| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvoveq1d | GIF version | ||
| Description: Equality deduction for nested function and operation value. (Contributed by AV, 23-Jul-2022.) |
| Ref | Expression |
|---|---|
| fvoveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| fvoveq1d | ⊢ (𝜑 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvoveq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | oveq1d 5940 | . 2 ⊢ (𝜑 → (𝐴𝑂𝐶) = (𝐵𝑂𝐶)) |
| 3 | 2 | fveq2d 5565 | 1 ⊢ (𝜑 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ‘cfv 5259 (class class class)co 5925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 |
| This theorem is referenced by: fvoveq1 5948 imbrov2fvoveq 5950 seqvalcd 10570 mpomulcn 14886 mulc1cncf 14909 mulcncflem 14927 mulcncf 14928 limccl 14979 ellimc3apf 14980 limcdifap 14982 limcmpted 14983 limcresi 14986 limccoap 14998 dveflem 15046 |
| Copyright terms: Public domain | W3C validator |