ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcncflem GIF version

Theorem mulcncflem 14761
Description: Lemma for mulcncf 14762. (Contributed by Jim Kingdon, 29-May-2023.)
Hypotheses
Ref Expression
mulcncflem.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
mulcncflem.b (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→ℂ))
mulcncflem.v (𝜑𝑉𝑋)
mulcncflem.e (𝜑𝐸 ∈ ℝ+)
mulcncflem.f (𝜑𝐹 ∈ ℝ+)
mulcncflem.g (𝜑𝐺 ∈ ℝ+)
mulcncflem.s (𝜑𝑆 ∈ ℝ+)
mulcncflem.t (𝜑𝑇 ∈ ℝ+)
mulcncflem.acn (𝜑 → ∀𝑢𝑋 ((abs‘(𝑢𝑉)) < 𝑆 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑉))) < 𝐹))
mulcncflem.bcn (𝜑 → ∀𝑢𝑋 ((abs‘(𝑢𝑉)) < 𝑇 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑉))) < 𝐺))
mulcncflem.cn (𝜑 → ∀𝑢𝑋 (((abs‘(𝑢 / 𝑥𝐴𝑉 / 𝑥𝐴)) < 𝐹 ∧ (abs‘(𝑢 / 𝑥𝐵𝑉 / 𝑥𝐵)) < 𝐺) → (abs‘((𝑢 / 𝑥𝐴 · 𝑢 / 𝑥𝐵) − (𝑉 / 𝑥𝐴 · 𝑉 / 𝑥𝐵))) < 𝐸))
Assertion
Ref Expression
mulcncflem (𝜑 → ∃𝑑 ∈ ℝ+𝑢𝑋 ((abs‘(𝑢𝑉)) < 𝑑 → (abs‘(((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸))
Distinct variable groups:   𝐴,𝑑,𝑢   𝐵,𝑑,𝑢   𝑢,𝑉   𝐸,𝑑,𝑢   𝑢,𝐹   𝑢,𝐺   𝑆,𝑑,𝑢   𝑇,𝑑,𝑢   𝑉,𝑑,𝑥,𝑢   𝑋,𝑑,𝑢,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑢,𝑑)   𝐴(𝑥)   𝐵(𝑥)   𝑆(𝑥)   𝑇(𝑥)   𝐸(𝑥)   𝐹(𝑥,𝑑)   𝐺(𝑥,𝑑)

Proof of Theorem mulcncflem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mulcncflem.s . . . . 5 (𝜑𝑆 ∈ ℝ+)
21rpred 9762 . . . 4 (𝜑𝑆 ∈ ℝ)
3 mulcncflem.t . . . . 5 (𝜑𝑇 ∈ ℝ+)
43rpred 9762 . . . 4 (𝜑𝑇 ∈ ℝ)
5 mincl 11374 . . . 4 ((𝑆 ∈ ℝ ∧ 𝑇 ∈ ℝ) → inf({𝑆, 𝑇}, ℝ, < ) ∈ ℝ)
62, 4, 5syl2anc 411 . . 3 (𝜑 → inf({𝑆, 𝑇}, ℝ, < ) ∈ ℝ)
71rpgt0d 9765 . . . 4 (𝜑 → 0 < 𝑆)
83rpgt0d 9765 . . . 4 (𝜑 → 0 < 𝑇)
9 0red 8020 . . . . 5 (𝜑 → 0 ∈ ℝ)
10 ltmininf 11378 . . . . 5 ((0 ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑇 ∈ ℝ) → (0 < inf({𝑆, 𝑇}, ℝ, < ) ↔ (0 < 𝑆 ∧ 0 < 𝑇)))
119, 2, 4, 10syl3anc 1249 . . . 4 (𝜑 → (0 < inf({𝑆, 𝑇}, ℝ, < ) ↔ (0 < 𝑆 ∧ 0 < 𝑇)))
127, 8, 11mpbir2and 946 . . 3 (𝜑 → 0 < inf({𝑆, 𝑇}, ℝ, < ))
136, 12elrpd 9759 . 2 (𝜑 → inf({𝑆, 𝑇}, ℝ, < ) ∈ ℝ+)
14 simplr 528 . . . . . . . . . 10 (((𝜑𝑧𝑋) ∧ (abs‘(𝑧𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → 𝑧𝑋)
15 simpr 110 . . . . . . . . . . . 12 ((𝜑𝑧𝑋) → 𝑧𝑋)
16 mulcncflem.a . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥𝑋𝐴) ∈ (𝑋cn→ℂ))
17 cncff 14732 . . . . . . . . . . . . . . . . 17 ((𝑥𝑋𝐴) ∈ (𝑋cn→ℂ) → (𝑥𝑋𝐴):𝑋⟶ℂ)
1816, 17syl 14 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥𝑋𝐴):𝑋⟶ℂ)
19 eqid 2193 . . . . . . . . . . . . . . . . 17 (𝑥𝑋𝐴) = (𝑥𝑋𝐴)
2019fmpt 5708 . . . . . . . . . . . . . . . 16 (∀𝑥𝑋 𝐴 ∈ ℂ ↔ (𝑥𝑋𝐴):𝑋⟶ℂ)
2118, 20sylibr 134 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥𝑋 𝐴 ∈ ℂ)
22 mulcncflem.b . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑥𝑋𝐵) ∈ (𝑋cn→ℂ))
23 cncff 14732 . . . . . . . . . . . . . . . . 17 ((𝑥𝑋𝐵) ∈ (𝑋cn→ℂ) → (𝑥𝑋𝐵):𝑋⟶ℂ)
2422, 23syl 14 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑥𝑋𝐵):𝑋⟶ℂ)
25 eqid 2193 . . . . . . . . . . . . . . . . 17 (𝑥𝑋𝐵) = (𝑥𝑋𝐵)
2625fmpt 5708 . . . . . . . . . . . . . . . 16 (∀𝑥𝑋 𝐵 ∈ ℂ ↔ (𝑥𝑋𝐵):𝑋⟶ℂ)
2724, 26sylibr 134 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑥𝑋 𝐵 ∈ ℂ)
28 r19.26 2620 . . . . . . . . . . . . . . 15 (∀𝑥𝑋 (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ↔ (∀𝑥𝑋 𝐴 ∈ ℂ ∧ ∀𝑥𝑋 𝐵 ∈ ℂ))
2921, 27, 28sylanbrc 417 . . . . . . . . . . . . . 14 (𝜑 → ∀𝑥𝑋 (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ))
30 mulcl 7999 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ)
3130ralimi 2557 . . . . . . . . . . . . . 14 (∀𝑥𝑋 (𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∀𝑥𝑋 (𝐴 · 𝐵) ∈ ℂ)
3229, 31syl 14 . . . . . . . . . . . . 13 (𝜑 → ∀𝑥𝑋 (𝐴 · 𝐵) ∈ ℂ)
3332adantr 276 . . . . . . . . . . . 12 ((𝜑𝑧𝑋) → ∀𝑥𝑋 (𝐴 · 𝐵) ∈ ℂ)
34 rspcsbela 3140 . . . . . . . . . . . 12 ((𝑧𝑋 ∧ ∀𝑥𝑋 (𝐴 · 𝐵) ∈ ℂ) → 𝑧 / 𝑥(𝐴 · 𝐵) ∈ ℂ)
3515, 33, 34syl2anc 411 . . . . . . . . . . 11 ((𝜑𝑧𝑋) → 𝑧 / 𝑥(𝐴 · 𝐵) ∈ ℂ)
3635adantr 276 . . . . . . . . . 10 (((𝜑𝑧𝑋) ∧ (abs‘(𝑧𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → 𝑧 / 𝑥(𝐴 · 𝐵) ∈ ℂ)
37 eqid 2193 . . . . . . . . . . 11 (𝑥𝑋 ↦ (𝐴 · 𝐵)) = (𝑥𝑋 ↦ (𝐴 · 𝐵))
3837fvmpts 5635 . . . . . . . . . 10 ((𝑧𝑋𝑧 / 𝑥(𝐴 · 𝐵) ∈ ℂ) → ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑧) = 𝑧 / 𝑥(𝐴 · 𝐵))
3914, 36, 38syl2anc 411 . . . . . . . . 9 (((𝜑𝑧𝑋) ∧ (abs‘(𝑧𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑧) = 𝑧 / 𝑥(𝐴 · 𝐵))
40 csbov12g 5957 . . . . . . . . . 10 (𝑧𝑋𝑧 / 𝑥(𝐴 · 𝐵) = (𝑧 / 𝑥𝐴 · 𝑧 / 𝑥𝐵))
4114, 40syl 14 . . . . . . . . 9 (((𝜑𝑧𝑋) ∧ (abs‘(𝑧𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → 𝑧 / 𝑥(𝐴 · 𝐵) = (𝑧 / 𝑥𝐴 · 𝑧 / 𝑥𝐵))
4239, 41eqtrd 2226 . . . . . . . 8 (((𝜑𝑧𝑋) ∧ (abs‘(𝑧𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑧) = (𝑧 / 𝑥𝐴 · 𝑧 / 𝑥𝐵))
43 mulcncflem.v . . . . . . . . . . 11 (𝜑𝑉𝑋)
4443ad2antrr 488 . . . . . . . . . 10 (((𝜑𝑧𝑋) ∧ (abs‘(𝑧𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → 𝑉𝑋)
45 rspcsbela 3140 . . . . . . . . . . . 12 ((𝑉𝑋 ∧ ∀𝑥𝑋 (𝐴 · 𝐵) ∈ ℂ) → 𝑉 / 𝑥(𝐴 · 𝐵) ∈ ℂ)
4643, 32, 45syl2anc 411 . . . . . . . . . . 11 (𝜑𝑉 / 𝑥(𝐴 · 𝐵) ∈ ℂ)
4746ad2antrr 488 . . . . . . . . . 10 (((𝜑𝑧𝑋) ∧ (abs‘(𝑧𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → 𝑉 / 𝑥(𝐴 · 𝐵) ∈ ℂ)
4837fvmpts 5635 . . . . . . . . . 10 ((𝑉𝑋𝑉 / 𝑥(𝐴 · 𝐵) ∈ ℂ) → ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑉) = 𝑉 / 𝑥(𝐴 · 𝐵))
4944, 47, 48syl2anc 411 . . . . . . . . 9 (((𝜑𝑧𝑋) ∧ (abs‘(𝑧𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑉) = 𝑉 / 𝑥(𝐴 · 𝐵))
50 csbov12g 5957 . . . . . . . . . 10 (𝑉𝑋𝑉 / 𝑥(𝐴 · 𝐵) = (𝑉 / 𝑥𝐴 · 𝑉 / 𝑥𝐵))
5144, 50syl 14 . . . . . . . . 9 (((𝜑𝑧𝑋) ∧ (abs‘(𝑧𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → 𝑉 / 𝑥(𝐴 · 𝐵) = (𝑉 / 𝑥𝐴 · 𝑉 / 𝑥𝐵))
5249, 51eqtrd 2226 . . . . . . . 8 (((𝜑𝑧𝑋) ∧ (abs‘(𝑧𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑉) = (𝑉 / 𝑥𝐴 · 𝑉 / 𝑥𝐵))
5342, 52oveq12d 5936 . . . . . . 7 (((𝜑𝑧𝑋) ∧ (abs‘(𝑧𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → (((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑧) − ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑉)) = ((𝑧 / 𝑥𝐴 · 𝑧 / 𝑥𝐵) − (𝑉 / 𝑥𝐴 · 𝑉 / 𝑥𝐵)))
5453fveq2d 5558 . . . . . 6 (((𝜑𝑧𝑋) ∧ (abs‘(𝑧𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → (abs‘(((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑧) − ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) = (abs‘((𝑧 / 𝑥𝐴 · 𝑧 / 𝑥𝐵) − (𝑉 / 𝑥𝐴 · 𝑉 / 𝑥𝐵))))
55 simpr 110 . . . . . . . . 9 (((𝜑𝑧𝑋) ∧ (abs‘(𝑧𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → (abs‘(𝑧𝑉)) < inf({𝑆, 𝑇}, ℝ, < ))
56 cncfrss 14730 . . . . . . . . . . . . . . 15 ((𝑥𝑋𝐴) ∈ (𝑋cn→ℂ) → 𝑋 ⊆ ℂ)
5716, 56syl 14 . . . . . . . . . . . . . 14 (𝜑𝑋 ⊆ ℂ)
5857ad2antrr 488 . . . . . . . . . . . . 13 (((𝜑𝑧𝑋) ∧ (abs‘(𝑧𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → 𝑋 ⊆ ℂ)
5958, 14sseldd 3180 . . . . . . . . . . . 12 (((𝜑𝑧𝑋) ∧ (abs‘(𝑧𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → 𝑧 ∈ ℂ)
6057, 43sseldd 3180 . . . . . . . . . . . . 13 (𝜑𝑉 ∈ ℂ)
6160ad2antrr 488 . . . . . . . . . . . 12 (((𝜑𝑧𝑋) ∧ (abs‘(𝑧𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → 𝑉 ∈ ℂ)
6259, 61subcld 8330 . . . . . . . . . . 11 (((𝜑𝑧𝑋) ∧ (abs‘(𝑧𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → (𝑧𝑉) ∈ ℂ)
6362abscld 11325 . . . . . . . . . 10 (((𝜑𝑧𝑋) ∧ (abs‘(𝑧𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → (abs‘(𝑧𝑉)) ∈ ℝ)
642ad2antrr 488 . . . . . . . . . 10 (((𝜑𝑧𝑋) ∧ (abs‘(𝑧𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → 𝑆 ∈ ℝ)
654ad2antrr 488 . . . . . . . . . 10 (((𝜑𝑧𝑋) ∧ (abs‘(𝑧𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → 𝑇 ∈ ℝ)
66 ltmininf 11378 . . . . . . . . . 10 (((abs‘(𝑧𝑉)) ∈ ℝ ∧ 𝑆 ∈ ℝ ∧ 𝑇 ∈ ℝ) → ((abs‘(𝑧𝑉)) < inf({𝑆, 𝑇}, ℝ, < ) ↔ ((abs‘(𝑧𝑉)) < 𝑆 ∧ (abs‘(𝑧𝑉)) < 𝑇)))
6763, 64, 65, 66syl3anc 1249 . . . . . . . . 9 (((𝜑𝑧𝑋) ∧ (abs‘(𝑧𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → ((abs‘(𝑧𝑉)) < inf({𝑆, 𝑇}, ℝ, < ) ↔ ((abs‘(𝑧𝑉)) < 𝑆 ∧ (abs‘(𝑧𝑉)) < 𝑇)))
6855, 67mpbid 147 . . . . . . . 8 (((𝜑𝑧𝑋) ∧ (abs‘(𝑧𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → ((abs‘(𝑧𝑉)) < 𝑆 ∧ (abs‘(𝑧𝑉)) < 𝑇))
69 mulcncflem.acn . . . . . . . . . . . . 13 (𝜑 → ∀𝑢𝑋 ((abs‘(𝑢𝑉)) < 𝑆 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑉))) < 𝐹))
70 fvoveq1 5941 . . . . . . . . . . . . . . . 16 (𝑢 = 𝑧 → (abs‘(𝑢𝑉)) = (abs‘(𝑧𝑉)))
7170breq1d 4039 . . . . . . . . . . . . . . 15 (𝑢 = 𝑧 → ((abs‘(𝑢𝑉)) < 𝑆 ↔ (abs‘(𝑧𝑉)) < 𝑆))
7271imbrov2fvoveq 5943 . . . . . . . . . . . . . 14 (𝑢 = 𝑧 → (((abs‘(𝑢𝑉)) < 𝑆 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑉))) < 𝐹) ↔ ((abs‘(𝑧𝑉)) < 𝑆 → (abs‘(((𝑥𝑋𝐴)‘𝑧) − ((𝑥𝑋𝐴)‘𝑉))) < 𝐹)))
7372cbvralv 2726 . . . . . . . . . . . . 13 (∀𝑢𝑋 ((abs‘(𝑢𝑉)) < 𝑆 → (abs‘(((𝑥𝑋𝐴)‘𝑢) − ((𝑥𝑋𝐴)‘𝑉))) < 𝐹) ↔ ∀𝑧𝑋 ((abs‘(𝑧𝑉)) < 𝑆 → (abs‘(((𝑥𝑋𝐴)‘𝑧) − ((𝑥𝑋𝐴)‘𝑉))) < 𝐹))
7469, 73sylib 122 . . . . . . . . . . . 12 (𝜑 → ∀𝑧𝑋 ((abs‘(𝑧𝑉)) < 𝑆 → (abs‘(((𝑥𝑋𝐴)‘𝑧) − ((𝑥𝑋𝐴)‘𝑉))) < 𝐹))
7574r19.21bi 2582 . . . . . . . . . . 11 ((𝜑𝑧𝑋) → ((abs‘(𝑧𝑉)) < 𝑆 → (abs‘(((𝑥𝑋𝐴)‘𝑧) − ((𝑥𝑋𝐴)‘𝑉))) < 𝐹))
7621adantr 276 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑋) → ∀𝑥𝑋 𝐴 ∈ ℂ)
77 rspcsbela 3140 . . . . . . . . . . . . . . . 16 ((𝑧𝑋 ∧ ∀𝑥𝑋 𝐴 ∈ ℂ) → 𝑧 / 𝑥𝐴 ∈ ℂ)
7815, 76, 77syl2anc 411 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑋) → 𝑧 / 𝑥𝐴 ∈ ℂ)
7919fvmpts 5635 . . . . . . . . . . . . . . 15 ((𝑧𝑋𝑧 / 𝑥𝐴 ∈ ℂ) → ((𝑥𝑋𝐴)‘𝑧) = 𝑧 / 𝑥𝐴)
8015, 78, 79syl2anc 411 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑋) → ((𝑥𝑋𝐴)‘𝑧) = 𝑧 / 𝑥𝐴)
8143adantr 276 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑋) → 𝑉𝑋)
82 rspcsbela 3140 . . . . . . . . . . . . . . . 16 ((𝑉𝑋 ∧ ∀𝑥𝑋 𝐴 ∈ ℂ) → 𝑉 / 𝑥𝐴 ∈ ℂ)
8381, 76, 82syl2anc 411 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑋) → 𝑉 / 𝑥𝐴 ∈ ℂ)
8419fvmpts 5635 . . . . . . . . . . . . . . 15 ((𝑉𝑋𝑉 / 𝑥𝐴 ∈ ℂ) → ((𝑥𝑋𝐴)‘𝑉) = 𝑉 / 𝑥𝐴)
8581, 83, 84syl2anc 411 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑋) → ((𝑥𝑋𝐴)‘𝑉) = 𝑉 / 𝑥𝐴)
8680, 85oveq12d 5936 . . . . . . . . . . . . 13 ((𝜑𝑧𝑋) → (((𝑥𝑋𝐴)‘𝑧) − ((𝑥𝑋𝐴)‘𝑉)) = (𝑧 / 𝑥𝐴𝑉 / 𝑥𝐴))
8786fveq2d 5558 . . . . . . . . . . . 12 ((𝜑𝑧𝑋) → (abs‘(((𝑥𝑋𝐴)‘𝑧) − ((𝑥𝑋𝐴)‘𝑉))) = (abs‘(𝑧 / 𝑥𝐴𝑉 / 𝑥𝐴)))
8887breq1d 4039 . . . . . . . . . . 11 ((𝜑𝑧𝑋) → ((abs‘(((𝑥𝑋𝐴)‘𝑧) − ((𝑥𝑋𝐴)‘𝑉))) < 𝐹 ↔ (abs‘(𝑧 / 𝑥𝐴𝑉 / 𝑥𝐴)) < 𝐹))
8975, 88sylibd 149 . . . . . . . . . 10 ((𝜑𝑧𝑋) → ((abs‘(𝑧𝑉)) < 𝑆 → (abs‘(𝑧 / 𝑥𝐴𝑉 / 𝑥𝐴)) < 𝐹))
90 mulcncflem.bcn . . . . . . . . . . . . 13 (𝜑 → ∀𝑢𝑋 ((abs‘(𝑢𝑉)) < 𝑇 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑉))) < 𝐺))
9170breq1d 4039 . . . . . . . . . . . . . . 15 (𝑢 = 𝑧 → ((abs‘(𝑢𝑉)) < 𝑇 ↔ (abs‘(𝑧𝑉)) < 𝑇))
9291imbrov2fvoveq 5943 . . . . . . . . . . . . . 14 (𝑢 = 𝑧 → (((abs‘(𝑢𝑉)) < 𝑇 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑉))) < 𝐺) ↔ ((abs‘(𝑧𝑉)) < 𝑇 → (abs‘(((𝑥𝑋𝐵)‘𝑧) − ((𝑥𝑋𝐵)‘𝑉))) < 𝐺)))
9392cbvralv 2726 . . . . . . . . . . . . 13 (∀𝑢𝑋 ((abs‘(𝑢𝑉)) < 𝑇 → (abs‘(((𝑥𝑋𝐵)‘𝑢) − ((𝑥𝑋𝐵)‘𝑉))) < 𝐺) ↔ ∀𝑧𝑋 ((abs‘(𝑧𝑉)) < 𝑇 → (abs‘(((𝑥𝑋𝐵)‘𝑧) − ((𝑥𝑋𝐵)‘𝑉))) < 𝐺))
9490, 93sylib 122 . . . . . . . . . . . 12 (𝜑 → ∀𝑧𝑋 ((abs‘(𝑧𝑉)) < 𝑇 → (abs‘(((𝑥𝑋𝐵)‘𝑧) − ((𝑥𝑋𝐵)‘𝑉))) < 𝐺))
9594r19.21bi 2582 . . . . . . . . . . 11 ((𝜑𝑧𝑋) → ((abs‘(𝑧𝑉)) < 𝑇 → (abs‘(((𝑥𝑋𝐵)‘𝑧) − ((𝑥𝑋𝐵)‘𝑉))) < 𝐺))
9627adantr 276 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑋) → ∀𝑥𝑋 𝐵 ∈ ℂ)
97 rspcsbela 3140 . . . . . . . . . . . . . . . 16 ((𝑧𝑋 ∧ ∀𝑥𝑋 𝐵 ∈ ℂ) → 𝑧 / 𝑥𝐵 ∈ ℂ)
9815, 96, 97syl2anc 411 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑋) → 𝑧 / 𝑥𝐵 ∈ ℂ)
9925fvmpts 5635 . . . . . . . . . . . . . . 15 ((𝑧𝑋𝑧 / 𝑥𝐵 ∈ ℂ) → ((𝑥𝑋𝐵)‘𝑧) = 𝑧 / 𝑥𝐵)
10015, 98, 99syl2anc 411 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑋) → ((𝑥𝑋𝐵)‘𝑧) = 𝑧 / 𝑥𝐵)
101 rspcsbela 3140 . . . . . . . . . . . . . . . 16 ((𝑉𝑋 ∧ ∀𝑥𝑋 𝐵 ∈ ℂ) → 𝑉 / 𝑥𝐵 ∈ ℂ)
10281, 96, 101syl2anc 411 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑋) → 𝑉 / 𝑥𝐵 ∈ ℂ)
10325fvmpts 5635 . . . . . . . . . . . . . . 15 ((𝑉𝑋𝑉 / 𝑥𝐵 ∈ ℂ) → ((𝑥𝑋𝐵)‘𝑉) = 𝑉 / 𝑥𝐵)
10481, 102, 103syl2anc 411 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑋) → ((𝑥𝑋𝐵)‘𝑉) = 𝑉 / 𝑥𝐵)
105100, 104oveq12d 5936 . . . . . . . . . . . . 13 ((𝜑𝑧𝑋) → (((𝑥𝑋𝐵)‘𝑧) − ((𝑥𝑋𝐵)‘𝑉)) = (𝑧 / 𝑥𝐵𝑉 / 𝑥𝐵))
106105fveq2d 5558 . . . . . . . . . . . 12 ((𝜑𝑧𝑋) → (abs‘(((𝑥𝑋𝐵)‘𝑧) − ((𝑥𝑋𝐵)‘𝑉))) = (abs‘(𝑧 / 𝑥𝐵𝑉 / 𝑥𝐵)))
107106breq1d 4039 . . . . . . . . . . 11 ((𝜑𝑧𝑋) → ((abs‘(((𝑥𝑋𝐵)‘𝑧) − ((𝑥𝑋𝐵)‘𝑉))) < 𝐺 ↔ (abs‘(𝑧 / 𝑥𝐵𝑉 / 𝑥𝐵)) < 𝐺))
10895, 107sylibd 149 . . . . . . . . . 10 ((𝜑𝑧𝑋) → ((abs‘(𝑧𝑉)) < 𝑇 → (abs‘(𝑧 / 𝑥𝐵𝑉 / 𝑥𝐵)) < 𝐺))
10989, 108anim12d 335 . . . . . . . . 9 ((𝜑𝑧𝑋) → (((abs‘(𝑧𝑉)) < 𝑆 ∧ (abs‘(𝑧𝑉)) < 𝑇) → ((abs‘(𝑧 / 𝑥𝐴𝑉 / 𝑥𝐴)) < 𝐹 ∧ (abs‘(𝑧 / 𝑥𝐵𝑉 / 𝑥𝐵)) < 𝐺)))
110109adantr 276 . . . . . . . 8 (((𝜑𝑧𝑋) ∧ (abs‘(𝑧𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → (((abs‘(𝑧𝑉)) < 𝑆 ∧ (abs‘(𝑧𝑉)) < 𝑇) → ((abs‘(𝑧 / 𝑥𝐴𝑉 / 𝑥𝐴)) < 𝐹 ∧ (abs‘(𝑧 / 𝑥𝐵𝑉 / 𝑥𝐵)) < 𝐺)))
11168, 110mpd 13 . . . . . . 7 (((𝜑𝑧𝑋) ∧ (abs‘(𝑧𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → ((abs‘(𝑧 / 𝑥𝐴𝑉 / 𝑥𝐴)) < 𝐹 ∧ (abs‘(𝑧 / 𝑥𝐵𝑉 / 𝑥𝐵)) < 𝐺))
112 mulcncflem.cn . . . . . . . . . 10 (𝜑 → ∀𝑢𝑋 (((abs‘(𝑢 / 𝑥𝐴𝑉 / 𝑥𝐴)) < 𝐹 ∧ (abs‘(𝑢 / 𝑥𝐵𝑉 / 𝑥𝐵)) < 𝐺) → (abs‘((𝑢 / 𝑥𝐴 · 𝑢 / 𝑥𝐵) − (𝑉 / 𝑥𝐴 · 𝑉 / 𝑥𝐵))) < 𝐸))
113 csbeq1 3083 . . . . . . . . . . . . . . 15 (𝑢 = 𝑧𝑢 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
114113fvoveq1d 5940 . . . . . . . . . . . . . 14 (𝑢 = 𝑧 → (abs‘(𝑢 / 𝑥𝐴𝑉 / 𝑥𝐴)) = (abs‘(𝑧 / 𝑥𝐴𝑉 / 𝑥𝐴)))
115114breq1d 4039 . . . . . . . . . . . . 13 (𝑢 = 𝑧 → ((abs‘(𝑢 / 𝑥𝐴𝑉 / 𝑥𝐴)) < 𝐹 ↔ (abs‘(𝑧 / 𝑥𝐴𝑉 / 𝑥𝐴)) < 𝐹))
116 csbeq1 3083 . . . . . . . . . . . . . . 15 (𝑢 = 𝑧𝑢 / 𝑥𝐵 = 𝑧 / 𝑥𝐵)
117116fvoveq1d 5940 . . . . . . . . . . . . . 14 (𝑢 = 𝑧 → (abs‘(𝑢 / 𝑥𝐵𝑉 / 𝑥𝐵)) = (abs‘(𝑧 / 𝑥𝐵𝑉 / 𝑥𝐵)))
118117breq1d 4039 . . . . . . . . . . . . 13 (𝑢 = 𝑧 → ((abs‘(𝑢 / 𝑥𝐵𝑉 / 𝑥𝐵)) < 𝐺 ↔ (abs‘(𝑧 / 𝑥𝐵𝑉 / 𝑥𝐵)) < 𝐺))
119115, 118anbi12d 473 . . . . . . . . . . . 12 (𝑢 = 𝑧 → (((abs‘(𝑢 / 𝑥𝐴𝑉 / 𝑥𝐴)) < 𝐹 ∧ (abs‘(𝑢 / 𝑥𝐵𝑉 / 𝑥𝐵)) < 𝐺) ↔ ((abs‘(𝑧 / 𝑥𝐴𝑉 / 𝑥𝐴)) < 𝐹 ∧ (abs‘(𝑧 / 𝑥𝐵𝑉 / 𝑥𝐵)) < 𝐺)))
120113, 116oveq12d 5936 . . . . . . . . . . . . . 14 (𝑢 = 𝑧 → (𝑢 / 𝑥𝐴 · 𝑢 / 𝑥𝐵) = (𝑧 / 𝑥𝐴 · 𝑧 / 𝑥𝐵))
121120fvoveq1d 5940 . . . . . . . . . . . . 13 (𝑢 = 𝑧 → (abs‘((𝑢 / 𝑥𝐴 · 𝑢 / 𝑥𝐵) − (𝑉 / 𝑥𝐴 · 𝑉 / 𝑥𝐵))) = (abs‘((𝑧 / 𝑥𝐴 · 𝑧 / 𝑥𝐵) − (𝑉 / 𝑥𝐴 · 𝑉 / 𝑥𝐵))))
122121breq1d 4039 . . . . . . . . . . . 12 (𝑢 = 𝑧 → ((abs‘((𝑢 / 𝑥𝐴 · 𝑢 / 𝑥𝐵) − (𝑉 / 𝑥𝐴 · 𝑉 / 𝑥𝐵))) < 𝐸 ↔ (abs‘((𝑧 / 𝑥𝐴 · 𝑧 / 𝑥𝐵) − (𝑉 / 𝑥𝐴 · 𝑉 / 𝑥𝐵))) < 𝐸))
123119, 122imbi12d 234 . . . . . . . . . . 11 (𝑢 = 𝑧 → ((((abs‘(𝑢 / 𝑥𝐴𝑉 / 𝑥𝐴)) < 𝐹 ∧ (abs‘(𝑢 / 𝑥𝐵𝑉 / 𝑥𝐵)) < 𝐺) → (abs‘((𝑢 / 𝑥𝐴 · 𝑢 / 𝑥𝐵) − (𝑉 / 𝑥𝐴 · 𝑉 / 𝑥𝐵))) < 𝐸) ↔ (((abs‘(𝑧 / 𝑥𝐴𝑉 / 𝑥𝐴)) < 𝐹 ∧ (abs‘(𝑧 / 𝑥𝐵𝑉 / 𝑥𝐵)) < 𝐺) → (abs‘((𝑧 / 𝑥𝐴 · 𝑧 / 𝑥𝐵) − (𝑉 / 𝑥𝐴 · 𝑉 / 𝑥𝐵))) < 𝐸)))
124123cbvralv 2726 . . . . . . . . . 10 (∀𝑢𝑋 (((abs‘(𝑢 / 𝑥𝐴𝑉 / 𝑥𝐴)) < 𝐹 ∧ (abs‘(𝑢 / 𝑥𝐵𝑉 / 𝑥𝐵)) < 𝐺) → (abs‘((𝑢 / 𝑥𝐴 · 𝑢 / 𝑥𝐵) − (𝑉 / 𝑥𝐴 · 𝑉 / 𝑥𝐵))) < 𝐸) ↔ ∀𝑧𝑋 (((abs‘(𝑧 / 𝑥𝐴𝑉 / 𝑥𝐴)) < 𝐹 ∧ (abs‘(𝑧 / 𝑥𝐵𝑉 / 𝑥𝐵)) < 𝐺) → (abs‘((𝑧 / 𝑥𝐴 · 𝑧 / 𝑥𝐵) − (𝑉 / 𝑥𝐴 · 𝑉 / 𝑥𝐵))) < 𝐸))
125112, 124sylib 122 . . . . . . . . 9 (𝜑 → ∀𝑧𝑋 (((abs‘(𝑧 / 𝑥𝐴𝑉 / 𝑥𝐴)) < 𝐹 ∧ (abs‘(𝑧 / 𝑥𝐵𝑉 / 𝑥𝐵)) < 𝐺) → (abs‘((𝑧 / 𝑥𝐴 · 𝑧 / 𝑥𝐵) − (𝑉 / 𝑥𝐴 · 𝑉 / 𝑥𝐵))) < 𝐸))
126125r19.21bi 2582 . . . . . . . 8 ((𝜑𝑧𝑋) → (((abs‘(𝑧 / 𝑥𝐴𝑉 / 𝑥𝐴)) < 𝐹 ∧ (abs‘(𝑧 / 𝑥𝐵𝑉 / 𝑥𝐵)) < 𝐺) → (abs‘((𝑧 / 𝑥𝐴 · 𝑧 / 𝑥𝐵) − (𝑉 / 𝑥𝐴 · 𝑉 / 𝑥𝐵))) < 𝐸))
127126adantr 276 . . . . . . 7 (((𝜑𝑧𝑋) ∧ (abs‘(𝑧𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → (((abs‘(𝑧 / 𝑥𝐴𝑉 / 𝑥𝐴)) < 𝐹 ∧ (abs‘(𝑧 / 𝑥𝐵𝑉 / 𝑥𝐵)) < 𝐺) → (abs‘((𝑧 / 𝑥𝐴 · 𝑧 / 𝑥𝐵) − (𝑉 / 𝑥𝐴 · 𝑉 / 𝑥𝐵))) < 𝐸))
128111, 127mpd 13 . . . . . 6 (((𝜑𝑧𝑋) ∧ (abs‘(𝑧𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → (abs‘((𝑧 / 𝑥𝐴 · 𝑧 / 𝑥𝐵) − (𝑉 / 𝑥𝐴 · 𝑉 / 𝑥𝐵))) < 𝐸)
12954, 128eqbrtrd 4051 . . . . 5 (((𝜑𝑧𝑋) ∧ (abs‘(𝑧𝑉)) < inf({𝑆, 𝑇}, ℝ, < )) → (abs‘(((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑧) − ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸)
130129ex 115 . . . 4 ((𝜑𝑧𝑋) → ((abs‘(𝑧𝑉)) < inf({𝑆, 𝑇}, ℝ, < ) → (abs‘(((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑧) − ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸))
131130ralrimiva 2567 . . 3 (𝜑 → ∀𝑧𝑋 ((abs‘(𝑧𝑉)) < inf({𝑆, 𝑇}, ℝ, < ) → (abs‘(((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑧) − ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸))
132 fvoveq1 5941 . . . . . 6 (𝑧 = 𝑢 → (abs‘(𝑧𝑉)) = (abs‘(𝑢𝑉)))
133132breq1d 4039 . . . . 5 (𝑧 = 𝑢 → ((abs‘(𝑧𝑉)) < inf({𝑆, 𝑇}, ℝ, < ) ↔ (abs‘(𝑢𝑉)) < inf({𝑆, 𝑇}, ℝ, < )))
134133imbrov2fvoveq 5943 . . . 4 (𝑧 = 𝑢 → (((abs‘(𝑧𝑉)) < inf({𝑆, 𝑇}, ℝ, < ) → (abs‘(((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑧) − ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸) ↔ ((abs‘(𝑢𝑉)) < inf({𝑆, 𝑇}, ℝ, < ) → (abs‘(((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸)))
135134cbvralv 2726 . . 3 (∀𝑧𝑋 ((abs‘(𝑧𝑉)) < inf({𝑆, 𝑇}, ℝ, < ) → (abs‘(((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑧) − ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸) ↔ ∀𝑢𝑋 ((abs‘(𝑢𝑉)) < inf({𝑆, 𝑇}, ℝ, < ) → (abs‘(((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸))
136131, 135sylib 122 . 2 (𝜑 → ∀𝑢𝑋 ((abs‘(𝑢𝑉)) < inf({𝑆, 𝑇}, ℝ, < ) → (abs‘(((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸))
137 breq2 4033 . . 3 (𝑑 = inf({𝑆, 𝑇}, ℝ, < ) → ((abs‘(𝑢𝑉)) < 𝑑 ↔ (abs‘(𝑢𝑉)) < inf({𝑆, 𝑇}, ℝ, < )))
138137rspceaimv 2872 . 2 ((inf({𝑆, 𝑇}, ℝ, < ) ∈ ℝ+ ∧ ∀𝑢𝑋 ((abs‘(𝑢𝑉)) < inf({𝑆, 𝑇}, ℝ, < ) → (abs‘(((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸)) → ∃𝑑 ∈ ℝ+𝑢𝑋 ((abs‘(𝑢𝑉)) < 𝑑 → (abs‘(((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸))
13913, 136, 138syl2anc 411 1 (𝜑 → ∃𝑑 ∈ ℝ+𝑢𝑋 ((abs‘(𝑢𝑉)) < 𝑑 → (abs‘(((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472  wrex 2473  csb 3080  wss 3153  {cpr 3619   class class class wbr 4029  cmpt 4090  wf 5250  cfv 5254  (class class class)co 5918  infcinf 7042  cc 7870  cr 7871  0cc0 7872   · cmul 7877   < clt 8054  cmin 8190  +crp 9719  abscabs 11141  cnccncf 14725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-map 6704  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-rp 9720  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-cncf 14726
This theorem is referenced by:  mulcncf  14762
  Copyright terms: Public domain W3C validator