![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvoveq1d | GIF version |
Description: Equality deduction for nested function and operation value. (Contributed by AV, 23-Jul-2022.) |
Ref | Expression |
---|---|
fvoveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
fvoveq1d | ⊢ (𝜑 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvoveq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | oveq1d 5933 | . 2 ⊢ (𝜑 → (𝐴𝑂𝐶) = (𝐵𝑂𝐶)) |
3 | 2 | fveq2d 5558 | 1 ⊢ (𝜑 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ‘cfv 5254 (class class class)co 5918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 |
This theorem is referenced by: fvoveq1 5941 imbrov2fvoveq 5943 seqvalcd 10532 mulc1cncf 14744 mulcncflem 14761 mulcncf 14762 limccl 14813 ellimc3apf 14814 limcdifap 14816 limcmpted 14817 limcresi 14820 limccoap 14832 dveflem 14872 |
Copyright terms: Public domain | W3C validator |