ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvoveq1d GIF version

Theorem fvoveq1d 5864
Description: Equality deduction for nested function and operation value. (Contributed by AV, 23-Jul-2022.)
Hypothesis
Ref Expression
fvoveq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
fvoveq1d (𝜑 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶)))

Proof of Theorem fvoveq1d
StepHypRef Expression
1 fvoveq1d.1 . . 3 (𝜑𝐴 = 𝐵)
21oveq1d 5857 . 2 (𝜑 → (𝐴𝑂𝐶) = (𝐵𝑂𝐶))
32fveq2d 5490 1 (𝜑 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶)))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  cfv 5188  (class class class)co 5842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-iota 5153  df-fv 5196  df-ov 5845
This theorem is referenced by:  fvoveq1  5865  imbrov2fvoveq  5867  seqvalcd  10394  mulc1cncf  13216  mulcncflem  13230  mulcncf  13231  limccl  13268  ellimc3apf  13269  limcdifap  13271  limcmpted  13272  limcresi  13275  limccoap  13287  dveflem  13327
  Copyright terms: Public domain W3C validator