ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvoveq1d GIF version

Theorem fvoveq1d 5979
Description: Equality deduction for nested function and operation value. (Contributed by AV, 23-Jul-2022.)
Hypothesis
Ref Expression
fvoveq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
fvoveq1d (𝜑 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶)))

Proof of Theorem fvoveq1d
StepHypRef Expression
1 fvoveq1d.1 . . 3 (𝜑𝐴 = 𝐵)
21oveq1d 5972 . 2 (𝜑 → (𝐴𝑂𝐶) = (𝐵𝑂𝐶))
32fveq2d 5593 1 (𝜑 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  cfv 5280  (class class class)co 5957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-rex 2491  df-v 2775  df-un 3174  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-iota 5241  df-fv 5288  df-ov 5960
This theorem is referenced by:  fvoveq1  5980  imbrov2fvoveq  5982  seqvalcd  10628  pfxfvlsw  11171  swrdswrd  11181  mpomulcn  15113  mulc1cncf  15136  mulcncflem  15154  mulcncf  15155  limccl  15206  ellimc3apf  15207  limcdifap  15209  limcmpted  15210  limcresi  15213  limccoap  15225  dveflem  15273
  Copyright terms: Public domain W3C validator