Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fvoveq1d | GIF version |
Description: Equality deduction for nested function and operation value. (Contributed by AV, 23-Jul-2022.) |
Ref | Expression |
---|---|
fvoveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
fvoveq1d | ⊢ (𝜑 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvoveq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | oveq1d 5857 | . 2 ⊢ (𝜑 → (𝐴𝑂𝐶) = (𝐵𝑂𝐶)) |
3 | 2 | fveq2d 5490 | 1 ⊢ (𝜑 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 ‘cfv 5188 (class class class)co 5842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rex 2450 df-v 2728 df-un 3120 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 |
This theorem is referenced by: fvoveq1 5865 imbrov2fvoveq 5867 seqvalcd 10394 mulc1cncf 13216 mulcncflem 13230 mulcncf 13231 limccl 13268 ellimc3apf 13269 limcdifap 13271 limcmpted 13272 limcresi 13275 limccoap 13287 dveflem 13327 |
Copyright terms: Public domain | W3C validator |