ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnss GIF version

Theorem rnss 4930
Description: Subset theorem for range. (Contributed by NM, 22-Mar-1998.)
Assertion
Ref Expression
rnss (𝐴𝐵 → ran 𝐴 ⊆ ran 𝐵)

Proof of Theorem rnss
StepHypRef Expression
1 cnvss 4872 . . 3 (𝐴𝐵𝐴𝐵)
2 dmss 4899 . . 3 (𝐴𝐵 → dom 𝐴 ⊆ dom 𝐵)
31, 2syl 14 . 2 (𝐴𝐵 → dom 𝐴 ⊆ dom 𝐵)
4 df-rn 4707 . 2 ran 𝐴 = dom 𝐴
5 df-rn 4707 . 2 ran 𝐵 = dom 𝐵
63, 4, 53sstr4g 3247 1 (𝐴𝐵 → ran 𝐴 ⊆ ran 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3177  ccnv 4695  dom cdm 4696  ran crn 4697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-v 2781  df-un 3181  df-in 3183  df-ss 3190  df-sn 3652  df-pr 3653  df-op 3655  df-br 4063  df-opab 4125  df-cnv 4704  df-dm 4706  df-rn 4707
This theorem is referenced by:  imass1  5079  imass2  5080  rnxpss2  5138  ssxpbm  5140  ssxp2  5142  ssrnres  5147  funssxp  5469  fssres  5477  dff2  5752  fliftf  5896  1stcof  6279  2ndcof  6280  smores  6408  tfrcllembfn  6473  caserel  7222  frecuzrdgtcl  10601  prdsvallem  13271  prdsval  13272  lmss  14885  txss12  14905  txbasval  14906
  Copyright terms: Public domain W3C validator