 = (∏𝑘 ∈ (1...𝑥)𝑘 · (𝑥 + 1)))
3527, 34eqeq12d 2192 . . . . . . 7 (𝑥 ∈ ℕ → ((!‘(𝑥 + 1)) = ∏𝑘 ∈ (1...(𝑥 + 1))𝑘 ↔ ((!‘𝑥) · (𝑥 + 1)) = (∏𝑘 ∈ (1...𝑥)𝑘 · (𝑥 + 1))))
3635adantr 276 . . . . . 6 ((𝑥 ∈ ℕ ∧ (!‘𝑥) = ∏𝑘 ∈ (1...𝑥)𝑘) → ((!‘(𝑥 + 1)) = ∏𝑘 ∈ (1...(𝑥 + 1))𝑘 ↔ ((!‘𝑥) · (𝑥 + 1)) = (∏𝑘 ∈ (1...𝑥)𝑘 · (𝑥 + 1))))
3724, 36mpbird 167 . . . . 5 ((𝑥 ∈ ℕ ∧ (!‘𝑥) = ∏𝑘 ∈ (1...𝑥)𝑘) → (!‘(𝑥 + 1)) = ∏𝑘 ∈ (1...(𝑥 + 1))𝑘)
3837ex 115 . . . 4 (𝑥 ∈ ℕ → ((!‘𝑥) = ∏𝑘 ∈ (1...𝑥)𝑘 → (!‘(𝑥 + 1)) = ∏𝑘 ∈ (1...(𝑥 + 1))𝑘))
39 1zzd 9269 . . . . . . 7 (𝑥 = 0 → 1 ∈ ℤ)
40 1cnd 7964 . . . . . . 7 (𝑥 = 0 → 1 ∈ ℂ)
41 id 19 . . . . . . . 8 (𝑘 = 1 → 𝑘 = 1)
4241fprod1 11586 . . . . . . 7 ((1 ∈ ℤ ∧ 1 ∈ ℂ) → ∏𝑘 ∈ (1...1)𝑘 = 1)
4339, 40, 42syl2anc 411 . . . . . 6 (𝑥 = 0 → ∏𝑘 ∈ (1...1)𝑘 = 1)
44 oveq1 5876 . . . . . . . . 9 (𝑥 = 0 → (𝑥 + 1) = (0 + 1))
45 0p1e1 9022 . . . . . . . . 9 (0 + 1) = 1
4644, 45eqtrdi 2226 . . . . . . . 8 (𝑥 = 0 → (𝑥 + 1) = 1)
4746oveq2d 5885 . . . . . . 7 (𝑥 = 0 → (1...(𝑥 + 1)) = (1...1))
4847prodeq1d 11556 . . . . . 6 (𝑥 = 0 → ∏𝑘 ∈ (1...(𝑥 + 1))𝑘 = ∏𝑘 ∈ (1...1)𝑘)
49 fv0p1e1 9023 . . . . . . 7 (𝑥 = 0 → (!‘(𝑥 + 1)) = (!‘1))
50 fac1 10693 . . . . . . 7 (!‘1) = 1
5149, 50eqtrdi 2226 . . . . . 6 (𝑥 = 0 → (!‘(𝑥 + 1)) = 1)
5243, 48, 513eqtr4rd 2221 . . . . 5 (𝑥 = 0 → (!‘(𝑥 + 1)) = ∏𝑘 ∈ (1...(𝑥 + 1))𝑘)
5352a1d 22 . . . 4 (𝑥 = 0 → ((!‘𝑥) = ∏𝑘 ∈ (1...𝑥)𝑘 → (!‘(𝑥 + 1)) = ∏𝑘 ∈ (1...(𝑥 + 1))𝑘))
5438, 53jaoi 716 . . 3 ((𝑥 ∈ ℕ ∨ 𝑥 = 0) → ((!‘𝑥) = ∏𝑘 ∈ (1...𝑥)𝑘 → (!‘(𝑥 + 1)) = ∏𝑘 ∈ (1...(𝑥 + 1))𝑘))
5522, 54sylbi 121 . 2 (𝑥 ∈ ℕ0 → ((!‘𝑥) = ∏𝑘 ∈ (1...𝑥)𝑘 → (!‘(𝑥 + 1)) = ∏𝑘 ∈ (1...(𝑥 + 1))𝑘))
564, 8, 12, 16, 21, 55nn0ind 9356 1 (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 708   = wceq 1353  wcel 2148  c0 3422  cfv 5212  (class class class)co 5869  cc 7800  0cc0 7802  1c1 7803   + caddc 7805   · cmul 7807  cn 8908  0cn0 9165  cz 9242  cuz 9517  ...cfz 9995  !cfa 10689  cprod 11542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-fac 10690  df-ihash 10740  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-proddc 11543
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator