| Step | Hyp | Ref
 | Expression | 
| 1 |   | mulcncflem.s | 
. . . . 5
⊢ (𝜑 → 𝑆 ∈
ℝ+) | 
| 2 | 1 | rpred 9771 | 
. . . 4
⊢ (𝜑 → 𝑆 ∈ ℝ) | 
| 3 |   | mulcncflem.t | 
. . . . 5
⊢ (𝜑 → 𝑇 ∈
ℝ+) | 
| 4 | 3 | rpred 9771 | 
. . . 4
⊢ (𝜑 → 𝑇 ∈ ℝ) | 
| 5 |   | mincl 11396 | 
. . . 4
⊢ ((𝑆 ∈ ℝ ∧ 𝑇 ∈ ℝ) →
inf({𝑆, 𝑇}, ℝ, < ) ∈
ℝ) | 
| 6 | 2, 4, 5 | syl2anc 411 | 
. . 3
⊢ (𝜑 → inf({𝑆, 𝑇}, ℝ, < ) ∈
ℝ) | 
| 7 | 1 | rpgt0d 9774 | 
. . . 4
⊢ (𝜑 → 0 < 𝑆) | 
| 8 | 3 | rpgt0d 9774 | 
. . . 4
⊢ (𝜑 → 0 < 𝑇) | 
| 9 |   | 0red 8027 | 
. . . . 5
⊢ (𝜑 → 0 ∈
ℝ) | 
| 10 |   | ltmininf 11400 | 
. . . . 5
⊢ ((0
∈ ℝ ∧ 𝑆
∈ ℝ ∧ 𝑇
∈ ℝ) → (0 < inf({𝑆, 𝑇}, ℝ, < ) ↔ (0 < 𝑆 ∧ 0 < 𝑇))) | 
| 11 | 9, 2, 4, 10 | syl3anc 1249 | 
. . . 4
⊢ (𝜑 → (0 < inf({𝑆, 𝑇}, ℝ, < ) ↔ (0 < 𝑆 ∧ 0 < 𝑇))) | 
| 12 | 7, 8, 11 | mpbir2and 946 | 
. . 3
⊢ (𝜑 → 0 < inf({𝑆, 𝑇}, ℝ, < )) | 
| 13 | 6, 12 | elrpd 9768 | 
. 2
⊢ (𝜑 → inf({𝑆, 𝑇}, ℝ, < ) ∈
ℝ+) | 
| 14 |   | simplr 528 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → 𝑧 ∈ 𝑋) | 
| 15 |   | simpr 110 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ 𝑋) | 
| 16 |   | mulcncflem.a | 
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) | 
| 17 |   | cncff 14813 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) | 
| 18 | 16, 17 | syl 14 | 
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) | 
| 19 |   | eqid 2196 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑥 ∈ 𝑋 ↦ 𝐴) | 
| 20 | 19 | fmpt 5712 | 
. . . . . . . . . . . . . . . 16
⊢
(∀𝑥 ∈
𝑋 𝐴 ∈ ℂ ↔ (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) | 
| 21 | 18, 20 | sylibr 134 | 
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐴 ∈ ℂ) | 
| 22 |   | mulcncflem.b | 
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) | 
| 23 |   | cncff 14813 | 
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℂ) | 
| 24 | 22, 23 | syl 14 | 
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℂ) | 
| 25 |   | eqid 2196 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ 𝐵) | 
| 26 | 25 | fmpt 5712 | 
. . . . . . . . . . . . . . . 16
⊢
(∀𝑥 ∈
𝑋 𝐵 ∈ ℂ ↔ (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℂ) | 
| 27 | 24, 26 | sylibr 134 | 
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐵 ∈ ℂ) | 
| 28 |   | r19.26 2623 | 
. . . . . . . . . . . . . . 15
⊢
(∀𝑥 ∈
𝑋 (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ↔ (∀𝑥 ∈ 𝑋 𝐴 ∈ ℂ ∧ ∀𝑥 ∈ 𝑋 𝐵 ∈ ℂ)) | 
| 29 | 21, 27, 28 | sylanbrc 417 | 
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) | 
| 30 |   | mulcl 8006 | 
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | 
| 31 | 30 | ralimi 2560 | 
. . . . . . . . . . . . . 14
⊢
(∀𝑥 ∈
𝑋 (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∀𝑥 ∈ 𝑋 (𝐴 · 𝐵) ∈ ℂ) | 
| 32 | 29, 31 | syl 14 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 (𝐴 · 𝐵) ∈ ℂ) | 
| 33 | 32 | adantr 276 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ∀𝑥 ∈ 𝑋 (𝐴 · 𝐵) ∈ ℂ) | 
| 34 |   | rspcsbela 3144 | 
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝐴 · 𝐵) ∈ ℂ) →
⦋𝑧 / 𝑥⦌(𝐴 · 𝐵) ∈ ℂ) | 
| 35 | 15, 33, 34 | syl2anc 411 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ⦋𝑧 / 𝑥⦌(𝐴 · 𝐵) ∈ ℂ) | 
| 36 | 35 | adantr 276 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) →
⦋𝑧 / 𝑥⦌(𝐴 · 𝐵) ∈ ℂ) | 
| 37 |   | eqid 2196 | 
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) = (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) | 
| 38 | 37 | fvmpts 5639 | 
. . . . . . . . . 10
⊢ ((𝑧 ∈ 𝑋 ∧ ⦋𝑧 / 𝑥⦌(𝐴 · 𝐵) ∈ ℂ) → ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑧) = ⦋𝑧 / 𝑥⦌(𝐴 · 𝐵)) | 
| 39 | 14, 36, 38 | syl2anc 411 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑧) = ⦋𝑧 / 𝑥⦌(𝐴 · 𝐵)) | 
| 40 |   | csbov12g 5961 | 
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝑋 → ⦋𝑧 / 𝑥⦌(𝐴 · 𝐵) = (⦋𝑧 / 𝑥⦌𝐴 · ⦋𝑧 / 𝑥⦌𝐵)) | 
| 41 | 14, 40 | syl 14 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) →
⦋𝑧 / 𝑥⦌(𝐴 · 𝐵) = (⦋𝑧 / 𝑥⦌𝐴 · ⦋𝑧 / 𝑥⦌𝐵)) | 
| 42 | 39, 41 | eqtrd 2229 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑧) = (⦋𝑧 / 𝑥⦌𝐴 · ⦋𝑧 / 𝑥⦌𝐵)) | 
| 43 |   | mulcncflem.v | 
. . . . . . . . . . 11
⊢ (𝜑 → 𝑉 ∈ 𝑋) | 
| 44 | 43 | ad2antrr 488 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → 𝑉 ∈ 𝑋) | 
| 45 |   | rspcsbela 3144 | 
. . . . . . . . . . . 12
⊢ ((𝑉 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝐴 · 𝐵) ∈ ℂ) →
⦋𝑉 / 𝑥⦌(𝐴 · 𝐵) ∈ ℂ) | 
| 46 | 43, 32, 45 | syl2anc 411 | 
. . . . . . . . . . 11
⊢ (𝜑 → ⦋𝑉 / 𝑥⦌(𝐴 · 𝐵) ∈ ℂ) | 
| 47 | 46 | ad2antrr 488 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) →
⦋𝑉 / 𝑥⦌(𝐴 · 𝐵) ∈ ℂ) | 
| 48 | 37 | fvmpts 5639 | 
. . . . . . . . . 10
⊢ ((𝑉 ∈ 𝑋 ∧ ⦋𝑉 / 𝑥⦌(𝐴 · 𝐵) ∈ ℂ) → ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑉) = ⦋𝑉 / 𝑥⦌(𝐴 · 𝐵)) | 
| 49 | 44, 47, 48 | syl2anc 411 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑉) = ⦋𝑉 / 𝑥⦌(𝐴 · 𝐵)) | 
| 50 |   | csbov12g 5961 | 
. . . . . . . . . 10
⊢ (𝑉 ∈ 𝑋 → ⦋𝑉 / 𝑥⦌(𝐴 · 𝐵) = (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵)) | 
| 51 | 44, 50 | syl 14 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) →
⦋𝑉 / 𝑥⦌(𝐴 · 𝐵) = (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵)) | 
| 52 | 49, 51 | eqtrd 2229 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑉) = (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵)) | 
| 53 | 42, 52 | oveq12d 5940 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → (((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑧) − ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑉)) = ((⦋𝑧 / 𝑥⦌𝐴 · ⦋𝑧 / 𝑥⦌𝐵) − (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵))) | 
| 54 | 53 | fveq2d 5562 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) →
(abs‘(((𝑥 ∈
𝑋 ↦ (𝐴 · 𝐵))‘𝑧) − ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) = (abs‘((⦋𝑧 / 𝑥⦌𝐴 · ⦋𝑧 / 𝑥⦌𝐵) − (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵)))) | 
| 55 |   | simpr 110 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) | 
| 56 |   | cncfrss 14811 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ) → 𝑋 ⊆ ℂ) | 
| 57 | 16, 56 | syl 14 | 
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑋 ⊆ ℂ) | 
| 58 | 57 | ad2antrr 488 | 
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → 𝑋 ⊆ ℂ) | 
| 59 | 58, 14 | sseldd 3184 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → 𝑧 ∈
ℂ) | 
| 60 | 57, 43 | sseldd 3184 | 
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑉 ∈ ℂ) | 
| 61 | 60 | ad2antrr 488 | 
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → 𝑉 ∈ ℂ) | 
| 62 | 59, 61 | subcld 8337 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → (𝑧 − 𝑉) ∈ ℂ) | 
| 63 | 62 | abscld 11346 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → (abs‘(𝑧 − 𝑉)) ∈ ℝ) | 
| 64 | 2 | ad2antrr 488 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → 𝑆 ∈ ℝ) | 
| 65 | 4 | ad2antrr 488 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → 𝑇 ∈ ℝ) | 
| 66 |   | ltmininf 11400 | 
. . . . . . . . . 10
⊢
(((abs‘(𝑧
− 𝑉)) ∈ ℝ
∧ 𝑆 ∈ ℝ
∧ 𝑇 ∈ ℝ)
→ ((abs‘(𝑧
− 𝑉)) < inf({𝑆, 𝑇}, ℝ, < ) ↔ ((abs‘(𝑧 − 𝑉)) < 𝑆 ∧ (abs‘(𝑧 − 𝑉)) < 𝑇))) | 
| 67 | 63, 64, 65, 66 | syl3anc 1249 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) →
((abs‘(𝑧 −
𝑉)) < inf({𝑆, 𝑇}, ℝ, < ) ↔ ((abs‘(𝑧 − 𝑉)) < 𝑆 ∧ (abs‘(𝑧 − 𝑉)) < 𝑇))) | 
| 68 | 55, 67 | mpbid 147 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) →
((abs‘(𝑧 −
𝑉)) < 𝑆 ∧ (abs‘(𝑧 − 𝑉)) < 𝑇)) | 
| 69 |   | mulcncflem.acn | 
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑢 ∈ 𝑋 ((abs‘(𝑢 − 𝑉)) < 𝑆 → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑢) − ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑉))) < 𝐹)) | 
| 70 |   | fvoveq1 5945 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = 𝑧 → (abs‘(𝑢 − 𝑉)) = (abs‘(𝑧 − 𝑉))) | 
| 71 | 70 | breq1d 4043 | 
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑧 → ((abs‘(𝑢 − 𝑉)) < 𝑆 ↔ (abs‘(𝑧 − 𝑉)) < 𝑆)) | 
| 72 | 71 | imbrov2fvoveq 5947 | 
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑧 → (((abs‘(𝑢 − 𝑉)) < 𝑆 → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑢) − ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑉))) < 𝐹) ↔ ((abs‘(𝑧 − 𝑉)) < 𝑆 → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑧) − ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑉))) < 𝐹))) | 
| 73 | 72 | cbvralv 2729 | 
. . . . . . . . . . . . 13
⊢
(∀𝑢 ∈
𝑋 ((abs‘(𝑢 − 𝑉)) < 𝑆 → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑢) − ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑉))) < 𝐹) ↔ ∀𝑧 ∈ 𝑋 ((abs‘(𝑧 − 𝑉)) < 𝑆 → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑧) − ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑉))) < 𝐹)) | 
| 74 | 69, 73 | sylib 122 | 
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑧 ∈ 𝑋 ((abs‘(𝑧 − 𝑉)) < 𝑆 → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑧) − ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑉))) < 𝐹)) | 
| 75 | 74 | r19.21bi 2585 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ((abs‘(𝑧 − 𝑉)) < 𝑆 → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑧) − ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑉))) < 𝐹)) | 
| 76 | 21 | adantr 276 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ∀𝑥 ∈ 𝑋 𝐴 ∈ ℂ) | 
| 77 |   | rspcsbela 3144 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋 𝐴 ∈ ℂ) → ⦋𝑧 / 𝑥⦌𝐴 ∈ ℂ) | 
| 78 | 15, 76, 77 | syl2anc 411 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ⦋𝑧 / 𝑥⦌𝐴 ∈ ℂ) | 
| 79 | 19 | fvmpts 5639 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ 𝑋 ∧ ⦋𝑧 / 𝑥⦌𝐴 ∈ ℂ) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑧) = ⦋𝑧 / 𝑥⦌𝐴) | 
| 80 | 15, 78, 79 | syl2anc 411 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑧) = ⦋𝑧 / 𝑥⦌𝐴) | 
| 81 | 43 | adantr 276 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑉 ∈ 𝑋) | 
| 82 |   | rspcsbela 3144 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑉 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋 𝐴 ∈ ℂ) → ⦋𝑉 / 𝑥⦌𝐴 ∈ ℂ) | 
| 83 | 81, 76, 82 | syl2anc 411 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ⦋𝑉 / 𝑥⦌𝐴 ∈ ℂ) | 
| 84 | 19 | fvmpts 5639 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑉 ∈ 𝑋 ∧ ⦋𝑉 / 𝑥⦌𝐴 ∈ ℂ) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑉) = ⦋𝑉 / 𝑥⦌𝐴) | 
| 85 | 81, 83, 84 | syl2anc 411 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑉) = ⦋𝑉 / 𝑥⦌𝐴) | 
| 86 | 80, 85 | oveq12d 5940 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑧) − ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑉)) = (⦋𝑧 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) | 
| 87 | 86 | fveq2d 5562 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑧) − ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑉))) = (abs‘(⦋𝑧 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴))) | 
| 88 | 87 | breq1d 4043 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ((abs‘(((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑧) − ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑉))) < 𝐹 ↔ (abs‘(⦋𝑧 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) < 𝐹)) | 
| 89 | 75, 88 | sylibd 149 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ((abs‘(𝑧 − 𝑉)) < 𝑆 → (abs‘(⦋𝑧 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) < 𝐹)) | 
| 90 |   | mulcncflem.bcn | 
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑢 ∈ 𝑋 ((abs‘(𝑢 − 𝑉)) < 𝑇 → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑢) − ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑉))) < 𝐺)) | 
| 91 | 70 | breq1d 4043 | 
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑧 → ((abs‘(𝑢 − 𝑉)) < 𝑇 ↔ (abs‘(𝑧 − 𝑉)) < 𝑇)) | 
| 92 | 91 | imbrov2fvoveq 5947 | 
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑧 → (((abs‘(𝑢 − 𝑉)) < 𝑇 → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑢) − ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑉))) < 𝐺) ↔ ((abs‘(𝑧 − 𝑉)) < 𝑇 → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑧) − ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑉))) < 𝐺))) | 
| 93 | 92 | cbvralv 2729 | 
. . . . . . . . . . . . 13
⊢
(∀𝑢 ∈
𝑋 ((abs‘(𝑢 − 𝑉)) < 𝑇 → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑢) − ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑉))) < 𝐺) ↔ ∀𝑧 ∈ 𝑋 ((abs‘(𝑧 − 𝑉)) < 𝑇 → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑧) − ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑉))) < 𝐺)) | 
| 94 | 90, 93 | sylib 122 | 
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑧 ∈ 𝑋 ((abs‘(𝑧 − 𝑉)) < 𝑇 → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑧) − ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑉))) < 𝐺)) | 
| 95 | 94 | r19.21bi 2585 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ((abs‘(𝑧 − 𝑉)) < 𝑇 → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑧) − ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑉))) < 𝐺)) | 
| 96 | 27 | adantr 276 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ∀𝑥 ∈ 𝑋 𝐵 ∈ ℂ) | 
| 97 |   | rspcsbela 3144 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋 𝐵 ∈ ℂ) → ⦋𝑧 / 𝑥⦌𝐵 ∈ ℂ) | 
| 98 | 15, 96, 97 | syl2anc 411 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ⦋𝑧 / 𝑥⦌𝐵 ∈ ℂ) | 
| 99 | 25 | fvmpts 5639 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ 𝑋 ∧ ⦋𝑧 / 𝑥⦌𝐵 ∈ ℂ) → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑧) = ⦋𝑧 / 𝑥⦌𝐵) | 
| 100 | 15, 98, 99 | syl2anc 411 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑧) = ⦋𝑧 / 𝑥⦌𝐵) | 
| 101 |   | rspcsbela 3144 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑉 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋 𝐵 ∈ ℂ) → ⦋𝑉 / 𝑥⦌𝐵 ∈ ℂ) | 
| 102 | 81, 96, 101 | syl2anc 411 | 
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ⦋𝑉 / 𝑥⦌𝐵 ∈ ℂ) | 
| 103 | 25 | fvmpts 5639 | 
. . . . . . . . . . . . . . 15
⊢ ((𝑉 ∈ 𝑋 ∧ ⦋𝑉 / 𝑥⦌𝐵 ∈ ℂ) → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑉) = ⦋𝑉 / 𝑥⦌𝐵) | 
| 104 | 81, 102, 103 | syl2anc 411 | 
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑉) = ⦋𝑉 / 𝑥⦌𝐵) | 
| 105 | 100, 104 | oveq12d 5940 | 
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑧) − ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑉)) = (⦋𝑧 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) | 
| 106 | 105 | fveq2d 5562 | 
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑧) − ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑉))) = (abs‘(⦋𝑧 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵))) | 
| 107 | 106 | breq1d 4043 | 
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ((abs‘(((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑧) − ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑉))) < 𝐺 ↔ (abs‘(⦋𝑧 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) < 𝐺)) | 
| 108 | 95, 107 | sylibd 149 | 
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ((abs‘(𝑧 − 𝑉)) < 𝑇 → (abs‘(⦋𝑧 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) < 𝐺)) | 
| 109 | 89, 108 | anim12d 335 | 
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (((abs‘(𝑧 − 𝑉)) < 𝑆 ∧ (abs‘(𝑧 − 𝑉)) < 𝑇) → ((abs‘(⦋𝑧 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) < 𝐹 ∧ (abs‘(⦋𝑧 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) < 𝐺))) | 
| 110 | 109 | adantr 276 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) →
(((abs‘(𝑧 −
𝑉)) < 𝑆 ∧ (abs‘(𝑧 − 𝑉)) < 𝑇) → ((abs‘(⦋𝑧 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) < 𝐹 ∧ (abs‘(⦋𝑧 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) < 𝐺))) | 
| 111 | 68, 110 | mpd 13 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) →
((abs‘(⦋𝑧 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) < 𝐹 ∧ (abs‘(⦋𝑧 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) < 𝐺)) | 
| 112 |   | mulcncflem.cn | 
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑢 ∈ 𝑋 (((abs‘(⦋𝑢 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) < 𝐹 ∧ (abs‘(⦋𝑢 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) < 𝐺) → (abs‘((⦋𝑢 / 𝑥⦌𝐴 · ⦋𝑢 / 𝑥⦌𝐵) − (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵))) < 𝐸)) | 
| 113 |   | csbeq1 3087 | 
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑧 → ⦋𝑢 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) | 
| 114 | 113 | fvoveq1d 5944 | 
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑧 → (abs‘(⦋𝑢 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) = (abs‘(⦋𝑧 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴))) | 
| 115 | 114 | breq1d 4043 | 
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑧 → ((abs‘(⦋𝑢 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) < 𝐹 ↔ (abs‘(⦋𝑧 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) < 𝐹)) | 
| 116 |   | csbeq1 3087 | 
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑧 → ⦋𝑢 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵) | 
| 117 | 116 | fvoveq1d 5944 | 
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑧 → (abs‘(⦋𝑢 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) = (abs‘(⦋𝑧 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵))) | 
| 118 | 117 | breq1d 4043 | 
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑧 → ((abs‘(⦋𝑢 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) < 𝐺 ↔ (abs‘(⦋𝑧 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) < 𝐺)) | 
| 119 | 115, 118 | anbi12d 473 | 
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑧 → (((abs‘(⦋𝑢 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) < 𝐹 ∧ (abs‘(⦋𝑢 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) < 𝐺) ↔ ((abs‘(⦋𝑧 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) < 𝐹 ∧ (abs‘(⦋𝑧 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) < 𝐺))) | 
| 120 | 113, 116 | oveq12d 5940 | 
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑧 → (⦋𝑢 / 𝑥⦌𝐴 · ⦋𝑢 / 𝑥⦌𝐵) = (⦋𝑧 / 𝑥⦌𝐴 · ⦋𝑧 / 𝑥⦌𝐵)) | 
| 121 | 120 | fvoveq1d 5944 | 
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑧 → (abs‘((⦋𝑢 / 𝑥⦌𝐴 · ⦋𝑢 / 𝑥⦌𝐵) − (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵))) = (abs‘((⦋𝑧 / 𝑥⦌𝐴 · ⦋𝑧 / 𝑥⦌𝐵) − (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵)))) | 
| 122 | 121 | breq1d 4043 | 
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑧 → ((abs‘((⦋𝑢 / 𝑥⦌𝐴 · ⦋𝑢 / 𝑥⦌𝐵) − (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵))) < 𝐸 ↔ (abs‘((⦋𝑧 / 𝑥⦌𝐴 · ⦋𝑧 / 𝑥⦌𝐵) − (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵))) < 𝐸)) | 
| 123 | 119, 122 | imbi12d 234 | 
. . . . . . . . . . 11
⊢ (𝑢 = 𝑧 → ((((abs‘(⦋𝑢 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) < 𝐹 ∧ (abs‘(⦋𝑢 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) < 𝐺) → (abs‘((⦋𝑢 / 𝑥⦌𝐴 · ⦋𝑢 / 𝑥⦌𝐵) − (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵))) < 𝐸) ↔ (((abs‘(⦋𝑧 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) < 𝐹 ∧ (abs‘(⦋𝑧 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) < 𝐺) → (abs‘((⦋𝑧 / 𝑥⦌𝐴 · ⦋𝑧 / 𝑥⦌𝐵) − (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵))) < 𝐸))) | 
| 124 | 123 | cbvralv 2729 | 
. . . . . . . . . 10
⊢
(∀𝑢 ∈
𝑋
(((abs‘(⦋𝑢 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) < 𝐹 ∧ (abs‘(⦋𝑢 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) < 𝐺) → (abs‘((⦋𝑢 / 𝑥⦌𝐴 · ⦋𝑢 / 𝑥⦌𝐵) − (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵))) < 𝐸) ↔ ∀𝑧 ∈ 𝑋 (((abs‘(⦋𝑧 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) < 𝐹 ∧ (abs‘(⦋𝑧 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) < 𝐺) → (abs‘((⦋𝑧 / 𝑥⦌𝐴 · ⦋𝑧 / 𝑥⦌𝐵) − (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵))) < 𝐸)) | 
| 125 | 112, 124 | sylib 122 | 
. . . . . . . . 9
⊢ (𝜑 → ∀𝑧 ∈ 𝑋 (((abs‘(⦋𝑧 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) < 𝐹 ∧ (abs‘(⦋𝑧 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) < 𝐺) → (abs‘((⦋𝑧 / 𝑥⦌𝐴 · ⦋𝑧 / 𝑥⦌𝐵) − (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵))) < 𝐸)) | 
| 126 | 125 | r19.21bi 2585 | 
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (((abs‘(⦋𝑧 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) < 𝐹 ∧ (abs‘(⦋𝑧 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) < 𝐺) → (abs‘((⦋𝑧 / 𝑥⦌𝐴 · ⦋𝑧 / 𝑥⦌𝐵) − (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵))) < 𝐸)) | 
| 127 | 126 | adantr 276 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) →
(((abs‘(⦋𝑧 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) < 𝐹 ∧ (abs‘(⦋𝑧 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) < 𝐺) → (abs‘((⦋𝑧 / 𝑥⦌𝐴 · ⦋𝑧 / 𝑥⦌𝐵) − (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵))) < 𝐸)) | 
| 128 | 111, 127 | mpd 13 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) →
(abs‘((⦋𝑧 / 𝑥⦌𝐴 · ⦋𝑧 / 𝑥⦌𝐵) − (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵))) < 𝐸) | 
| 129 | 54, 128 | eqbrtrd 4055 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) →
(abs‘(((𝑥 ∈
𝑋 ↦ (𝐴 · 𝐵))‘𝑧) − ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸) | 
| 130 | 129 | ex 115 | 
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ((abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < ) →
(abs‘(((𝑥 ∈
𝑋 ↦ (𝐴 · 𝐵))‘𝑧) − ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸)) | 
| 131 | 130 | ralrimiva 2570 | 
. . 3
⊢ (𝜑 → ∀𝑧 ∈ 𝑋 ((abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < ) →
(abs‘(((𝑥 ∈
𝑋 ↦ (𝐴 · 𝐵))‘𝑧) − ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸)) | 
| 132 |   | fvoveq1 5945 | 
. . . . . 6
⊢ (𝑧 = 𝑢 → (abs‘(𝑧 − 𝑉)) = (abs‘(𝑢 − 𝑉))) | 
| 133 | 132 | breq1d 4043 | 
. . . . 5
⊢ (𝑧 = 𝑢 → ((abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < ) ↔ (abs‘(𝑢 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < ))) | 
| 134 | 133 | imbrov2fvoveq 5947 | 
. . . 4
⊢ (𝑧 = 𝑢 → (((abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < ) →
(abs‘(((𝑥 ∈
𝑋 ↦ (𝐴 · 𝐵))‘𝑧) − ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸) ↔ ((abs‘(𝑢 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < ) →
(abs‘(((𝑥 ∈
𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸))) | 
| 135 | 134 | cbvralv 2729 | 
. . 3
⊢
(∀𝑧 ∈
𝑋 ((abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < ) →
(abs‘(((𝑥 ∈
𝑋 ↦ (𝐴 · 𝐵))‘𝑧) − ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸) ↔ ∀𝑢 ∈ 𝑋 ((abs‘(𝑢 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < ) →
(abs‘(((𝑥 ∈
𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸)) | 
| 136 | 131, 135 | sylib 122 | 
. 2
⊢ (𝜑 → ∀𝑢 ∈ 𝑋 ((abs‘(𝑢 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < ) →
(abs‘(((𝑥 ∈
𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸)) | 
| 137 |   | breq2 4037 | 
. . 3
⊢ (𝑑 = inf({𝑆, 𝑇}, ℝ, < ) → ((abs‘(𝑢 − 𝑉)) < 𝑑 ↔ (abs‘(𝑢 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < ))) | 
| 138 | 137 | rspceaimv 2876 | 
. 2
⊢
((inf({𝑆, 𝑇}, ℝ, < ) ∈
ℝ+ ∧ ∀𝑢 ∈ 𝑋 ((abs‘(𝑢 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < ) →
(abs‘(((𝑥 ∈
𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸)) → ∃𝑑 ∈ ℝ+ ∀𝑢 ∈ 𝑋 ((abs‘(𝑢 − 𝑉)) < 𝑑 → (abs‘(((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸)) | 
| 139 | 13, 136, 138 | syl2anc 411 | 
1
⊢ (𝜑 → ∃𝑑 ∈ ℝ+ ∀𝑢 ∈ 𝑋 ((abs‘(𝑢 − 𝑉)) < 𝑑 → (abs‘(((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸)) |