Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eflt | GIF version |
Description: The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon, 21-May-2024.) |
Ref | Expression |
---|---|
eflt | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efltim 11639 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → (exp‘𝐴) < (exp‘𝐵))) | |
2 | efcn 13329 | . . . . 5 ⊢ exp ∈ (ℂ–cn→ℂ) | |
3 | simplr 520 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) → 𝐵 ∈ ℝ) | |
4 | 3 | recnd 7927 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) → 𝐵 ∈ ℂ) |
5 | simpr 109 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) → (exp‘𝐴) < (exp‘𝐵)) | |
6 | simpll 519 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) → 𝐴 ∈ ℝ) | |
7 | 6 | reefcld 11610 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) → (exp‘𝐴) ∈ ℝ) |
8 | 3 | reefcld 11610 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) → (exp‘𝐵) ∈ ℝ) |
9 | difrp 9628 | . . . . . . 7 ⊢ (((exp‘𝐴) ∈ ℝ ∧ (exp‘𝐵) ∈ ℝ) → ((exp‘𝐴) < (exp‘𝐵) ↔ ((exp‘𝐵) − (exp‘𝐴)) ∈ ℝ+)) | |
10 | 7, 8, 9 | syl2anc 409 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) → ((exp‘𝐴) < (exp‘𝐵) ↔ ((exp‘𝐵) − (exp‘𝐴)) ∈ ℝ+)) |
11 | 5, 10 | mpbid 146 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) → ((exp‘𝐵) − (exp‘𝐴)) ∈ ℝ+) |
12 | cncfi 13205 | . . . . 5 ⊢ ((exp ∈ (ℂ–cn→ℂ) ∧ 𝐵 ∈ ℂ ∧ ((exp‘𝐵) − (exp‘𝐴)) ∈ ℝ+) → ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ ℂ ((abs‘(𝑥 − 𝐵)) < 𝑑 → (abs‘((exp‘𝑥) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴)))) | |
13 | 2, 4, 11, 12 | mp3an2i 1332 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) → ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ ℂ ((abs‘(𝑥 − 𝐵)) < 𝑑 → (abs‘((exp‘𝑥) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴)))) |
14 | 6 | adantr 274 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑥 ∈ ℂ ((abs‘(𝑥 − 𝐵)) < 𝑑 → (abs‘((exp‘𝑥) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))) → 𝐴 ∈ ℝ) |
15 | 3 | adantr 274 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑥 ∈ ℂ ((abs‘(𝑥 − 𝐵)) < 𝑑 → (abs‘((exp‘𝑥) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))) → 𝐵 ∈ ℝ) |
16 | simplr 520 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑥 ∈ ℂ ((abs‘(𝑥 − 𝐵)) < 𝑑 → (abs‘((exp‘𝑥) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))) → (exp‘𝐴) < (exp‘𝐵)) | |
17 | simprl 521 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑥 ∈ ℂ ((abs‘(𝑥 − 𝐵)) < 𝑑 → (abs‘((exp‘𝑥) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))) → 𝑑 ∈ ℝ+) | |
18 | fvoveq1 5865 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (abs‘(𝑥 − 𝐵)) = (abs‘(𝐴 − 𝐵))) | |
19 | 18 | breq1d 3992 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → ((abs‘(𝑥 − 𝐵)) < 𝑑 ↔ (abs‘(𝐴 − 𝐵)) < 𝑑)) |
20 | 19 | imbrov2fvoveq 5867 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (((abs‘(𝑥 − 𝐵)) < 𝑑 → (abs‘((exp‘𝑥) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))) ↔ ((abs‘(𝐴 − 𝐵)) < 𝑑 → (abs‘((exp‘𝐴) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))) |
21 | simprr 522 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑥 ∈ ℂ ((abs‘(𝑥 − 𝐵)) < 𝑑 → (abs‘((exp‘𝑥) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))) → ∀𝑥 ∈ ℂ ((abs‘(𝑥 − 𝐵)) < 𝑑 → (abs‘((exp‘𝑥) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴)))) | |
22 | 14 | recnd 7927 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑥 ∈ ℂ ((abs‘(𝑥 − 𝐵)) < 𝑑 → (abs‘((exp‘𝑥) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))) → 𝐴 ∈ ℂ) |
23 | 20, 21, 22 | rspcdva 2835 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑥 ∈ ℂ ((abs‘(𝑥 − 𝐵)) < 𝑑 → (abs‘((exp‘𝑥) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))) → ((abs‘(𝐴 − 𝐵)) < 𝑑 → (abs‘((exp‘𝐴) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴)))) |
24 | 14, 15, 16, 17, 23 | efltlemlt 13335 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑥 ∈ ℂ ((abs‘(𝑥 − 𝐵)) < 𝑑 → (abs‘((exp‘𝑥) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))) → 𝐴 < 𝐵) |
25 | 13, 24 | rexlimddv 2588 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) → 𝐴 < 𝐵) |
26 | 25 | ex 114 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((exp‘𝐴) < (exp‘𝐵) → 𝐴 < 𝐵)) |
27 | 1, 26 | impbid 128 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∀wral 2444 ∃wrex 2445 class class class wbr 3982 ‘cfv 5188 (class class class)co 5842 ℂcc 7751 ℝcr 7752 < clt 7933 − cmin 8069 ℝ+crp 9589 abscabs 10939 expce 11583 –cn→ccncf 13197 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 ax-pre-mulext 7871 ax-arch 7872 ax-caucvg 7873 ax-addf 7875 ax-mulf 7876 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-disj 3960 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-isom 5197 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-of 6050 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-frec 6359 df-1o 6384 df-oadd 6388 df-er 6501 df-map 6616 df-pm 6617 df-en 6707 df-dom 6708 df-fin 6709 df-sup 6949 df-inf 6950 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-div 8569 df-inn 8858 df-2 8916 df-3 8917 df-4 8918 df-n0 9115 df-z 9192 df-uz 9467 df-q 9558 df-rp 9590 df-xneg 9708 df-xadd 9709 df-ico 9830 df-fz 9945 df-fzo 10078 df-seqfrec 10381 df-exp 10455 df-fac 10639 df-bc 10661 df-ihash 10689 df-shft 10757 df-cj 10784 df-re 10785 df-im 10786 df-rsqrt 10940 df-abs 10941 df-clim 11220 df-sumdc 11295 df-ef 11589 df-rest 12558 df-topgen 12577 df-psmet 12627 df-xmet 12628 df-met 12629 df-bl 12630 df-mopn 12631 df-top 12636 df-topon 12649 df-bases 12681 df-ntr 12736 df-cn 12828 df-cnp 12829 df-tx 12893 df-cncf 13198 df-limced 13265 df-dvap 13266 |
This theorem is referenced by: efle 13337 reefiso 13338 reapef 13339 logdivlti 13442 cxplt 13476 rpcxplt2 13479 |
Copyright terms: Public domain | W3C validator |