Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ifcldadc | GIF version |
Description: Conditional closure. (Contributed by Jim Kingdon, 11-Jan-2022.) |
Ref | Expression |
---|---|
ifcldadc.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝐶) |
ifcldadc.2 | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 ∈ 𝐶) |
ifcldadc.dc | ⊢ (𝜑 → DECID 𝜓) |
Ref | Expression |
---|---|
ifcldadc | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 3525 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴) | |
2 | 1 | adantl 275 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐴) |
3 | ifcldadc.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝐶) | |
4 | 2, 3 | eqeltrd 2243 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
5 | iffalse 3528 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵) | |
6 | 5 | adantl 275 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐵) |
7 | ifcldadc.2 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 ∈ 𝐶) | |
8 | 6, 7 | eqeltrd 2243 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
9 | ifcldadc.dc | . . 3 ⊢ (𝜑 → DECID 𝜓) | |
10 | exmiddc 826 | . . 3 ⊢ (DECID 𝜓 → (𝜓 ∨ ¬ 𝜓)) | |
11 | 9, 10 | syl 14 | . 2 ⊢ (𝜑 → (𝜓 ∨ ¬ 𝜓)) |
12 | 4, 8, 11 | mpjaodan 788 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ∨ wo 698 DECID wdc 824 = wceq 1343 ∈ wcel 2136 ifcif 3520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-if 3521 |
This theorem is referenced by: updjudhf 7044 omp1eomlem 7059 difinfsnlem 7064 ctmlemr 7073 ctssdclemn0 7075 ctssdc 7078 enumctlemm 7079 xaddf 9780 xaddval 9781 iseqf1olemqcl 10421 iseqf1olemnab 10423 iseqf1olemjpcl 10430 iseqf1olemqpcl 10431 seq3f1oleml 10438 seq3f1o 10439 exp3val 10457 xrmaxiflemcl 11186 summodclem2a 11322 zsumdc 11325 fsum3 11328 isumss 11332 fsum3cvg2 11335 fsum3ser 11338 fsumcl2lem 11339 fsumadd 11347 sumsnf 11350 sumsplitdc 11373 fsummulc2 11389 isumlessdc 11437 cvgratz 11473 prodmodclem3 11516 prodmodclem2a 11517 zproddc 11520 fprodseq 11524 fprodmul 11532 prodsnf 11533 eucalgval2 11985 lcmval 11995 pcmpt 12273 ennnfonelemg 12336 lgsval 13555 lgsfvalg 13556 lgsfcl2 13557 lgscllem 13558 lgsval2lem 13561 lgsdir 13586 lgsdilem2 13587 lgsdi 13588 lgsne0 13589 subctctexmid 13891 |
Copyright terms: Public domain | W3C validator |