ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnss GIF version

Theorem rnss 4727
Description: Subset theorem for range. (Contributed by NM, 22-Mar-1998.)
Assertion
Ref Expression
rnss (𝐴𝐵 → ran 𝐴 ⊆ ran 𝐵)

Proof of Theorem rnss
StepHypRef Expression
1 cnvss 4670 . . 3 (𝐴𝐵𝐴𝐵)
2 dmss 4696 . . 3 (𝐴𝐵 → dom 𝐴 ⊆ dom 𝐵)
31, 2syl 14 . 2 (𝐴𝐵 → dom 𝐴 ⊆ dom 𝐵)
4 df-rn 4508 . 2 ran 𝐴 = dom 𝐴
5 df-rn 4508 . 2 ran 𝐵 = dom 𝐵
63, 4, 53sstr4g 3104 1 (𝐴𝐵 → ran 𝐴 ⊆ ran 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wss 3035  ccnv 4496  dom cdm 4497  ran crn 4498
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-v 2657  df-un 3039  df-in 3041  df-ss 3048  df-sn 3497  df-pr 3498  df-op 3500  df-br 3894  df-opab 3948  df-cnv 4505  df-dm 4507  df-rn 4508
This theorem is referenced by:  imass1  4870  imass2  4871  rnxpss2  4928  ssxpbm  4930  ssxp2  4932  ssrnres  4937  funssxp  5248  fssres  5254  dff2  5516  fliftf  5652  1stcof  6012  2ndcof  6013  smores  6140  tfrcllembfn  6205  caserel  6921  frecuzrdgtcl  10071  lmss  12250  txss12  12270  txbasval  12271
  Copyright terms: Public domain W3C validator