![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ifcldadc | GIF version |
Description: Conditional closure. (Contributed by Jim Kingdon, 11-Jan-2022.) |
Ref | Expression |
---|---|
ifcldadc.1 | ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝐶) |
ifcldadc.2 | ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 ∈ 𝐶) |
ifcldadc.dc | ⊢ (𝜑 → DECID 𝜓) |
Ref | Expression |
---|---|
ifcldadc | ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 3541 | . . . 4 ⊢ (𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐴) | |
2 | 1 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐴) |
3 | ifcldadc.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝐴 ∈ 𝐶) | |
4 | 2, 3 | eqeltrd 2254 | . 2 ⊢ ((𝜑 ∧ 𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
5 | iffalse 3544 | . . . 4 ⊢ (¬ 𝜓 → if(𝜓, 𝐴, 𝐵) = 𝐵) | |
6 | 5 | adantl 277 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) = 𝐵) |
7 | ifcldadc.2 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝜓) → 𝐵 ∈ 𝐶) | |
8 | 6, 7 | eqeltrd 2254 | . 2 ⊢ ((𝜑 ∧ ¬ 𝜓) → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
9 | ifcldadc.dc | . . 3 ⊢ (𝜑 → DECID 𝜓) | |
10 | exmiddc 836 | . . 3 ⊢ (DECID 𝜓 → (𝜓 ∨ ¬ 𝜓)) | |
11 | 9, 10 | syl 14 | . 2 ⊢ (𝜑 → (𝜓 ∨ ¬ 𝜓)) |
12 | 4, 8, 11 | mpjaodan 798 | 1 ⊢ (𝜑 → if(𝜓, 𝐴, 𝐵) ∈ 𝐶) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 708 DECID wdc 834 = wceq 1353 ∈ wcel 2148 ifcif 3536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-if 3537 |
This theorem is referenced by: updjudhf 7080 omp1eomlem 7095 difinfsnlem 7100 ctmlemr 7109 ctssdclemn0 7111 ctssdc 7114 enumctlemm 7115 xaddf 9846 xaddval 9847 iseqf1olemqcl 10488 iseqf1olemnab 10490 iseqf1olemjpcl 10497 iseqf1olemqpcl 10498 seq3f1oleml 10505 seq3f1o 10506 exp3val 10524 xrmaxiflemcl 11255 summodclem2a 11391 zsumdc 11394 fsum3 11397 isumss 11401 fsum3cvg2 11404 fsum3ser 11407 fsumcl2lem 11408 fsumadd 11416 sumsnf 11419 sumsplitdc 11442 fsummulc2 11458 isumlessdc 11506 cvgratz 11542 prodmodclem3 11585 prodmodclem2a 11586 zproddc 11589 fprodseq 11593 fprodmul 11601 prodsnf 11602 eucalgval2 12055 lcmval 12065 pcmpt 12343 ennnfonelemg 12406 mulgval 12991 mulgfng 12992 lgsval 14444 lgsfvalg 14445 lgsfcl2 14446 lgscllem 14447 lgsval2lem 14450 lgsdir 14475 lgsdilem2 14476 lgsdi 14477 lgsne0 14478 subctctexmid 14789 |
Copyright terms: Public domain | W3C validator |