![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rnss | GIF version |
Description: Subset theorem for range. (Contributed by NM, 22-Mar-1998.) |
Ref | Expression |
---|---|
rnss | ⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvss 4670 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | |
2 | dmss 4696 | . . 3 ⊢ (◡𝐴 ⊆ ◡𝐵 → dom ◡𝐴 ⊆ dom ◡𝐵) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 ⊆ 𝐵 → dom ◡𝐴 ⊆ dom ◡𝐵) |
4 | df-rn 4508 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
5 | df-rn 4508 | . 2 ⊢ ran 𝐵 = dom ◡𝐵 | |
6 | 3, 4, 5 | 3sstr4g 3104 | 1 ⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ⊆ wss 3035 ◡ccnv 4496 dom cdm 4497 ran crn 4498 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-nf 1418 df-sb 1717 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-v 2657 df-un 3039 df-in 3041 df-ss 3048 df-sn 3497 df-pr 3498 df-op 3500 df-br 3894 df-opab 3948 df-cnv 4505 df-dm 4507 df-rn 4508 |
This theorem is referenced by: imass1 4870 imass2 4871 rnxpss2 4928 ssxpbm 4930 ssxp2 4932 ssrnres 4937 funssxp 5248 fssres 5254 dff2 5516 fliftf 5652 1stcof 6012 2ndcof 6013 smores 6140 tfrcllembfn 6205 caserel 6921 frecuzrdgtcl 10071 lmss 12250 txss12 12270 txbasval 12271 |
Copyright terms: Public domain | W3C validator |