| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvoveq1d | GIF version | ||
| Description: Equality deduction for nested function and operation value. (Contributed by AV, 23-Jul-2022.) |
| Ref | Expression |
|---|---|
| fvoveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| fvoveq1d | ⊢ (𝜑 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvoveq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | oveq1d 5972 | . 2 ⊢ (𝜑 → (𝐴𝑂𝐶) = (𝐵𝑂𝐶)) |
| 3 | 2 | fveq2d 5593 | 1 ⊢ (𝜑 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ‘cfv 5280 (class class class)co 5957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-un 3174 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-iota 5241 df-fv 5288 df-ov 5960 |
| This theorem is referenced by: fvoveq1 5980 imbrov2fvoveq 5982 seqvalcd 10628 pfxfvlsw 11171 swrdswrd 11181 mpomulcn 15113 mulc1cncf 15136 mulcncflem 15154 mulcncf 15155 limccl 15206 ellimc3apf 15207 limcdifap 15209 limcmpted 15210 limcresi 15213 limccoap 15225 dveflem 15273 |
| Copyright terms: Public domain | W3C validator |