ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnss GIF version

Theorem rnss 4913
Description: Subset theorem for range. (Contributed by NM, 22-Mar-1998.)
Assertion
Ref Expression
rnss (𝐴𝐵 → ran 𝐴 ⊆ ran 𝐵)

Proof of Theorem rnss
StepHypRef Expression
1 cnvss 4855 . . 3 (𝐴𝐵𝐴𝐵)
2 dmss 4882 . . 3 (𝐴𝐵 → dom 𝐴 ⊆ dom 𝐵)
31, 2syl 14 . 2 (𝐴𝐵 → dom 𝐴 ⊆ dom 𝐵)
4 df-rn 4690 . 2 ran 𝐴 = dom 𝐴
5 df-rn 4690 . 2 ran 𝐵 = dom 𝐵
63, 4, 53sstr4g 3237 1 (𝐴𝐵 → ran 𝐴 ⊆ ran 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3167  ccnv 4678  dom cdm 4679  ran crn 4680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-sn 3640  df-pr 3641  df-op 3643  df-br 4048  df-opab 4110  df-cnv 4687  df-dm 4689  df-rn 4690
This theorem is referenced by:  imass1  5062  imass2  5063  rnxpss2  5121  ssxpbm  5123  ssxp2  5125  ssrnres  5130  funssxp  5451  fssres  5458  dff2  5731  fliftf  5875  1stcof  6256  2ndcof  6257  smores  6385  tfrcllembfn  6450  caserel  7196  frecuzrdgtcl  10564  prdsvallem  13148  prdsval  13149  lmss  14762  txss12  14782  txbasval  14783
  Copyright terms: Public domain W3C validator