| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rnss | GIF version | ||
| Description: Subset theorem for range. (Contributed by NM, 22-Mar-1998.) |
| Ref | Expression |
|---|---|
| rnss | ⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvss 4855 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | |
| 2 | dmss 4882 | . . 3 ⊢ (◡𝐴 ⊆ ◡𝐵 → dom ◡𝐴 ⊆ dom ◡𝐵) | |
| 3 | 1, 2 | syl 14 | . 2 ⊢ (𝐴 ⊆ 𝐵 → dom ◡𝐴 ⊆ dom ◡𝐵) |
| 4 | df-rn 4690 | . 2 ⊢ ran 𝐴 = dom ◡𝐴 | |
| 5 | df-rn 4690 | . 2 ⊢ ran 𝐵 = dom ◡𝐵 | |
| 6 | 3, 4, 5 | 3sstr4g 3237 | 1 ⊢ (𝐴 ⊆ 𝐵 → ran 𝐴 ⊆ ran 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ⊆ wss 3167 ◡ccnv 4678 dom cdm 4679 ran crn 4680 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-sn 3640 df-pr 3641 df-op 3643 df-br 4048 df-opab 4110 df-cnv 4687 df-dm 4689 df-rn 4690 |
| This theorem is referenced by: imass1 5062 imass2 5063 rnxpss2 5121 ssxpbm 5123 ssxp2 5125 ssrnres 5130 funssxp 5451 fssres 5458 dff2 5731 fliftf 5875 1stcof 6256 2ndcof 6257 smores 6385 tfrcllembfn 6450 caserel 7196 frecuzrdgtcl 10564 prdsvallem 13148 prdsval 13149 lmss 14762 txss12 14782 txbasval 14783 |
| Copyright terms: Public domain | W3C validator |