ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnss GIF version

Theorem rnss 4896
Description: Subset theorem for range. (Contributed by NM, 22-Mar-1998.)
Assertion
Ref Expression
rnss (𝐴𝐵 → ran 𝐴 ⊆ ran 𝐵)

Proof of Theorem rnss
StepHypRef Expression
1 cnvss 4839 . . 3 (𝐴𝐵𝐴𝐵)
2 dmss 4865 . . 3 (𝐴𝐵 → dom 𝐴 ⊆ dom 𝐵)
31, 2syl 14 . 2 (𝐴𝐵 → dom 𝐴 ⊆ dom 𝐵)
4 df-rn 4674 . 2 ran 𝐴 = dom 𝐴
5 df-rn 4674 . 2 ran 𝐵 = dom 𝐵
63, 4, 53sstr4g 3226 1 (𝐴𝐵 → ran 𝐴 ⊆ ran 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3157  ccnv 4662  dom cdm 4663  ran crn 4664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-cnv 4671  df-dm 4673  df-rn 4674
This theorem is referenced by:  imass1  5044  imass2  5045  rnxpss2  5103  ssxpbm  5105  ssxp2  5107  ssrnres  5112  funssxp  5427  fssres  5433  dff2  5706  fliftf  5846  1stcof  6221  2ndcof  6222  smores  6350  tfrcllembfn  6415  caserel  7153  frecuzrdgtcl  10504  lmss  14482  txss12  14502  txbasval  14503
  Copyright terms: Public domain W3C validator