Step | Hyp | Ref
| Expression |
1 | | mulcncflem.s |
. . . . 5
⊢ (𝜑 → 𝑆 ∈
ℝ+) |
2 | 1 | rpred 9632 |
. . . 4
⊢ (𝜑 → 𝑆 ∈ ℝ) |
3 | | mulcncflem.t |
. . . . 5
⊢ (𝜑 → 𝑇 ∈
ℝ+) |
4 | 3 | rpred 9632 |
. . . 4
⊢ (𝜑 → 𝑇 ∈ ℝ) |
5 | | mincl 11172 |
. . . 4
⊢ ((𝑆 ∈ ℝ ∧ 𝑇 ∈ ℝ) →
inf({𝑆, 𝑇}, ℝ, < ) ∈
ℝ) |
6 | 2, 4, 5 | syl2anc 409 |
. . 3
⊢ (𝜑 → inf({𝑆, 𝑇}, ℝ, < ) ∈
ℝ) |
7 | 1 | rpgt0d 9635 |
. . . 4
⊢ (𝜑 → 0 < 𝑆) |
8 | 3 | rpgt0d 9635 |
. . . 4
⊢ (𝜑 → 0 < 𝑇) |
9 | | 0red 7900 |
. . . . 5
⊢ (𝜑 → 0 ∈
ℝ) |
10 | | ltmininf 11176 |
. . . . 5
⊢ ((0
∈ ℝ ∧ 𝑆
∈ ℝ ∧ 𝑇
∈ ℝ) → (0 < inf({𝑆, 𝑇}, ℝ, < ) ↔ (0 < 𝑆 ∧ 0 < 𝑇))) |
11 | 9, 2, 4, 10 | syl3anc 1228 |
. . . 4
⊢ (𝜑 → (0 < inf({𝑆, 𝑇}, ℝ, < ) ↔ (0 < 𝑆 ∧ 0 < 𝑇))) |
12 | 7, 8, 11 | mpbir2and 934 |
. . 3
⊢ (𝜑 → 0 < inf({𝑆, 𝑇}, ℝ, < )) |
13 | 6, 12 | elrpd 9629 |
. 2
⊢ (𝜑 → inf({𝑆, 𝑇}, ℝ, < ) ∈
ℝ+) |
14 | | simplr 520 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → 𝑧 ∈ 𝑋) |
15 | | simpr 109 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑧 ∈ 𝑋) |
16 | | mulcncflem.a |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) |
17 | | cncff 13204 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ) → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
18 | 16, 17 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
19 | | eqid 2165 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑥 ∈ 𝑋 ↦ 𝐴) |
20 | 19 | fmpt 5635 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑥 ∈
𝑋 𝐴 ∈ ℂ ↔ (𝑥 ∈ 𝑋 ↦ 𝐴):𝑋⟶ℂ) |
21 | 18, 20 | sylibr 133 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐴 ∈ ℂ) |
22 | | mulcncflem.b |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) |
23 | | cncff 13204 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ) → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℂ) |
24 | 22, 23 | syl 14 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℂ) |
25 | | eqid 2165 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ 𝐵) |
26 | 25 | fmpt 5635 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑥 ∈
𝑋 𝐵 ∈ ℂ ↔ (𝑥 ∈ 𝑋 ↦ 𝐵):𝑋⟶ℂ) |
27 | 24, 26 | sylibr 133 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 𝐵 ∈ ℂ) |
28 | | r19.26 2592 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑥 ∈
𝑋 (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ↔ (∀𝑥 ∈ 𝑋 𝐴 ∈ ℂ ∧ ∀𝑥 ∈ 𝑋 𝐵 ∈ ℂ)) |
29 | 21, 27, 28 | sylanbrc 414 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ)) |
30 | | mulcl 7880 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) |
31 | 30 | ralimi 2529 |
. . . . . . . . . . . . . 14
⊢
(∀𝑥 ∈
𝑋 (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∀𝑥 ∈ 𝑋 (𝐴 · 𝐵) ∈ ℂ) |
32 | 29, 31 | syl 14 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 (𝐴 · 𝐵) ∈ ℂ) |
33 | 32 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ∀𝑥 ∈ 𝑋 (𝐴 · 𝐵) ∈ ℂ) |
34 | | rspcsbela 3104 |
. . . . . . . . . . . 12
⊢ ((𝑧 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝐴 · 𝐵) ∈ ℂ) →
⦋𝑧 / 𝑥⦌(𝐴 · 𝐵) ∈ ℂ) |
35 | 15, 33, 34 | syl2anc 409 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ⦋𝑧 / 𝑥⦌(𝐴 · 𝐵) ∈ ℂ) |
36 | 35 | adantr 274 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) →
⦋𝑧 / 𝑥⦌(𝐴 · 𝐵) ∈ ℂ) |
37 | | eqid 2165 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) = (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) |
38 | 37 | fvmpts 5564 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ 𝑋 ∧ ⦋𝑧 / 𝑥⦌(𝐴 · 𝐵) ∈ ℂ) → ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑧) = ⦋𝑧 / 𝑥⦌(𝐴 · 𝐵)) |
39 | 14, 36, 38 | syl2anc 409 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑧) = ⦋𝑧 / 𝑥⦌(𝐴 · 𝐵)) |
40 | | csbov12g 5881 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝑋 → ⦋𝑧 / 𝑥⦌(𝐴 · 𝐵) = (⦋𝑧 / 𝑥⦌𝐴 · ⦋𝑧 / 𝑥⦌𝐵)) |
41 | 14, 40 | syl 14 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) →
⦋𝑧 / 𝑥⦌(𝐴 · 𝐵) = (⦋𝑧 / 𝑥⦌𝐴 · ⦋𝑧 / 𝑥⦌𝐵)) |
42 | 39, 41 | eqtrd 2198 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑧) = (⦋𝑧 / 𝑥⦌𝐴 · ⦋𝑧 / 𝑥⦌𝐵)) |
43 | | mulcncflem.v |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑉 ∈ 𝑋) |
44 | 43 | ad2antrr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → 𝑉 ∈ 𝑋) |
45 | | rspcsbela 3104 |
. . . . . . . . . . . 12
⊢ ((𝑉 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋 (𝐴 · 𝐵) ∈ ℂ) →
⦋𝑉 / 𝑥⦌(𝐴 · 𝐵) ∈ ℂ) |
46 | 43, 32, 45 | syl2anc 409 |
. . . . . . . . . . 11
⊢ (𝜑 → ⦋𝑉 / 𝑥⦌(𝐴 · 𝐵) ∈ ℂ) |
47 | 46 | ad2antrr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) →
⦋𝑉 / 𝑥⦌(𝐴 · 𝐵) ∈ ℂ) |
48 | 37 | fvmpts 5564 |
. . . . . . . . . 10
⊢ ((𝑉 ∈ 𝑋 ∧ ⦋𝑉 / 𝑥⦌(𝐴 · 𝐵) ∈ ℂ) → ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑉) = ⦋𝑉 / 𝑥⦌(𝐴 · 𝐵)) |
49 | 44, 47, 48 | syl2anc 409 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑉) = ⦋𝑉 / 𝑥⦌(𝐴 · 𝐵)) |
50 | | csbov12g 5881 |
. . . . . . . . . 10
⊢ (𝑉 ∈ 𝑋 → ⦋𝑉 / 𝑥⦌(𝐴 · 𝐵) = (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵)) |
51 | 44, 50 | syl 14 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) →
⦋𝑉 / 𝑥⦌(𝐴 · 𝐵) = (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵)) |
52 | 49, 51 | eqtrd 2198 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑉) = (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵)) |
53 | 42, 52 | oveq12d 5860 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → (((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑧) − ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑉)) = ((⦋𝑧 / 𝑥⦌𝐴 · ⦋𝑧 / 𝑥⦌𝐵) − (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵))) |
54 | 53 | fveq2d 5490 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) →
(abs‘(((𝑥 ∈
𝑋 ↦ (𝐴 · 𝐵))‘𝑧) − ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) = (abs‘((⦋𝑧 / 𝑥⦌𝐴 · ⦋𝑧 / 𝑥⦌𝐵) − (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵)))) |
55 | | simpr 109 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) |
56 | | cncfrss 13202 |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ) → 𝑋 ⊆ ℂ) |
57 | 16, 56 | syl 14 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑋 ⊆ ℂ) |
58 | 57 | ad2antrr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → 𝑋 ⊆ ℂ) |
59 | 58, 14 | sseldd 3143 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → 𝑧 ∈
ℂ) |
60 | 57, 43 | sseldd 3143 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑉 ∈ ℂ) |
61 | 60 | ad2antrr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → 𝑉 ∈ ℂ) |
62 | 59, 61 | subcld 8209 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → (𝑧 − 𝑉) ∈ ℂ) |
63 | 62 | abscld 11123 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → (abs‘(𝑧 − 𝑉)) ∈ ℝ) |
64 | 2 | ad2antrr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → 𝑆 ∈ ℝ) |
65 | 4 | ad2antrr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → 𝑇 ∈ ℝ) |
66 | | ltmininf 11176 |
. . . . . . . . . 10
⊢
(((abs‘(𝑧
− 𝑉)) ∈ ℝ
∧ 𝑆 ∈ ℝ
∧ 𝑇 ∈ ℝ)
→ ((abs‘(𝑧
− 𝑉)) < inf({𝑆, 𝑇}, ℝ, < ) ↔ ((abs‘(𝑧 − 𝑉)) < 𝑆 ∧ (abs‘(𝑧 − 𝑉)) < 𝑇))) |
67 | 63, 64, 65, 66 | syl3anc 1228 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) →
((abs‘(𝑧 −
𝑉)) < inf({𝑆, 𝑇}, ℝ, < ) ↔ ((abs‘(𝑧 − 𝑉)) < 𝑆 ∧ (abs‘(𝑧 − 𝑉)) < 𝑇))) |
68 | 55, 67 | mpbid 146 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) →
((abs‘(𝑧 −
𝑉)) < 𝑆 ∧ (abs‘(𝑧 − 𝑉)) < 𝑇)) |
69 | | mulcncflem.acn |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑢 ∈ 𝑋 ((abs‘(𝑢 − 𝑉)) < 𝑆 → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑢) − ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑉))) < 𝐹)) |
70 | | fvoveq1 5865 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = 𝑧 → (abs‘(𝑢 − 𝑉)) = (abs‘(𝑧 − 𝑉))) |
71 | 70 | breq1d 3992 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑧 → ((abs‘(𝑢 − 𝑉)) < 𝑆 ↔ (abs‘(𝑧 − 𝑉)) < 𝑆)) |
72 | 71 | imbrov2fvoveq 5867 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑧 → (((abs‘(𝑢 − 𝑉)) < 𝑆 → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑢) − ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑉))) < 𝐹) ↔ ((abs‘(𝑧 − 𝑉)) < 𝑆 → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑧) − ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑉))) < 𝐹))) |
73 | 72 | cbvralv 2692 |
. . . . . . . . . . . . 13
⊢
(∀𝑢 ∈
𝑋 ((abs‘(𝑢 − 𝑉)) < 𝑆 → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑢) − ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑉))) < 𝐹) ↔ ∀𝑧 ∈ 𝑋 ((abs‘(𝑧 − 𝑉)) < 𝑆 → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑧) − ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑉))) < 𝐹)) |
74 | 69, 73 | sylib 121 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑧 ∈ 𝑋 ((abs‘(𝑧 − 𝑉)) < 𝑆 → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑧) − ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑉))) < 𝐹)) |
75 | 74 | r19.21bi 2554 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ((abs‘(𝑧 − 𝑉)) < 𝑆 → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑧) − ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑉))) < 𝐹)) |
76 | 21 | adantr 274 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ∀𝑥 ∈ 𝑋 𝐴 ∈ ℂ) |
77 | | rspcsbela 3104 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋 𝐴 ∈ ℂ) → ⦋𝑧 / 𝑥⦌𝐴 ∈ ℂ) |
78 | 15, 76, 77 | syl2anc 409 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ⦋𝑧 / 𝑥⦌𝐴 ∈ ℂ) |
79 | 19 | fvmpts 5564 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ 𝑋 ∧ ⦋𝑧 / 𝑥⦌𝐴 ∈ ℂ) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑧) = ⦋𝑧 / 𝑥⦌𝐴) |
80 | 15, 78, 79 | syl2anc 409 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑧) = ⦋𝑧 / 𝑥⦌𝐴) |
81 | 43 | adantr 274 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑉 ∈ 𝑋) |
82 | | rspcsbela 3104 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑉 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋 𝐴 ∈ ℂ) → ⦋𝑉 / 𝑥⦌𝐴 ∈ ℂ) |
83 | 81, 76, 82 | syl2anc 409 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ⦋𝑉 / 𝑥⦌𝐴 ∈ ℂ) |
84 | 19 | fvmpts 5564 |
. . . . . . . . . . . . . . 15
⊢ ((𝑉 ∈ 𝑋 ∧ ⦋𝑉 / 𝑥⦌𝐴 ∈ ℂ) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑉) = ⦋𝑉 / 𝑥⦌𝐴) |
85 | 81, 83, 84 | syl2anc 409 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑉) = ⦋𝑉 / 𝑥⦌𝐴) |
86 | 80, 85 | oveq12d 5860 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑧) − ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑉)) = (⦋𝑧 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) |
87 | 86 | fveq2d 5490 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑧) − ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑉))) = (abs‘(⦋𝑧 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴))) |
88 | 87 | breq1d 3992 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ((abs‘(((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑧) − ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑉))) < 𝐹 ↔ (abs‘(⦋𝑧 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) < 𝐹)) |
89 | 75, 88 | sylibd 148 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ((abs‘(𝑧 − 𝑉)) < 𝑆 → (abs‘(⦋𝑧 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) < 𝐹)) |
90 | | mulcncflem.bcn |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑢 ∈ 𝑋 ((abs‘(𝑢 − 𝑉)) < 𝑇 → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑢) − ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑉))) < 𝐺)) |
91 | 70 | breq1d 3992 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑧 → ((abs‘(𝑢 − 𝑉)) < 𝑇 ↔ (abs‘(𝑧 − 𝑉)) < 𝑇)) |
92 | 91 | imbrov2fvoveq 5867 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑧 → (((abs‘(𝑢 − 𝑉)) < 𝑇 → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑢) − ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑉))) < 𝐺) ↔ ((abs‘(𝑧 − 𝑉)) < 𝑇 → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑧) − ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑉))) < 𝐺))) |
93 | 92 | cbvralv 2692 |
. . . . . . . . . . . . 13
⊢
(∀𝑢 ∈
𝑋 ((abs‘(𝑢 − 𝑉)) < 𝑇 → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑢) − ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑉))) < 𝐺) ↔ ∀𝑧 ∈ 𝑋 ((abs‘(𝑧 − 𝑉)) < 𝑇 → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑧) − ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑉))) < 𝐺)) |
94 | 90, 93 | sylib 121 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑧 ∈ 𝑋 ((abs‘(𝑧 − 𝑉)) < 𝑇 → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑧) − ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑉))) < 𝐺)) |
95 | 94 | r19.21bi 2554 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ((abs‘(𝑧 − 𝑉)) < 𝑇 → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑧) − ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑉))) < 𝐺)) |
96 | 27 | adantr 274 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ∀𝑥 ∈ 𝑋 𝐵 ∈ ℂ) |
97 | | rspcsbela 3104 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑧 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋 𝐵 ∈ ℂ) → ⦋𝑧 / 𝑥⦌𝐵 ∈ ℂ) |
98 | 15, 96, 97 | syl2anc 409 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ⦋𝑧 / 𝑥⦌𝐵 ∈ ℂ) |
99 | 25 | fvmpts 5564 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ 𝑋 ∧ ⦋𝑧 / 𝑥⦌𝐵 ∈ ℂ) → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑧) = ⦋𝑧 / 𝑥⦌𝐵) |
100 | 15, 98, 99 | syl2anc 409 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑧) = ⦋𝑧 / 𝑥⦌𝐵) |
101 | | rspcsbela 3104 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑉 ∈ 𝑋 ∧ ∀𝑥 ∈ 𝑋 𝐵 ∈ ℂ) → ⦋𝑉 / 𝑥⦌𝐵 ∈ ℂ) |
102 | 81, 96, 101 | syl2anc 409 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ⦋𝑉 / 𝑥⦌𝐵 ∈ ℂ) |
103 | 25 | fvmpts 5564 |
. . . . . . . . . . . . . . 15
⊢ ((𝑉 ∈ 𝑋 ∧ ⦋𝑉 / 𝑥⦌𝐵 ∈ ℂ) → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑉) = ⦋𝑉 / 𝑥⦌𝐵) |
104 | 81, 102, 103 | syl2anc 409 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑉) = ⦋𝑉 / 𝑥⦌𝐵) |
105 | 100, 104 | oveq12d 5860 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑧) − ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑉)) = (⦋𝑧 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) |
106 | 105 | fveq2d 5490 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑧) − ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑉))) = (abs‘(⦋𝑧 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵))) |
107 | 106 | breq1d 3992 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ((abs‘(((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑧) − ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑉))) < 𝐺 ↔ (abs‘(⦋𝑧 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) < 𝐺)) |
108 | 95, 107 | sylibd 148 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ((abs‘(𝑧 − 𝑉)) < 𝑇 → (abs‘(⦋𝑧 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) < 𝐺)) |
109 | 89, 108 | anim12d 333 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (((abs‘(𝑧 − 𝑉)) < 𝑆 ∧ (abs‘(𝑧 − 𝑉)) < 𝑇) → ((abs‘(⦋𝑧 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) < 𝐹 ∧ (abs‘(⦋𝑧 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) < 𝐺))) |
110 | 109 | adantr 274 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) →
(((abs‘(𝑧 −
𝑉)) < 𝑆 ∧ (abs‘(𝑧 − 𝑉)) < 𝑇) → ((abs‘(⦋𝑧 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) < 𝐹 ∧ (abs‘(⦋𝑧 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) < 𝐺))) |
111 | 68, 110 | mpd 13 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) →
((abs‘(⦋𝑧 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) < 𝐹 ∧ (abs‘(⦋𝑧 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) < 𝐺)) |
112 | | mulcncflem.cn |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑢 ∈ 𝑋 (((abs‘(⦋𝑢 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) < 𝐹 ∧ (abs‘(⦋𝑢 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) < 𝐺) → (abs‘((⦋𝑢 / 𝑥⦌𝐴 · ⦋𝑢 / 𝑥⦌𝐵) − (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵))) < 𝐸)) |
113 | | csbeq1 3048 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑧 → ⦋𝑢 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) |
114 | 113 | fvoveq1d 5864 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑧 → (abs‘(⦋𝑢 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) = (abs‘(⦋𝑧 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴))) |
115 | 114 | breq1d 3992 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑧 → ((abs‘(⦋𝑢 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) < 𝐹 ↔ (abs‘(⦋𝑧 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) < 𝐹)) |
116 | | csbeq1 3048 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = 𝑧 → ⦋𝑢 / 𝑥⦌𝐵 = ⦋𝑧 / 𝑥⦌𝐵) |
117 | 116 | fvoveq1d 5864 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑧 → (abs‘(⦋𝑢 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) = (abs‘(⦋𝑧 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵))) |
118 | 117 | breq1d 3992 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑧 → ((abs‘(⦋𝑢 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) < 𝐺 ↔ (abs‘(⦋𝑧 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) < 𝐺)) |
119 | 115, 118 | anbi12d 465 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑧 → (((abs‘(⦋𝑢 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) < 𝐹 ∧ (abs‘(⦋𝑢 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) < 𝐺) ↔ ((abs‘(⦋𝑧 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) < 𝐹 ∧ (abs‘(⦋𝑧 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) < 𝐺))) |
120 | 113, 116 | oveq12d 5860 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑧 → (⦋𝑢 / 𝑥⦌𝐴 · ⦋𝑢 / 𝑥⦌𝐵) = (⦋𝑧 / 𝑥⦌𝐴 · ⦋𝑧 / 𝑥⦌𝐵)) |
121 | 120 | fvoveq1d 5864 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑧 → (abs‘((⦋𝑢 / 𝑥⦌𝐴 · ⦋𝑢 / 𝑥⦌𝐵) − (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵))) = (abs‘((⦋𝑧 / 𝑥⦌𝐴 · ⦋𝑧 / 𝑥⦌𝐵) − (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵)))) |
122 | 121 | breq1d 3992 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑧 → ((abs‘((⦋𝑢 / 𝑥⦌𝐴 · ⦋𝑢 / 𝑥⦌𝐵) − (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵))) < 𝐸 ↔ (abs‘((⦋𝑧 / 𝑥⦌𝐴 · ⦋𝑧 / 𝑥⦌𝐵) − (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵))) < 𝐸)) |
123 | 119, 122 | imbi12d 233 |
. . . . . . . . . . 11
⊢ (𝑢 = 𝑧 → ((((abs‘(⦋𝑢 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) < 𝐹 ∧ (abs‘(⦋𝑢 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) < 𝐺) → (abs‘((⦋𝑢 / 𝑥⦌𝐴 · ⦋𝑢 / 𝑥⦌𝐵) − (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵))) < 𝐸) ↔ (((abs‘(⦋𝑧 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) < 𝐹 ∧ (abs‘(⦋𝑧 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) < 𝐺) → (abs‘((⦋𝑧 / 𝑥⦌𝐴 · ⦋𝑧 / 𝑥⦌𝐵) − (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵))) < 𝐸))) |
124 | 123 | cbvralv 2692 |
. . . . . . . . . 10
⊢
(∀𝑢 ∈
𝑋
(((abs‘(⦋𝑢 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) < 𝐹 ∧ (abs‘(⦋𝑢 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) < 𝐺) → (abs‘((⦋𝑢 / 𝑥⦌𝐴 · ⦋𝑢 / 𝑥⦌𝐵) − (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵))) < 𝐸) ↔ ∀𝑧 ∈ 𝑋 (((abs‘(⦋𝑧 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) < 𝐹 ∧ (abs‘(⦋𝑧 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) < 𝐺) → (abs‘((⦋𝑧 / 𝑥⦌𝐴 · ⦋𝑧 / 𝑥⦌𝐵) − (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵))) < 𝐸)) |
125 | 112, 124 | sylib 121 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑧 ∈ 𝑋 (((abs‘(⦋𝑧 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) < 𝐹 ∧ (abs‘(⦋𝑧 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) < 𝐺) → (abs‘((⦋𝑧 / 𝑥⦌𝐴 · ⦋𝑧 / 𝑥⦌𝐵) − (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵))) < 𝐸)) |
126 | 125 | r19.21bi 2554 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → (((abs‘(⦋𝑧 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) < 𝐹 ∧ (abs‘(⦋𝑧 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) < 𝐺) → (abs‘((⦋𝑧 / 𝑥⦌𝐴 · ⦋𝑧 / 𝑥⦌𝐵) − (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵))) < 𝐸)) |
127 | 126 | adantr 274 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) →
(((abs‘(⦋𝑧 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) < 𝐹 ∧ (abs‘(⦋𝑧 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) < 𝐺) → (abs‘((⦋𝑧 / 𝑥⦌𝐴 · ⦋𝑧 / 𝑥⦌𝐵) − (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵))) < 𝐸)) |
128 | 111, 127 | mpd 13 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) →
(abs‘((⦋𝑧 / 𝑥⦌𝐴 · ⦋𝑧 / 𝑥⦌𝐵) − (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵))) < 𝐸) |
129 | 54, 128 | eqbrtrd 4004 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ 𝑋) ∧ (abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) →
(abs‘(((𝑥 ∈
𝑋 ↦ (𝐴 · 𝐵))‘𝑧) − ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸) |
130 | 129 | ex 114 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → ((abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < ) →
(abs‘(((𝑥 ∈
𝑋 ↦ (𝐴 · 𝐵))‘𝑧) − ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸)) |
131 | 130 | ralrimiva 2539 |
. . 3
⊢ (𝜑 → ∀𝑧 ∈ 𝑋 ((abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < ) →
(abs‘(((𝑥 ∈
𝑋 ↦ (𝐴 · 𝐵))‘𝑧) − ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸)) |
132 | | fvoveq1 5865 |
. . . . . 6
⊢ (𝑧 = 𝑢 → (abs‘(𝑧 − 𝑉)) = (abs‘(𝑢 − 𝑉))) |
133 | 132 | breq1d 3992 |
. . . . 5
⊢ (𝑧 = 𝑢 → ((abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < ) ↔ (abs‘(𝑢 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < ))) |
134 | 133 | imbrov2fvoveq 5867 |
. . . 4
⊢ (𝑧 = 𝑢 → (((abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < ) →
(abs‘(((𝑥 ∈
𝑋 ↦ (𝐴 · 𝐵))‘𝑧) − ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸) ↔ ((abs‘(𝑢 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < ) →
(abs‘(((𝑥 ∈
𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸))) |
135 | 134 | cbvralv 2692 |
. . 3
⊢
(∀𝑧 ∈
𝑋 ((abs‘(𝑧 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < ) →
(abs‘(((𝑥 ∈
𝑋 ↦ (𝐴 · 𝐵))‘𝑧) − ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸) ↔ ∀𝑢 ∈ 𝑋 ((abs‘(𝑢 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < ) →
(abs‘(((𝑥 ∈
𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸)) |
136 | 131, 135 | sylib 121 |
. 2
⊢ (𝜑 → ∀𝑢 ∈ 𝑋 ((abs‘(𝑢 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < ) →
(abs‘(((𝑥 ∈
𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸)) |
137 | | breq2 3986 |
. . 3
⊢ (𝑑 = inf({𝑆, 𝑇}, ℝ, < ) → ((abs‘(𝑢 − 𝑉)) < 𝑑 ↔ (abs‘(𝑢 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < ))) |
138 | 137 | rspceaimv 2838 |
. 2
⊢
((inf({𝑆, 𝑇}, ℝ, < ) ∈
ℝ+ ∧ ∀𝑢 ∈ 𝑋 ((abs‘(𝑢 − 𝑉)) < inf({𝑆, 𝑇}, ℝ, < ) →
(abs‘(((𝑥 ∈
𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸)) → ∃𝑑 ∈ ℝ+ ∀𝑢 ∈ 𝑋 ((abs‘(𝑢 − 𝑉)) < 𝑑 → (abs‘(((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸)) |
139 | 13, 136, 138 | syl2anc 409 |
1
⊢ (𝜑 → ∃𝑑 ∈ ℝ+ ∀𝑢 ∈ 𝑋 ((abs‘(𝑢 − 𝑉)) < 𝑑 → (abs‘(((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸)) |