ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodfac GIF version

Theorem fprodfac 12011
Description: Factorial using product notation. (Contributed by Scott Fenton, 15-Dec-2017.)
Assertion
Ref Expression
fprodfac (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘)
Distinct variable group:   𝐴,𝑘

Proof of Theorem fprodfac
Dummy variables 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5594 . . 3 (𝑤 = 0 → (!‘𝑤) = (!‘0))
2 oveq2 5970 . . . 4 (𝑤 = 0 → (1...𝑤) = (1...0))
32prodeq1d 11960 . . 3 (𝑤 = 0 → ∏𝑘 ∈ (1...𝑤)𝑘 = ∏𝑘 ∈ (1...0)𝑘)
41, 3eqeq12d 2221 . 2 (𝑤 = 0 → ((!‘𝑤) = ∏𝑘 ∈ (1...𝑤)𝑘 ↔ (!‘0) = ∏𝑘 ∈ (1...0)𝑘))
5 fveq2 5594 . . 3 (𝑤 = 𝑥 → (!‘𝑤) = (!‘𝑥))
6 oveq2 5970 . . . 4 (𝑤 = 𝑥 → (1...𝑤) = (1...𝑥))
76prodeq1d 11960 . . 3 (𝑤 = 𝑥 → ∏𝑘 ∈ (1...𝑤)𝑘 = ∏𝑘 ∈ (1...𝑥)𝑘)
85, 7eqeq12d 2221 . 2 (𝑤 = 𝑥 → ((!‘𝑤) = ∏𝑘 ∈ (1...𝑤)𝑘 ↔ (!‘𝑥) = ∏𝑘 ∈ (1...𝑥)𝑘))
9 fveq2 5594 . . 3 (𝑤 = (𝑥 + 1) → (!‘𝑤) = (!‘(𝑥 + 1)))
10 oveq2 5970 . . . 4 (𝑤 = (𝑥 + 1) → (1...𝑤) = (1...(𝑥 + 1)))
1110prodeq1d 11960 . . 3 (𝑤 = (𝑥 + 1) → ∏𝑘 ∈ (1...𝑤)𝑘 = ∏𝑘 ∈ (1...(𝑥 + 1))𝑘)
129, 11eqeq12d 2221 . 2 (𝑤 = (𝑥 + 1) → ((!‘𝑤) = ∏𝑘 ∈ (1...𝑤)𝑘 ↔ (!‘(𝑥 + 1)) = ∏𝑘 ∈ (1...(𝑥 + 1))𝑘))
13 fveq2 5594 . . 3 (𝑤 = 𝐴 → (!‘𝑤) = (!‘𝐴))
14 oveq2 5970 . . . 4 (𝑤 = 𝐴 → (1...𝑤) = (1...𝐴))
1514prodeq1d 11960 . . 3 (𝑤 = 𝐴 → ∏𝑘 ∈ (1...𝑤)𝑘 = ∏𝑘 ∈ (1...𝐴)𝑘)
1613, 15eqeq12d 2221 . 2 (𝑤 = 𝐴 → ((!‘𝑤) = ∏𝑘 ∈ (1...𝑤)𝑘 ↔ (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘))
17 prod0 11981 . . 3 𝑘 ∈ ∅ 𝑘 = 1
18 fz10 10198 . . . 4 (1...0) = ∅
1918prodeq1i 11957 . . 3 𝑘 ∈ (1...0)𝑘 = ∏𝑘 ∈ ∅ 𝑘
20 fac0 10905 . . 3 (!‘0) = 1
2117, 19, 203eqtr4ri 2238 . 2 (!‘0) = ∏𝑘 ∈ (1...0)𝑘
22 elnn0 9327 . . 3 (𝑥 ∈ ℕ0 ↔ (𝑥 ∈ ℕ ∨ 𝑥 = 0))
23 simpr 110 . . . . . . 7 ((𝑥 ∈ ℕ ∧ (!‘𝑥) = ∏𝑘 ∈ (1...𝑥)𝑘) → (!‘𝑥) = ∏𝑘 ∈ (1...𝑥)𝑘)
2423oveq1d 5977 . . . . . 6 ((𝑥 ∈ ℕ ∧ (!‘𝑥) = ∏𝑘 ∈ (1...𝑥)𝑘) → ((!‘𝑥) · (𝑥 + 1)) = (∏𝑘 ∈ (1...𝑥)𝑘 · (𝑥 + 1)))
25 nnnn0 9332 . . . . . . . . 9 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
26 facp1 10907 . . . . . . . . 9 (𝑥 ∈ ℕ0 → (!‘(𝑥 + 1)) = ((!‘𝑥) · (𝑥 + 1)))
2725, 26syl 14 . . . . . . . 8 (𝑥 ∈ ℕ → (!‘(𝑥 + 1)) = ((!‘𝑥) · (𝑥 + 1)))
28 elnnuz 9715 . . . . . . . . . 10 (𝑥 ∈ ℕ ↔ 𝑥 ∈ (ℤ‘1))
2928biimpi 120 . . . . . . . . 9 (𝑥 ∈ ℕ → 𝑥 ∈ (ℤ‘1))
30 elfzelz 10177 . . . . . . . . . . 11 (𝑘 ∈ (1...(𝑥 + 1)) → 𝑘 ∈ ℤ)
3130zcnd 9526 . . . . . . . . . 10 (𝑘 ∈ (1...(𝑥 + 1)) → 𝑘 ∈ ℂ)
3231adantl 277 . . . . . . . . 9 ((𝑥 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑥 + 1))) → 𝑘 ∈ ℂ)
33 id 19 . . . . . . . . 9 (𝑘 = (𝑥 + 1) → 𝑘 = (𝑥 + 1))
3429, 32, 33fprodp1 11996 . . . . . . . 8 (𝑥 ∈ ℕ → ∏𝑘 ∈ (1...(𝑥 + 1))𝑘 = (∏𝑘 ∈ (1...𝑥)𝑘 · (𝑥 + 1)))
3527, 34eqeq12d 2221 . . . . . . 7 (𝑥 ∈ ℕ → ((!‘(𝑥 + 1)) = ∏𝑘 ∈ (1...(𝑥 + 1))𝑘 ↔ ((!‘𝑥) · (𝑥 + 1)) = (∏𝑘 ∈ (1...𝑥)𝑘 · (𝑥 + 1))))
3635adantr 276 . . . . . 6 ((𝑥 ∈ ℕ ∧ (!‘𝑥) = ∏𝑘 ∈ (1...𝑥)𝑘) → ((!‘(𝑥 + 1)) = ∏𝑘 ∈ (1...(𝑥 + 1))𝑘 ↔ ((!‘𝑥) · (𝑥 + 1)) = (∏𝑘 ∈ (1...𝑥)𝑘 · (𝑥 + 1))))
3724, 36mpbird 167 . . . . 5 ((𝑥 ∈ ℕ ∧ (!‘𝑥) = ∏𝑘 ∈ (1...𝑥)𝑘) → (!‘(𝑥 + 1)) = ∏𝑘 ∈ (1...(𝑥 + 1))𝑘)
3837ex 115 . . . 4 (𝑥 ∈ ℕ → ((!‘𝑥) = ∏𝑘 ∈ (1...𝑥)𝑘 → (!‘(𝑥 + 1)) = ∏𝑘 ∈ (1...(𝑥 + 1))𝑘))
39 1zzd 9429 . . . . . . 7 (𝑥 = 0 → 1 ∈ ℤ)
40 1cnd 8118 . . . . . . 7 (𝑥 = 0 → 1 ∈ ℂ)
41 id 19 . . . . . . . 8 (𝑘 = 1 → 𝑘 = 1)
4241fprod1 11990 . . . . . . 7 ((1 ∈ ℤ ∧ 1 ∈ ℂ) → ∏𝑘 ∈ (1...1)𝑘 = 1)
4339, 40, 42syl2anc 411 . . . . . 6 (𝑥 = 0 → ∏𝑘 ∈ (1...1)𝑘 = 1)
44 oveq1 5969 . . . . . . . . 9 (𝑥 = 0 → (𝑥 + 1) = (0 + 1))
45 0p1e1 9180 . . . . . . . . 9 (0 + 1) = 1
4644, 45eqtrdi 2255 . . . . . . . 8 (𝑥 = 0 → (𝑥 + 1) = 1)
4746oveq2d 5978 . . . . . . 7 (𝑥 = 0 → (1...(𝑥 + 1)) = (1...1))
4847prodeq1d 11960 . . . . . 6 (𝑥 = 0 → ∏𝑘 ∈ (1...(𝑥 + 1))𝑘 = ∏𝑘 ∈ (1...1)𝑘)
49 fv0p1e1 9181 . . . . . . 7 (𝑥 = 0 → (!‘(𝑥 + 1)) = (!‘1))
50 fac1 10906 . . . . . . 7 (!‘1) = 1
5149, 50eqtrdi 2255 . . . . . 6 (𝑥 = 0 → (!‘(𝑥 + 1)) = 1)
5243, 48, 513eqtr4rd 2250 . . . . 5 (𝑥 = 0 → (!‘(𝑥 + 1)) = ∏𝑘 ∈ (1...(𝑥 + 1))𝑘)
5352a1d 22 . . . 4 (𝑥 = 0 → ((!‘𝑥) = ∏𝑘 ∈ (1...𝑥)𝑘 → (!‘(𝑥 + 1)) = ∏𝑘 ∈ (1...(𝑥 + 1))𝑘))
5438, 53jaoi 718 . . 3 ((𝑥 ∈ ℕ ∨ 𝑥 = 0) → ((!‘𝑥) = ∏𝑘 ∈ (1...𝑥)𝑘 → (!‘(𝑥 + 1)) = ∏𝑘 ∈ (1...(𝑥 + 1))𝑘))
5522, 54sylbi 121 . 2 (𝑥 ∈ ℕ0 → ((!‘𝑥) = ∏𝑘 ∈ (1...𝑥)𝑘 → (!‘(𝑥 + 1)) = ∏𝑘 ∈ (1...(𝑥 + 1))𝑘))
564, 8, 12, 16, 21, 55nn0ind 9517 1 (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wcel 2177  c0 3464  cfv 5285  (class class class)co 5962  cc 7953  0cc0 7955  1c1 7956   + caddc 7958   · cmul 7960  cn 9066  0cn0 9325  cz 9402  cuz 9678  ...cfz 10160  !cfa 10902  cprod 11946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071  ax-pre-mulgt0 8072  ax-pre-mulext 8073  ax-arch 8074  ax-caucvg 8075
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-po 4356  df-iso 4357  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-isom 5294  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-irdg 6474  df-frec 6495  df-1o 6520  df-oadd 6524  df-er 6638  df-en 6846  df-dom 6847  df-fin 6848  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-reap 8678  df-ap 8685  df-div 8776  df-inn 9067  df-2 9125  df-3 9126  df-4 9127  df-n0 9326  df-z 9403  df-uz 9679  df-q 9771  df-rp 9806  df-fz 10161  df-fzo 10295  df-seqfrec 10625  df-exp 10716  df-fac 10903  df-ihash 10953  df-cj 11238  df-re 11239  df-im 11240  df-rsqrt 11394  df-abs 11395  df-clim 11675  df-proddc 11947
This theorem is referenced by:  gausslemma2dlem1  15623  gausslemma2dlem6  15629
  Copyright terms: Public domain W3C validator