| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifcldadc | GIF version | ||
| Description: Conditional closure. (Contributed by Jim Kingdon, 11-Jan-2022.) |
| Ref | Expression |
|---|---|
| ifcldadc.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝐶) |
| ifcldadc.2 | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 ∈ 𝐶) |
| ifcldadc.dc | ⊢ (𝜑 → DECID 𝜓) |
| Ref | Expression |
|---|---|
| ifcldadc | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 3575 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴) | |
| 2 | 1 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐴) |
| 3 | ifcldadc.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝐶) | |
| 4 | 2, 3 | eqeltrd 2281 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
| 5 | iffalse 3578 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵) | |
| 6 | 5 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐵) |
| 7 | ifcldadc.2 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 ∈ 𝐶) | |
| 8 | 6, 7 | eqeltrd 2281 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
| 9 | ifcldadc.dc | . . 3 ⊢ (𝜑 → DECID 𝜓) | |
| 10 | exmiddc 837 | . . 3 ⊢ (DECID 𝜓 → (𝜓 ∨ ¬ 𝜓)) | |
| 11 | 9, 10 | syl 14 | . 2 ⊢ (𝜑 → (𝜓 ∨ ¬ 𝜓)) |
| 12 | 4, 8, 11 | mpjaodan 799 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 = wceq 1372 ∈ wcel 2175 ifcif 3570 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-if 3571 |
| This theorem is referenced by: updjudhf 7163 omp1eomlem 7178 difinfsnlem 7183 ctmlemr 7192 ctssdclemn0 7194 ctssdc 7197 enumctlemm 7198 xaddf 9948 xaddval 9949 iseqf1olemqcl 10625 iseqf1olemnab 10627 iseqf1olemjpcl 10634 iseqf1olemqpcl 10635 seq3f1oleml 10642 seq3f1o 10643 exp3val 10667 ccatcl 11024 xrmaxiflemcl 11475 summodclem2a 11611 zsumdc 11614 fsum3 11617 isumss 11621 fsum3cvg2 11624 fsum3ser 11627 fsumcl2lem 11628 fsumadd 11636 sumsnf 11639 sumsplitdc 11662 fsummulc2 11678 isumlessdc 11726 cvgratz 11762 prodmodclem3 11805 prodmodclem2a 11806 zproddc 11809 fprodseq 11813 fprodmul 11821 prodsnf 11822 eucalgval2 12294 lcmval 12304 pcmpt 12585 ennnfonelemg 12693 mulgval 13376 mulgfng 13378 elplyd 15131 dvply1 15155 lgsval 15399 lgsfvalg 15400 lgsfcl2 15401 lgscllem 15402 lgsval2lem 15405 lgsdir 15430 lgsdilem2 15431 lgsdi 15432 lgsne0 15433 subctctexmid 15801 |
| Copyright terms: Public domain | W3C validator |