Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eflt | GIF version |
Description: The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon, 21-May-2024.) |
Ref | Expression |
---|---|
eflt | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efltim 11661 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → (exp‘𝐴) < (exp‘𝐵))) | |
2 | efcn 13483 | . . . . 5 ⊢ exp ∈ (ℂ–cn→ℂ) | |
3 | simplr 525 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) → 𝐵 ∈ ℝ) | |
4 | 3 | recnd 7948 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) → 𝐵 ∈ ℂ) |
5 | simpr 109 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) → (exp‘𝐴) < (exp‘𝐵)) | |
6 | simpll 524 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) → 𝐴 ∈ ℝ) | |
7 | 6 | reefcld 11632 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) → (exp‘𝐴) ∈ ℝ) |
8 | 3 | reefcld 11632 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) → (exp‘𝐵) ∈ ℝ) |
9 | difrp 9649 | . . . . . . 7 ⊢ (((exp‘𝐴) ∈ ℝ ∧ (exp‘𝐵) ∈ ℝ) → ((exp‘𝐴) < (exp‘𝐵) ↔ ((exp‘𝐵) − (exp‘𝐴)) ∈ ℝ+)) | |
10 | 7, 8, 9 | syl2anc 409 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) → ((exp‘𝐴) < (exp‘𝐵) ↔ ((exp‘𝐵) − (exp‘𝐴)) ∈ ℝ+)) |
11 | 5, 10 | mpbid 146 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) → ((exp‘𝐵) − (exp‘𝐴)) ∈ ℝ+) |
12 | cncfi 13359 | . . . . 5 ⊢ ((exp ∈ (ℂ–cn→ℂ) ∧ 𝐵 ∈ ℂ ∧ ((exp‘𝐵) − (exp‘𝐴)) ∈ ℝ+) → ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ ℂ ((abs‘(𝑥 − 𝐵)) < 𝑑 → (abs‘((exp‘𝑥) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴)))) | |
13 | 2, 4, 11, 12 | mp3an2i 1337 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) → ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ ℂ ((abs‘(𝑥 − 𝐵)) < 𝑑 → (abs‘((exp‘𝑥) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴)))) |
14 | 6 | adantr 274 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑥 ∈ ℂ ((abs‘(𝑥 − 𝐵)) < 𝑑 → (abs‘((exp‘𝑥) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))) → 𝐴 ∈ ℝ) |
15 | 3 | adantr 274 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑥 ∈ ℂ ((abs‘(𝑥 − 𝐵)) < 𝑑 → (abs‘((exp‘𝑥) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))) → 𝐵 ∈ ℝ) |
16 | simplr 525 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑥 ∈ ℂ ((abs‘(𝑥 − 𝐵)) < 𝑑 → (abs‘((exp‘𝑥) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))) → (exp‘𝐴) < (exp‘𝐵)) | |
17 | simprl 526 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑥 ∈ ℂ ((abs‘(𝑥 − 𝐵)) < 𝑑 → (abs‘((exp‘𝑥) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))) → 𝑑 ∈ ℝ+) | |
18 | fvoveq1 5876 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (abs‘(𝑥 − 𝐵)) = (abs‘(𝐴 − 𝐵))) | |
19 | 18 | breq1d 3999 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → ((abs‘(𝑥 − 𝐵)) < 𝑑 ↔ (abs‘(𝐴 − 𝐵)) < 𝑑)) |
20 | 19 | imbrov2fvoveq 5878 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (((abs‘(𝑥 − 𝐵)) < 𝑑 → (abs‘((exp‘𝑥) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))) ↔ ((abs‘(𝐴 − 𝐵)) < 𝑑 → (abs‘((exp‘𝐴) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))) |
21 | simprr 527 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑥 ∈ ℂ ((abs‘(𝑥 − 𝐵)) < 𝑑 → (abs‘((exp‘𝑥) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))) → ∀𝑥 ∈ ℂ ((abs‘(𝑥 − 𝐵)) < 𝑑 → (abs‘((exp‘𝑥) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴)))) | |
22 | 14 | recnd 7948 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑥 ∈ ℂ ((abs‘(𝑥 − 𝐵)) < 𝑑 → (abs‘((exp‘𝑥) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))) → 𝐴 ∈ ℂ) |
23 | 20, 21, 22 | rspcdva 2839 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑥 ∈ ℂ ((abs‘(𝑥 − 𝐵)) < 𝑑 → (abs‘((exp‘𝑥) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))) → ((abs‘(𝐴 − 𝐵)) < 𝑑 → (abs‘((exp‘𝐴) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴)))) |
24 | 14, 15, 16, 17, 23 | efltlemlt 13489 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑥 ∈ ℂ ((abs‘(𝑥 − 𝐵)) < 𝑑 → (abs‘((exp‘𝑥) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))) → 𝐴 < 𝐵) |
25 | 13, 24 | rexlimddv 2592 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) → 𝐴 < 𝐵) |
26 | 25 | ex 114 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((exp‘𝐴) < (exp‘𝐵) → 𝐴 < 𝐵)) |
27 | 1, 26 | impbid 128 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ∀wral 2448 ∃wrex 2449 class class class wbr 3989 ‘cfv 5198 (class class class)co 5853 ℂcc 7772 ℝcr 7773 < clt 7954 − cmin 8090 ℝ+crp 9610 abscabs 10961 expce 11605 –cn→ccncf 13351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 ax-addf 7896 ax-mulf 7897 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-disj 3967 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-isom 5207 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-of 6061 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-frec 6370 df-1o 6395 df-oadd 6399 df-er 6513 df-map 6628 df-pm 6629 df-en 6719 df-dom 6720 df-fin 6721 df-sup 6961 df-inf 6962 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-xneg 9729 df-xadd 9730 df-ico 9851 df-fz 9966 df-fzo 10099 df-seqfrec 10402 df-exp 10476 df-fac 10660 df-bc 10682 df-ihash 10710 df-shft 10779 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-clim 11242 df-sumdc 11317 df-ef 11611 df-rest 12581 df-topgen 12600 df-psmet 12781 df-xmet 12782 df-met 12783 df-bl 12784 df-mopn 12785 df-top 12790 df-topon 12803 df-bases 12835 df-ntr 12890 df-cn 12982 df-cnp 12983 df-tx 13047 df-cncf 13352 df-limced 13419 df-dvap 13420 |
This theorem is referenced by: efle 13491 reefiso 13492 reapef 13493 logdivlti 13596 cxplt 13630 rpcxplt2 13633 |
Copyright terms: Public domain | W3C validator |