| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifcldadc | GIF version | ||
| Description: Conditional closure. (Contributed by Jim Kingdon, 11-Jan-2022.) |
| Ref | Expression |
|---|---|
| ifcldadc.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝐶) |
| ifcldadc.2 | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 ∈ 𝐶) |
| ifcldadc.dc | ⊢ (𝜑 → DECID 𝜓) |
| Ref | Expression |
|---|---|
| ifcldadc | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iftrue 3575 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴) | |
| 2 | 1 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐴) |
| 3 | ifcldadc.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝐶) | |
| 4 | 2, 3 | eqeltrd 2281 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
| 5 | iffalse 3578 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵) | |
| 6 | 5 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐵) |
| 7 | ifcldadc.2 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 ∈ 𝐶) | |
| 8 | 6, 7 | eqeltrd 2281 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
| 9 | ifcldadc.dc | . . 3 ⊢ (𝜑 → DECID 𝜓) | |
| 10 | exmiddc 837 | . . 3 ⊢ (DECID 𝜓 → (𝜓 ∨ ¬ 𝜓)) | |
| 11 | 9, 10 | syl 14 | . 2 ⊢ (𝜑 → (𝜓 ∨ ¬ 𝜓)) |
| 12 | 4, 8, 11 | mpjaodan 799 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 709 DECID wdc 835 = wceq 1372 ∈ wcel 2175 ifcif 3570 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-11 1528 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-if 3571 |
| This theorem is referenced by: updjudhf 7180 omp1eomlem 7195 difinfsnlem 7200 ctmlemr 7209 ctssdclemn0 7211 ctssdc 7214 enumctlemm 7215 xaddf 9965 xaddval 9966 iseqf1olemqcl 10642 iseqf1olemnab 10644 iseqf1olemjpcl 10651 iseqf1olemqpcl 10652 seq3f1oleml 10659 seq3f1o 10660 exp3val 10684 ccatcl 11047 xrmaxiflemcl 11498 summodclem2a 11634 zsumdc 11637 fsum3 11640 isumss 11644 fsum3cvg2 11647 fsum3ser 11650 fsumcl2lem 11651 fsumadd 11659 sumsnf 11662 sumsplitdc 11685 fsummulc2 11701 isumlessdc 11749 cvgratz 11785 prodmodclem3 11828 prodmodclem2a 11829 zproddc 11832 fprodseq 11836 fprodmul 11844 prodsnf 11845 eucalgval2 12317 lcmval 12327 pcmpt 12608 ennnfonelemg 12716 mulgval 13400 mulgfng 13402 elplyd 15155 dvply1 15179 lgsval 15423 lgsfvalg 15424 lgsfcl2 15425 lgscllem 15426 lgsval2lem 15429 lgsdir 15454 lgsdilem2 15455 lgsdi 15456 lgsne0 15457 subctctexmid 15870 |
| Copyright terms: Public domain | W3C validator |