![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvoveq1d | GIF version |
Description: Equality deduction for nested function and operation value. (Contributed by AV, 23-Jul-2022.) |
Ref | Expression |
---|---|
fvoveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
fvoveq1d | ⊢ (𝜑 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvoveq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | oveq1d 5903 | . 2 ⊢ (𝜑 → (𝐴𝑂𝐶) = (𝐵𝑂𝐶)) |
3 | 2 | fveq2d 5531 | 1 ⊢ (𝜑 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1363 ‘cfv 5228 (class class class)co 5888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-rex 2471 df-v 2751 df-un 3145 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-br 4016 df-iota 5190 df-fv 5236 df-ov 5891 |
This theorem is referenced by: fvoveq1 5911 imbrov2fvoveq 5913 seqvalcd 10473 mulc1cncf 14372 mulcncflem 14386 mulcncf 14387 limccl 14424 ellimc3apf 14425 limcdifap 14427 limcmpted 14428 limcresi 14431 limccoap 14443 dveflem 14483 |
Copyright terms: Public domain | W3C validator |