ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fprodfac GIF version

Theorem fprodfac 11926
Description: Factorial using product notation. (Contributed by Scott Fenton, 15-Dec-2017.)
Assertion
Ref Expression
fprodfac (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘)
Distinct variable group:   𝐴,𝑘

Proof of Theorem fprodfac
Dummy variables 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5576 . . 3 (𝑤 = 0 → (!‘𝑤) = (!‘0))
2 oveq2 5952 . . . 4 (𝑤 = 0 → (1...𝑤) = (1...0))
32prodeq1d 11875 . . 3 (𝑤 = 0 → ∏𝑘 ∈ (1...𝑤)𝑘 = ∏𝑘 ∈ (1...0)𝑘)
41, 3eqeq12d 2220 . 2 (𝑤 = 0 → ((!‘𝑤) = ∏𝑘 ∈ (1...𝑤)𝑘 ↔ (!‘0) = ∏𝑘 ∈ (1...0)𝑘))
5 fveq2 5576 . . 3 (𝑤 = 𝑥 → (!‘𝑤) = (!‘𝑥))
6 oveq2 5952 . . . 4 (𝑤 = 𝑥 → (1...𝑤) = (1...𝑥))
76prodeq1d 11875 . . 3 (𝑤 = 𝑥 → ∏𝑘 ∈ (1...𝑤)𝑘 = ∏𝑘 ∈ (1...𝑥)𝑘)
85, 7eqeq12d 2220 . 2 (𝑤 = 𝑥 → ((!‘𝑤) = ∏𝑘 ∈ (1...𝑤)𝑘 ↔ (!‘𝑥) = ∏𝑘 ∈ (1...𝑥)𝑘))
9 fveq2 5576 . . 3 (𝑤 = (𝑥 + 1) → (!‘𝑤) = (!‘(𝑥 + 1)))
10 oveq2 5952 . . . 4 (𝑤 = (𝑥 + 1) → (1...𝑤) = (1...(𝑥 + 1)))
1110prodeq1d 11875 . . 3 (𝑤 = (𝑥 + 1) → ∏𝑘 ∈ (1...𝑤)𝑘 = ∏𝑘 ∈ (1...(𝑥 + 1))𝑘)
129, 11eqeq12d 2220 . 2 (𝑤 = (𝑥 + 1) → ((!‘𝑤) = ∏𝑘 ∈ (1...𝑤)𝑘 ↔ (!‘(𝑥 + 1)) = ∏𝑘 ∈ (1...(𝑥 + 1))𝑘))
13 fveq2 5576 . . 3 (𝑤 = 𝐴 → (!‘𝑤) = (!‘𝐴))
14 oveq2 5952 . . . 4 (𝑤 = 𝐴 → (1...𝑤) = (1...𝐴))
1514prodeq1d 11875 . . 3 (𝑤 = 𝐴 → ∏𝑘 ∈ (1...𝑤)𝑘 = ∏𝑘 ∈ (1...𝐴)𝑘)
1613, 15eqeq12d 2220 . 2 (𝑤 = 𝐴 → ((!‘𝑤) = ∏𝑘 ∈ (1...𝑤)𝑘 ↔ (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘))
17 prod0 11896 . . 3 𝑘 ∈ ∅ 𝑘 = 1
18 fz10 10168 . . . 4 (1...0) = ∅
1918prodeq1i 11872 . . 3 𝑘 ∈ (1...0)𝑘 = ∏𝑘 ∈ ∅ 𝑘
20 fac0 10873 . . 3 (!‘0) = 1
2117, 19, 203eqtr4ri 2237 . 2 (!‘0) = ∏𝑘 ∈ (1...0)𝑘
22 elnn0 9297 . . 3 (𝑥 ∈ ℕ0 ↔ (𝑥 ∈ ℕ ∨ 𝑥 = 0))
23 simpr 110 . . . . . . 7 ((𝑥 ∈ ℕ ∧ (!‘𝑥) = ∏𝑘 ∈ (1...𝑥)𝑘) → (!‘𝑥) = ∏𝑘 ∈ (1...𝑥)𝑘)
2423oveq1d 5959 . . . . . 6 ((𝑥 ∈ ℕ ∧ (!‘𝑥) = ∏𝑘 ∈ (1...𝑥)𝑘) → ((!‘𝑥) · (𝑥 + 1)) = (∏𝑘 ∈ (1...𝑥)𝑘 · (𝑥 + 1)))
25 nnnn0 9302 . . . . . . . . 9 (𝑥 ∈ ℕ → 𝑥 ∈ ℕ0)
26 facp1 10875 . . . . . . . . 9 (𝑥 ∈ ℕ0 → (!‘(𝑥 + 1)) = ((!‘𝑥) · (𝑥 + 1)))
2725, 26syl 14 . . . . . . . 8 (𝑥 ∈ ℕ → (!‘(𝑥 + 1)) = ((!‘𝑥) · (𝑥 + 1)))
28 elnnuz 9685 . . . . . . . . . 10 (𝑥 ∈ ℕ ↔ 𝑥 ∈ (ℤ‘1))
2928biimpi 120 . . . . . . . . 9 (𝑥 ∈ ℕ → 𝑥 ∈ (ℤ‘1))
30 elfzelz 10147 . . . . . . . . . . 11 (𝑘 ∈ (1...(𝑥 + 1)) → 𝑘 ∈ ℤ)
3130zcnd 9496 . . . . . . . . . 10 (𝑘 ∈ (1...(𝑥 + 1)) → 𝑘 ∈ ℂ)
3231adantl 277 . . . . . . . . 9 ((𝑥 ∈ ℕ ∧ 𝑘 ∈ (1...(𝑥 + 1))) → 𝑘 ∈ ℂ)
33 id 19 . . . . . . . . 9 (𝑘 = (𝑥 + 1) → 𝑘 = (𝑥 + 1))
3429, 32, 33fprodp1 11911 . . . . . . . 8 (𝑥 ∈ ℕ → ∏𝑘 ∈ (1...(𝑥 + 1))𝑘 = (∏𝑘 ∈ (1...𝑥)𝑘 · (𝑥 + 1)))
3527, 34eqeq12d 2220 . . . . . . 7 (𝑥 ∈ ℕ → ((!‘(𝑥 + 1)) = ∏𝑘 ∈ (1...(𝑥 + 1))𝑘 ↔ ((!‘𝑥) · (𝑥 + 1)) = (∏𝑘 ∈ (1...𝑥)𝑘 · (𝑥 + 1))))
3635adantr 276 . . . . . 6 ((𝑥 ∈ ℕ ∧ (!‘𝑥) = ∏𝑘 ∈ (1...𝑥)𝑘) → ((!‘(𝑥 + 1)) = ∏𝑘 ∈ (1...(𝑥 + 1))𝑘 ↔ ((!‘𝑥) · (𝑥 + 1)) = (∏𝑘 ∈ (1...𝑥)𝑘 · (𝑥 + 1))))
3724, 36mpbird 167 . . . . 5 ((𝑥 ∈ ℕ ∧ (!‘𝑥) = ∏𝑘 ∈ (1...𝑥)𝑘) → (!‘(𝑥 + 1)) = ∏𝑘 ∈ (1...(𝑥 + 1))𝑘)
3837ex 115 . . . 4 (𝑥 ∈ ℕ → ((!‘𝑥) = ∏𝑘 ∈ (1...𝑥)𝑘 → (!‘(𝑥 + 1)) = ∏𝑘 ∈ (1...(𝑥 + 1))𝑘))
39 1zzd 9399 . . . . . . 7 (𝑥 = 0 → 1 ∈ ℤ)
40 1cnd 8088 . . . . . . 7 (𝑥 = 0 → 1 ∈ ℂ)
41 id 19 . . . . . . . 8 (𝑘 = 1 → 𝑘 = 1)
4241fprod1 11905 . . . . . . 7 ((1 ∈ ℤ ∧ 1 ∈ ℂ) → ∏𝑘 ∈ (1...1)𝑘 = 1)
4339, 40, 42syl2anc 411 . . . . . 6 (𝑥 = 0 → ∏𝑘 ∈ (1...1)𝑘 = 1)
44 oveq1 5951 . . . . . . . . 9 (𝑥 = 0 → (𝑥 + 1) = (0 + 1))
45 0p1e1 9150 . . . . . . . . 9 (0 + 1) = 1
4644, 45eqtrdi 2254 . . . . . . . 8 (𝑥 = 0 → (𝑥 + 1) = 1)
4746oveq2d 5960 . . . . . . 7 (𝑥 = 0 → (1...(𝑥 + 1)) = (1...1))
4847prodeq1d 11875 . . . . . 6 (𝑥 = 0 → ∏𝑘 ∈ (1...(𝑥 + 1))𝑘 = ∏𝑘 ∈ (1...1)𝑘)
49 fv0p1e1 9151 . . . . . . 7 (𝑥 = 0 → (!‘(𝑥 + 1)) = (!‘1))
50 fac1 10874 . . . . . . 7 (!‘1) = 1
5149, 50eqtrdi 2254 . . . . . 6 (𝑥 = 0 → (!‘(𝑥 + 1)) = 1)
5243, 48, 513eqtr4rd 2249 . . . . 5 (𝑥 = 0 → (!‘(𝑥 + 1)) = ∏𝑘 ∈ (1...(𝑥 + 1))𝑘)
5352a1d 22 . . . 4 (𝑥 = 0 → ((!‘𝑥) = ∏𝑘 ∈ (1...𝑥)𝑘 → (!‘(𝑥 + 1)) = ∏𝑘 ∈ (1...(𝑥 + 1))𝑘))
5438, 53jaoi 718 . . 3 ((𝑥 ∈ ℕ ∨ 𝑥 = 0) → ((!‘𝑥) = ∏𝑘 ∈ (1...𝑥)𝑘 → (!‘(𝑥 + 1)) = ∏𝑘 ∈ (1...(𝑥 + 1))𝑘))
5522, 54sylbi 121 . 2 (𝑥 ∈ ℕ0 → ((!‘𝑥) = ∏𝑘 ∈ (1...𝑥)𝑘 → (!‘(𝑥 + 1)) = ∏𝑘 ∈ (1...(𝑥 + 1))𝑘))
564, 8, 12, 16, 21, 55nn0ind 9487 1 (𝐴 ∈ ℕ0 → (!‘𝐴) = ∏𝑘 ∈ (1...𝐴)𝑘)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wcel 2176  c0 3460  cfv 5271  (class class class)co 5944  cc 7923  0cc0 7925  1c1 7926   + caddc 7928   · cmul 7930  cn 9036  0cn0 9295  cz 9372  cuz 9648  ...cfz 10130  !cfa 10870  cprod 11861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-frec 6477  df-1o 6502  df-oadd 6506  df-er 6620  df-en 6828  df-dom 6829  df-fin 6830  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fzo 10265  df-seqfrec 10593  df-exp 10684  df-fac 10871  df-ihash 10921  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-clim 11590  df-proddc 11862
This theorem is referenced by:  gausslemma2dlem1  15538  gausslemma2dlem6  15544
  Copyright terms: Public domain W3C validator