| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifcldadc | GIF version | ||
| Description: Conditional closure. (Contributed by Jim Kingdon, 11-Jan-2022.) |
| Ref | Expression |
|---|---|
| ifcldadc.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝐶) |
| ifcldadc.2 | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 ∈ 𝐶) |
| ifcldadc.dc | ⊢ (𝜑 → DECID 𝜓) |
| Ref | Expression |
|---|---|
| ifcldadc | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 3567 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴) | |
| 2 | 1 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐴) |
| 3 | ifcldadc.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝐶) | |
| 4 | 2, 3 | eqeltrd 2273 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
| 5 | iffalse 3570 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵) | |
| 6 | 5 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐵) |
| 7 | ifcldadc.2 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 ∈ 𝐶) | |
| 8 | 6, 7 | eqeltrd 2273 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
| 9 | ifcldadc.dc | . . 3 ⊢ (𝜑 → DECID 𝜓) | |
| 10 | exmiddc 837 | . . 3 ⊢ (DECID 𝜓 → (𝜓 ∨ ¬ 𝜓)) | |
| 11 | 9, 10 | syl 14 | . 2 ⊢ (𝜑 → (𝜓 ∨ ¬ 𝜓)) |
| 12 | 4, 8, 11 | mpjaodan 799 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 = wceq 1364 ∈ wcel 2167 ifcif 3562 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-if 3563 |
| This theorem is referenced by: updjudhf 7154 omp1eomlem 7169 difinfsnlem 7174 ctmlemr 7183 ctssdclemn0 7185 ctssdc 7188 enumctlemm 7189 xaddf 9938 xaddval 9939 iseqf1olemqcl 10610 iseqf1olemnab 10612 iseqf1olemjpcl 10619 iseqf1olemqpcl 10620 seq3f1oleml 10627 seq3f1o 10628 exp3val 10652 xrmaxiflemcl 11429 summodclem2a 11565 zsumdc 11568 fsum3 11571 isumss 11575 fsum3cvg2 11578 fsum3ser 11581 fsumcl2lem 11582 fsumadd 11590 sumsnf 11593 sumsplitdc 11616 fsummulc2 11632 isumlessdc 11680 cvgratz 11716 prodmodclem3 11759 prodmodclem2a 11760 zproddc 11763 fprodseq 11767 fprodmul 11775 prodsnf 11776 eucalgval2 12248 lcmval 12258 pcmpt 12539 ennnfonelemg 12647 mulgval 13330 mulgfng 13332 elplyd 15085 dvply1 15109 lgsval 15353 lgsfvalg 15354 lgsfcl2 15355 lgscllem 15356 lgsval2lem 15359 lgsdir 15384 lgsdilem2 15385 lgsdi 15386 lgsne0 15387 subctctexmid 15755 |
| Copyright terms: Public domain | W3C validator |