| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fvoveq1d | GIF version | ||
| Description: Equality deduction for nested function and operation value. (Contributed by AV, 23-Jul-2022.) |
| Ref | Expression |
|---|---|
| fvoveq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| fvoveq1d | ⊢ (𝜑 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvoveq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | oveq1d 5958 | . 2 ⊢ (𝜑 → (𝐴𝑂𝐶) = (𝐵𝑂𝐶)) |
| 3 | 2 | fveq2d 5579 | 1 ⊢ (𝜑 → (𝐹‘(𝐴𝑂𝐶)) = (𝐹‘(𝐵𝑂𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ‘cfv 5270 (class class class)co 5943 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-iota 5231 df-fv 5278 df-ov 5946 |
| This theorem is referenced by: fvoveq1 5966 imbrov2fvoveq 5968 seqvalcd 10604 mpomulcn 14980 mulc1cncf 15003 mulcncflem 15021 mulcncf 15022 limccl 15073 ellimc3apf 15074 limcdifap 15076 limcmpted 15077 limcresi 15080 limccoap 15092 dveflem 15140 |
| Copyright terms: Public domain | W3C validator |