| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fvoveq1d | GIF version | ||
| Description: Equality deduction for nested function and operation value. (Contributed by AV, 23-Jul-2022.) | 
| Ref | Expression | 
|---|---|
| fvoveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) | 
| Ref | Expression | 
|---|---|
| fvoveq1d | ⊢ (𝜑 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fvoveq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | oveq1d 5937 | . 2 ⊢ (𝜑 → (𝐴𝑂𝐶) = (𝐵𝑂𝐶)) | 
| 3 | 2 | fveq2d 5562 | 1 ⊢ (𝜑 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ‘cfv 5258 (class class class)co 5922 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 | 
| This theorem is referenced by: fvoveq1 5945 imbrov2fvoveq 5947 seqvalcd 10553 mpomulcn 14802 mulc1cncf 14825 mulcncflem 14843 mulcncf 14844 limccl 14895 ellimc3apf 14896 limcdifap 14898 limcmpted 14899 limcresi 14902 limccoap 14914 dveflem 14962 | 
| Copyright terms: Public domain | W3C validator |