| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifcldadc | GIF version | ||
| Description: Conditional closure. (Contributed by Jim Kingdon, 11-Jan-2022.) |
| Ref | Expression |
|---|---|
| ifcldadc.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝐶) |
| ifcldadc.2 | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 ∈ 𝐶) |
| ifcldadc.dc | ⊢ (𝜑 → DECID 𝜓) |
| Ref | Expression |
|---|---|
| ifcldadc | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 3575 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴) | |
| 2 | 1 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐴) |
| 3 | ifcldadc.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝐶) | |
| 4 | 2, 3 | eqeltrd 2281 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
| 5 | iffalse 3578 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵) | |
| 6 | 5 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐵) |
| 7 | ifcldadc.2 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 ∈ 𝐶) | |
| 8 | 6, 7 | eqeltrd 2281 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
| 9 | ifcldadc.dc | . . 3 ⊢ (𝜑 → DECID 𝜓) | |
| 10 | exmiddc 837 | . . 3 ⊢ (DECID 𝜓 → (𝜓 ∨ ¬ 𝜓)) | |
| 11 | 9, 10 | syl 14 | . 2 ⊢ (𝜑 → (𝜓 ∨ ¬ 𝜓)) |
| 12 | 4, 8, 11 | mpjaodan 799 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 = wceq 1372 ∈ wcel 2175 ifcif 3570 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-if 3571 |
| This theorem is referenced by: updjudhf 7180 omp1eomlem 7195 difinfsnlem 7200 ctmlemr 7209 ctssdclemn0 7211 ctssdc 7214 enumctlemm 7215 xaddf 9965 xaddval 9966 iseqf1olemqcl 10642 iseqf1olemnab 10644 iseqf1olemjpcl 10651 iseqf1olemqpcl 10652 seq3f1oleml 10659 seq3f1o 10660 exp3val 10684 ccatcl 11047 xrmaxiflemcl 11527 summodclem2a 11663 zsumdc 11666 fsum3 11669 isumss 11673 fsum3cvg2 11676 fsum3ser 11679 fsumcl2lem 11680 fsumadd 11688 sumsnf 11691 sumsplitdc 11714 fsummulc2 11730 isumlessdc 11778 cvgratz 11814 prodmodclem3 11857 prodmodclem2a 11858 zproddc 11861 fprodseq 11865 fprodmul 11873 prodsnf 11874 eucalgval2 12346 lcmval 12356 pcmpt 12637 ennnfonelemg 12745 mulgval 13429 mulgfng 13431 elplyd 15184 dvply1 15208 lgsval 15452 lgsfvalg 15453 lgsfcl2 15454 lgscllem 15455 lgsval2lem 15458 lgsdir 15483 lgsdilem2 15484 lgsdi 15485 lgsne0 15486 subctctexmid 15899 |
| Copyright terms: Public domain | W3C validator |