Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eflt | GIF version |
Description: The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Jim Kingdon, 21-May-2024.) |
Ref | Expression |
---|---|
eflt | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efltim 11654 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → (exp‘𝐴) < (exp‘𝐵))) | |
2 | efcn 13448 | . . . . 5 ⊢ exp ∈ (ℂ–cn→ℂ) | |
3 | simplr 525 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) → 𝐵 ∈ ℝ) | |
4 | 3 | recnd 7941 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) → 𝐵 ∈ ℂ) |
5 | simpr 109 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) → (exp‘𝐴) < (exp‘𝐵)) | |
6 | simpll 524 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) → 𝐴 ∈ ℝ) | |
7 | 6 | reefcld 11625 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) → (exp‘𝐴) ∈ ℝ) |
8 | 3 | reefcld 11625 | . . . . . . 7 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) → (exp‘𝐵) ∈ ℝ) |
9 | difrp 9642 | . . . . . . 7 ⊢ (((exp‘𝐴) ∈ ℝ ∧ (exp‘𝐵) ∈ ℝ) → ((exp‘𝐴) < (exp‘𝐵) ↔ ((exp‘𝐵) − (exp‘𝐴)) ∈ ℝ+)) | |
10 | 7, 8, 9 | syl2anc 409 | . . . . . 6 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) → ((exp‘𝐴) < (exp‘𝐵) ↔ ((exp‘𝐵) − (exp‘𝐴)) ∈ ℝ+)) |
11 | 5, 10 | mpbid 146 | . . . . 5 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) → ((exp‘𝐵) − (exp‘𝐴)) ∈ ℝ+) |
12 | cncfi 13324 | . . . . 5 ⊢ ((exp ∈ (ℂ–cn→ℂ) ∧ 𝐵 ∈ ℂ ∧ ((exp‘𝐵) − (exp‘𝐴)) ∈ ℝ+) → ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ ℂ ((abs‘(𝑥 − 𝐵)) < 𝑑 → (abs‘((exp‘𝑥) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴)))) | |
13 | 2, 4, 11, 12 | mp3an2i 1337 | . . . 4 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) → ∃𝑑 ∈ ℝ+ ∀𝑥 ∈ ℂ ((abs‘(𝑥 − 𝐵)) < 𝑑 → (abs‘((exp‘𝑥) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴)))) |
14 | 6 | adantr 274 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑥 ∈ ℂ ((abs‘(𝑥 − 𝐵)) < 𝑑 → (abs‘((exp‘𝑥) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))) → 𝐴 ∈ ℝ) |
15 | 3 | adantr 274 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑥 ∈ ℂ ((abs‘(𝑥 − 𝐵)) < 𝑑 → (abs‘((exp‘𝑥) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))) → 𝐵 ∈ ℝ) |
16 | simplr 525 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑥 ∈ ℂ ((abs‘(𝑥 − 𝐵)) < 𝑑 → (abs‘((exp‘𝑥) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))) → (exp‘𝐴) < (exp‘𝐵)) | |
17 | simprl 526 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑥 ∈ ℂ ((abs‘(𝑥 − 𝐵)) < 𝑑 → (abs‘((exp‘𝑥) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))) → 𝑑 ∈ ℝ+) | |
18 | fvoveq1 5874 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (abs‘(𝑥 − 𝐵)) = (abs‘(𝐴 − 𝐵))) | |
19 | 18 | breq1d 3997 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → ((abs‘(𝑥 − 𝐵)) < 𝑑 ↔ (abs‘(𝐴 − 𝐵)) < 𝑑)) |
20 | 19 | imbrov2fvoveq 5876 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (((abs‘(𝑥 − 𝐵)) < 𝑑 → (abs‘((exp‘𝑥) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))) ↔ ((abs‘(𝐴 − 𝐵)) < 𝑑 → (abs‘((exp‘𝐴) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))) |
21 | simprr 527 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑥 ∈ ℂ ((abs‘(𝑥 − 𝐵)) < 𝑑 → (abs‘((exp‘𝑥) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))) → ∀𝑥 ∈ ℂ ((abs‘(𝑥 − 𝐵)) < 𝑑 → (abs‘((exp‘𝑥) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴)))) | |
22 | 14 | recnd 7941 | . . . . . 6 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑥 ∈ ℂ ((abs‘(𝑥 − 𝐵)) < 𝑑 → (abs‘((exp‘𝑥) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))) → 𝐴 ∈ ℂ) |
23 | 20, 21, 22 | rspcdva 2839 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑥 ∈ ℂ ((abs‘(𝑥 − 𝐵)) < 𝑑 → (abs‘((exp‘𝑥) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))) → ((abs‘(𝐴 − 𝐵)) < 𝑑 → (abs‘((exp‘𝐴) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴)))) |
24 | 14, 15, 16, 17, 23 | efltlemlt 13454 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑥 ∈ ℂ ((abs‘(𝑥 − 𝐵)) < 𝑑 → (abs‘((exp‘𝑥) − (exp‘𝐵))) < ((exp‘𝐵) − (exp‘𝐴))))) → 𝐴 < 𝐵) |
25 | 13, 24 | rexlimddv 2592 | . . 3 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (exp‘𝐴) < (exp‘𝐵)) → 𝐴 < 𝐵) |
26 | 25 | ex 114 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((exp‘𝐴) < (exp‘𝐵) → 𝐴 < 𝐵)) |
27 | 1, 26 | impbid 128 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ∀wral 2448 ∃wrex 2449 class class class wbr 3987 ‘cfv 5196 (class class class)co 5851 ℂcc 7765 ℝcr 7766 < clt 7947 − cmin 8083 ℝ+crp 9603 abscabs 10954 expce 11598 –cn→ccncf 13316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7858 ax-resscn 7859 ax-1cn 7860 ax-1re 7861 ax-icn 7862 ax-addcl 7863 ax-addrcl 7864 ax-mulcl 7865 ax-mulrcl 7866 ax-addcom 7867 ax-mulcom 7868 ax-addass 7869 ax-mulass 7870 ax-distr 7871 ax-i2m1 7872 ax-0lt1 7873 ax-1rid 7874 ax-0id 7875 ax-rnegex 7876 ax-precex 7877 ax-cnre 7878 ax-pre-ltirr 7879 ax-pre-ltwlin 7880 ax-pre-lttrn 7881 ax-pre-apti 7882 ax-pre-ltadd 7883 ax-pre-mulgt0 7884 ax-pre-mulext 7885 ax-arch 7886 ax-caucvg 7887 ax-addf 7889 ax-mulf 7890 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3526 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-disj 3965 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-isom 5205 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-of 6059 df-1st 6117 df-2nd 6118 df-recs 6282 df-irdg 6347 df-frec 6368 df-1o 6393 df-oadd 6397 df-er 6511 df-map 6626 df-pm 6627 df-en 6717 df-dom 6718 df-fin 6719 df-sup 6959 df-inf 6960 df-pnf 7949 df-mnf 7950 df-xr 7951 df-ltxr 7952 df-le 7953 df-sub 8085 df-neg 8086 df-reap 8487 df-ap 8494 df-div 8583 df-inn 8872 df-2 8930 df-3 8931 df-4 8932 df-n0 9129 df-z 9206 df-uz 9481 df-q 9572 df-rp 9604 df-xneg 9722 df-xadd 9723 df-ico 9844 df-fz 9959 df-fzo 10092 df-seqfrec 10395 df-exp 10469 df-fac 10653 df-bc 10675 df-ihash 10703 df-shft 10772 df-cj 10799 df-re 10800 df-im 10801 df-rsqrt 10955 df-abs 10956 df-clim 11235 df-sumdc 11310 df-ef 11604 df-rest 12574 df-topgen 12593 df-psmet 12746 df-xmet 12747 df-met 12748 df-bl 12749 df-mopn 12750 df-top 12755 df-topon 12768 df-bases 12800 df-ntr 12855 df-cn 12947 df-cnp 12948 df-tx 13012 df-cncf 13317 df-limced 13384 df-dvap 13385 |
This theorem is referenced by: efle 13456 reefiso 13457 reapef 13458 logdivlti 13561 cxplt 13595 rpcxplt2 13598 |
Copyright terms: Public domain | W3C validator |