ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinclemlopn GIF version

Theorem ivthinclemlopn 13084
Description: Lemma for ivthinc 13091. The lower cut is open. (Contributed by Jim Kingdon, 6-Feb-2024.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivth.9 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
ivthinc.i (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
ivthinclem.l 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
ivthinclem.r 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}
ivthinclemlopn.q (𝜑𝑄𝐿)
Assertion
Ref Expression
ivthinclemlopn (𝜑 → ∃𝑟𝐿 𝑄 < 𝑟)
Distinct variable groups:   𝑤,𝐴   𝑥,𝐴,𝑦   𝑤,𝐵   𝑥,𝐵,𝑦   𝑤,𝐹   𝑥,𝐹,𝑦   𝐿,𝑟   𝑄,𝑟   𝑤,𝑄   𝑥,𝑄,𝑦   𝑤,𝑈   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑤,𝑟)   𝐴(𝑟)   𝐵(𝑟)   𝐷(𝑥,𝑦,𝑤,𝑟)   𝑅(𝑥,𝑦,𝑤,𝑟)   𝑈(𝑥,𝑦,𝑟)   𝐹(𝑟)   𝐿(𝑥,𝑦,𝑤)

Proof of Theorem ivthinclemlopn
Dummy variables 𝑧 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ivth.7 . . 3 (𝜑𝐹 ∈ (𝐷cn→ℂ))
2 ivth.5 . . . 4 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
3 ivthinclemlopn.q . . . . . 6 (𝜑𝑄𝐿)
4 fveq2 5470 . . . . . . . 8 (𝑤 = 𝑄 → (𝐹𝑤) = (𝐹𝑄))
54breq1d 3977 . . . . . . 7 (𝑤 = 𝑄 → ((𝐹𝑤) < 𝑈 ↔ (𝐹𝑄) < 𝑈))
6 ivthinclem.l . . . . . . 7 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
75, 6elrab2 2871 . . . . . 6 (𝑄𝐿 ↔ (𝑄 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑄) < 𝑈))
83, 7sylib 121 . . . . 5 (𝜑 → (𝑄 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑄) < 𝑈))
98simpld 111 . . . 4 (𝜑𝑄 ∈ (𝐴[,]𝐵))
102, 9sseldd 3129 . . 3 (𝜑𝑄𝐷)
11 ivth.3 . . . . 5 (𝜑𝑈 ∈ ℝ)
12 fveq2 5470 . . . . . . 7 (𝑥 = 𝑄 → (𝐹𝑥) = (𝐹𝑄))
1312eleq1d 2226 . . . . . 6 (𝑥 = 𝑄 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑄) ∈ ℝ))
14 ivth.8 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
1514ralrimiva 2530 . . . . . 6 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
1613, 15, 9rspcdva 2821 . . . . 5 (𝜑 → (𝐹𝑄) ∈ ℝ)
1711, 16resubcld 8260 . . . 4 (𝜑 → (𝑈 − (𝐹𝑄)) ∈ ℝ)
188simprd 113 . . . . 5 (𝜑 → (𝐹𝑄) < 𝑈)
1916, 11posdifd 8411 . . . . 5 (𝜑 → ((𝐹𝑄) < 𝑈 ↔ 0 < (𝑈 − (𝐹𝑄))))
2018, 19mpbid 146 . . . 4 (𝜑 → 0 < (𝑈 − (𝐹𝑄)))
2117, 20elrpd 9606 . . 3 (𝜑 → (𝑈 − (𝐹𝑄)) ∈ ℝ+)
22 cncfi 13035 . . 3 ((𝐹 ∈ (𝐷cn→ℂ) ∧ 𝑄𝐷 ∧ (𝑈 − (𝐹𝑄)) ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))
231, 10, 21, 22syl3anc 1220 . 2 (𝜑 → ∃𝑑 ∈ ℝ+𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))
24 ivth.1 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
25 ivth.2 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
26 elicc2 9848 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑄 ∈ (𝐴[,]𝐵) ↔ (𝑄 ∈ ℝ ∧ 𝐴𝑄𝑄𝐵)))
2724, 25, 26syl2anc 409 . . . . . . . . 9 (𝜑 → (𝑄 ∈ (𝐴[,]𝐵) ↔ (𝑄 ∈ ℝ ∧ 𝐴𝑄𝑄𝐵)))
289, 27mpbid 146 . . . . . . . 8 (𝜑 → (𝑄 ∈ ℝ ∧ 𝐴𝑄𝑄𝐵))
2928simp1d 994 . . . . . . 7 (𝜑𝑄 ∈ ℝ)
3029adantr 274 . . . . . 6 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → 𝑄 ∈ ℝ)
31 simprl 521 . . . . . . . 8 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → 𝑑 ∈ ℝ+)
3231rphalfcld 9622 . . . . . . 7 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝑑 / 2) ∈ ℝ+)
3332rpred 9609 . . . . . 6 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝑑 / 2) ∈ ℝ)
3430, 33readdcld 7909 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝑄 + (𝑑 / 2)) ∈ ℝ)
3524adantr 274 . . . . . 6 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → 𝐴 ∈ ℝ)
3628simp2d 995 . . . . . . 7 (𝜑𝐴𝑄)
3736adantr 274 . . . . . 6 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → 𝐴𝑄)
3830, 32ltaddrpd 9643 . . . . . . 7 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → 𝑄 < (𝑄 + (𝑑 / 2)))
3930, 34, 38ltled 7998 . . . . . 6 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → 𝑄 ≤ (𝑄 + (𝑑 / 2)))
4035, 30, 34, 37, 39letrd 8003 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → 𝐴 ≤ (𝑄 + (𝑑 / 2)))
4125adantr 274 . . . . . 6 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → 𝐵 ∈ ℝ)
4231rpred 9609 . . . . . . . 8 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → 𝑑 ∈ ℝ)
4330, 42readdcld 7909 . . . . . . 7 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝑄 + 𝑑) ∈ ℝ)
44 rphalflt 9596 . . . . . . . . 9 (𝑑 ∈ ℝ+ → (𝑑 / 2) < 𝑑)
4531, 44syl 14 . . . . . . . 8 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝑑 / 2) < 𝑑)
4633, 42, 30, 45ltadd2dd 8301 . . . . . . 7 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝑄 + (𝑑 / 2)) < (𝑄 + 𝑑))
4729ad2antrr 480 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → 𝑄 ∈ ℝ)
4831adantr 274 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → 𝑑 ∈ ℝ+)
4948rpred 9609 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → 𝑑 ∈ ℝ)
5047, 49resubcld 8260 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → (𝑄𝑑) ∈ ℝ)
5125ad2antrr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → 𝐵 ∈ ℝ)
5247, 48ltsubrpd 9642 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → (𝑄𝑑) < 𝑄)
5328simp3d 996 . . . . . . . . . . . . . . . . 17 (𝜑𝑄𝐵)
5453ad2antrr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → 𝑄𝐵)
5550, 47, 51, 52, 54ltletrd 8302 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → (𝑄𝑑) < 𝐵)
56 simpr 109 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → 𝐵 < (𝑄 + 𝑑))
5751, 47, 49absdifltd 11089 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → ((abs‘(𝐵𝑄)) < 𝑑 ↔ ((𝑄𝑑) < 𝐵𝐵 < (𝑄 + 𝑑))))
5855, 56, 57mpbir2and 929 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → (abs‘(𝐵𝑄)) < 𝑑)
59 fvoveq1 5849 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝐵 → (abs‘(𝑧𝑄)) = (abs‘(𝐵𝑄)))
6059breq1d 3977 . . . . . . . . . . . . . . . 16 (𝑧 = 𝐵 → ((abs‘(𝑧𝑄)) < 𝑑 ↔ (abs‘(𝐵𝑄)) < 𝑑))
6160imbrov2fvoveq 5851 . . . . . . . . . . . . . . 15 (𝑧 = 𝐵 → (((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))) ↔ ((abs‘(𝐵𝑄)) < 𝑑 → (abs‘((𝐹𝐵) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄)))))
62 simplrr 526 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))
6324rexrd 7929 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℝ*)
6425rexrd 7929 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℝ*)
65 ivth.4 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 < 𝐵)
6624, 25, 65ltled 7998 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴𝐵)
67 ubicc2 9895 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
6863, 64, 66, 67syl3anc 1220 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ (𝐴[,]𝐵))
692, 68sseldd 3129 . . . . . . . . . . . . . . . 16 (𝜑𝐵𝐷)
7069ad2antrr 480 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → 𝐵𝐷)
7161, 62, 70rspcdva 2821 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → ((abs‘(𝐵𝑄)) < 𝑑 → (abs‘((𝐹𝐵) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))
7258, 71mpd 13 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → (abs‘((𝐹𝐵) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄)))
73 fveq2 5470 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
7473eleq1d 2226 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐵 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐵) ∈ ℝ))
7515adantr 274 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
7668adantr 274 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → 𝐵 ∈ (𝐴[,]𝐵))
7774, 75, 76rspcdva 2821 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝐹𝐵) ∈ ℝ)
7877adantr 274 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → (𝐹𝐵) ∈ ℝ)
7916ad2antrr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → (𝐹𝑄) ∈ ℝ)
8017ad2antrr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → (𝑈 − (𝐹𝑄)) ∈ ℝ)
8178, 79, 80absdifltd 11089 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → ((abs‘((𝐹𝐵) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄)) ↔ (((𝐹𝑄) − (𝑈 − (𝐹𝑄))) < (𝐹𝐵) ∧ (𝐹𝐵) < ((𝐹𝑄) + (𝑈 − (𝐹𝑄))))))
8272, 81mpbid 146 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → (((𝐹𝑄) − (𝑈 − (𝐹𝑄))) < (𝐹𝐵) ∧ (𝐹𝐵) < ((𝐹𝑄) + (𝑈 − (𝐹𝑄)))))
8382simprd 113 . . . . . . . . . . 11 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → (𝐹𝐵) < ((𝐹𝑄) + (𝑈 − (𝐹𝑄))))
8479recnd 7908 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → (𝐹𝑄) ∈ ℂ)
8511recnd 7908 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ ℂ)
8685ad2antrr 480 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → 𝑈 ∈ ℂ)
8784, 86pncan3d 8193 . . . . . . . . . . 11 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → ((𝐹𝑄) + (𝑈 − (𝐹𝑄))) = 𝑈)
8883, 87breqtrd 3992 . . . . . . . . . 10 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → (𝐹𝐵) < 𝑈)
89 ivth.9 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
9089simprd 113 . . . . . . . . . . 11 (𝜑𝑈 < (𝐹𝐵))
9190ad2antrr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → 𝑈 < (𝐹𝐵))
9288, 91jca 304 . . . . . . . . 9 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐵)))
9311ad2antrr 480 . . . . . . . . . 10 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → 𝑈 ∈ ℝ)
94 ltnsym2 7970 . . . . . . . . . 10 (((𝐹𝐵) ∈ ℝ ∧ 𝑈 ∈ ℝ) → ¬ ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐵)))
9578, 93, 94syl2anc 409 . . . . . . . . 9 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → ¬ ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐵)))
9692, 95pm2.65da 651 . . . . . . . 8 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → ¬ 𝐵 < (𝑄 + 𝑑))
9743, 41, 96nltled 8000 . . . . . . 7 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝑄 + 𝑑) ≤ 𝐵)
9834, 43, 41, 46, 97ltletrd 8302 . . . . . 6 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝑄 + (𝑑 / 2)) < 𝐵)
9934, 41, 98ltled 7998 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝑄 + (𝑑 / 2)) ≤ 𝐵)
100 elicc2 9848 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑄 + (𝑑 / 2)) ∈ (𝐴[,]𝐵) ↔ ((𝑄 + (𝑑 / 2)) ∈ ℝ ∧ 𝐴 ≤ (𝑄 + (𝑑 / 2)) ∧ (𝑄 + (𝑑 / 2)) ≤ 𝐵)))
10135, 41, 100syl2anc 409 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → ((𝑄 + (𝑑 / 2)) ∈ (𝐴[,]𝐵) ↔ ((𝑄 + (𝑑 / 2)) ∈ ℝ ∧ 𝐴 ≤ (𝑄 + (𝑑 / 2)) ∧ (𝑄 + (𝑑 / 2)) ≤ 𝐵)))
10234, 40, 99, 101mpbir3and 1165 . . . 4 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝑄 + (𝑑 / 2)) ∈ (𝐴[,]𝐵))
10316adantr 274 . . . . . . 7 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝐹𝑄) ∈ ℝ)
104 fveq2 5470 . . . . . . . . 9 (𝑥 = (𝑄 + (𝑑 / 2)) → (𝐹𝑥) = (𝐹‘(𝑄 + (𝑑 / 2))))
105104eleq1d 2226 . . . . . . . 8 (𝑥 = (𝑄 + (𝑑 / 2)) → ((𝐹𝑥) ∈ ℝ ↔ (𝐹‘(𝑄 + (𝑑 / 2))) ∈ ℝ))
106105, 75, 102rspcdva 2821 . . . . . . 7 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝐹‘(𝑄 + (𝑑 / 2))) ∈ ℝ)
107 breq2 3971 . . . . . . . . . . 11 (𝑦 = (𝑄 + (𝑑 / 2)) → (𝑄 < 𝑦𝑄 < (𝑄 + (𝑑 / 2))))
108 fveq2 5470 . . . . . . . . . . . 12 (𝑦 = (𝑄 + (𝑑 / 2)) → (𝐹𝑦) = (𝐹‘(𝑄 + (𝑑 / 2))))
109108breq2d 3979 . . . . . . . . . . 11 (𝑦 = (𝑄 + (𝑑 / 2)) → ((𝐹𝑄) < (𝐹𝑦) ↔ (𝐹𝑄) < (𝐹‘(𝑄 + (𝑑 / 2)))))
110107, 109imbi12d 233 . . . . . . . . . 10 (𝑦 = (𝑄 + (𝑑 / 2)) → ((𝑄 < 𝑦 → (𝐹𝑄) < (𝐹𝑦)) ↔ (𝑄 < (𝑄 + (𝑑 / 2)) → (𝐹𝑄) < (𝐹‘(𝑄 + (𝑑 / 2))))))
111 breq1 3970 . . . . . . . . . . . . . 14 (𝑥 = 𝑄 → (𝑥 < 𝑦𝑄 < 𝑦))
11212breq1d 3977 . . . . . . . . . . . . . 14 (𝑥 = 𝑄 → ((𝐹𝑥) < (𝐹𝑦) ↔ (𝐹𝑄) < (𝐹𝑦)))
113111, 112imbi12d 233 . . . . . . . . . . . . 13 (𝑥 = 𝑄 → ((𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)) ↔ (𝑄 < 𝑦 → (𝐹𝑄) < (𝐹𝑦))))
114113ralbidv 2457 . . . . . . . . . . . 12 (𝑥 = 𝑄 → (∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)) ↔ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑄 < 𝑦 → (𝐹𝑄) < (𝐹𝑦))))
115 ivthinc.i . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
116115expr 373 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)))
117116ralrimiva 2530 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)))
118117ralrimiva 2530 . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)))
119114, 118, 9rspcdva 2821 . . . . . . . . . . 11 (𝜑 → ∀𝑦 ∈ (𝐴[,]𝐵)(𝑄 < 𝑦 → (𝐹𝑄) < (𝐹𝑦)))
120119adantr 274 . . . . . . . . . 10 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → ∀𝑦 ∈ (𝐴[,]𝐵)(𝑄 < 𝑦 → (𝐹𝑄) < (𝐹𝑦)))
121110, 120, 102rspcdva 2821 . . . . . . . . 9 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝑄 < (𝑄 + (𝑑 / 2)) → (𝐹𝑄) < (𝐹‘(𝑄 + (𝑑 / 2)))))
12238, 121mpd 13 . . . . . . . 8 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝐹𝑄) < (𝐹‘(𝑄 + (𝑑 / 2))))
123103, 106, 122ltled 7998 . . . . . . 7 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝐹𝑄) ≤ (𝐹‘(𝑄 + (𝑑 / 2))))
124103, 106, 123abssubge0d 11087 . . . . . 6 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (abs‘((𝐹‘(𝑄 + (𝑑 / 2))) − (𝐹𝑄))) = ((𝐹‘(𝑄 + (𝑑 / 2))) − (𝐹𝑄)))
12530recnd 7908 . . . . . . . . . . 11 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → 𝑄 ∈ ℂ)
12633recnd 7908 . . . . . . . . . . 11 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝑑 / 2) ∈ ℂ)
127125, 126pncan2d 8192 . . . . . . . . . 10 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → ((𝑄 + (𝑑 / 2)) − 𝑄) = (𝑑 / 2))
128127fveq2d 5474 . . . . . . . . 9 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (abs‘((𝑄 + (𝑑 / 2)) − 𝑄)) = (abs‘(𝑑 / 2)))
12932rpge0d 9613 . . . . . . . . . 10 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → 0 ≤ (𝑑 / 2))
13033, 129absidd 11078 . . . . . . . . 9 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (abs‘(𝑑 / 2)) = (𝑑 / 2))
131128, 130eqtrd 2190 . . . . . . . 8 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (abs‘((𝑄 + (𝑑 / 2)) − 𝑄)) = (𝑑 / 2))
132131, 45eqbrtrd 3988 . . . . . . 7 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (abs‘((𝑄 + (𝑑 / 2)) − 𝑄)) < 𝑑)
133 fvoveq1 5849 . . . . . . . . . 10 (𝑧 = (𝑄 + (𝑑 / 2)) → (abs‘(𝑧𝑄)) = (abs‘((𝑄 + (𝑑 / 2)) − 𝑄)))
134133breq1d 3977 . . . . . . . . 9 (𝑧 = (𝑄 + (𝑑 / 2)) → ((abs‘(𝑧𝑄)) < 𝑑 ↔ (abs‘((𝑄 + (𝑑 / 2)) − 𝑄)) < 𝑑))
135134imbrov2fvoveq 5851 . . . . . . . 8 (𝑧 = (𝑄 + (𝑑 / 2)) → (((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))) ↔ ((abs‘((𝑄 + (𝑑 / 2)) − 𝑄)) < 𝑑 → (abs‘((𝐹‘(𝑄 + (𝑑 / 2))) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄)))))
136 simprr 522 . . . . . . . 8 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))
1372adantr 274 . . . . . . . . 9 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝐴[,]𝐵) ⊆ 𝐷)
138137, 102sseldd 3129 . . . . . . . 8 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝑄 + (𝑑 / 2)) ∈ 𝐷)
139135, 136, 138rspcdva 2821 . . . . . . 7 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → ((abs‘((𝑄 + (𝑑 / 2)) − 𝑄)) < 𝑑 → (abs‘((𝐹‘(𝑄 + (𝑑 / 2))) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))
140132, 139mpd 13 . . . . . 6 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (abs‘((𝐹‘(𝑄 + (𝑑 / 2))) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄)))
141124, 140eqbrtrrd 3990 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → ((𝐹‘(𝑄 + (𝑑 / 2))) − (𝐹𝑄)) < (𝑈 − (𝐹𝑄)))
14211adantr 274 . . . . . 6 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → 𝑈 ∈ ℝ)
143106, 142, 103ltsub1d 8433 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → ((𝐹‘(𝑄 + (𝑑 / 2))) < 𝑈 ↔ ((𝐹‘(𝑄 + (𝑑 / 2))) − (𝐹𝑄)) < (𝑈 − (𝐹𝑄))))
144141, 143mpbird 166 . . . 4 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝐹‘(𝑄 + (𝑑 / 2))) < 𝑈)
145 fveq2 5470 . . . . . 6 (𝑤 = (𝑄 + (𝑑 / 2)) → (𝐹𝑤) = (𝐹‘(𝑄 + (𝑑 / 2))))
146145breq1d 3977 . . . . 5 (𝑤 = (𝑄 + (𝑑 / 2)) → ((𝐹𝑤) < 𝑈 ↔ (𝐹‘(𝑄 + (𝑑 / 2))) < 𝑈))
147146, 6elrab2 2871 . . . 4 ((𝑄 + (𝑑 / 2)) ∈ 𝐿 ↔ ((𝑄 + (𝑑 / 2)) ∈ (𝐴[,]𝐵) ∧ (𝐹‘(𝑄 + (𝑑 / 2))) < 𝑈))
148102, 144, 147sylanbrc 414 . . 3 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝑄 + (𝑑 / 2)) ∈ 𝐿)
149 breq2 3971 . . . 4 (𝑟 = (𝑄 + (𝑑 / 2)) → (𝑄 < 𝑟𝑄 < (𝑄 + (𝑑 / 2))))
150149rspcev 2816 . . 3 (((𝑄 + (𝑑 / 2)) ∈ 𝐿𝑄 < (𝑄 + (𝑑 / 2))) → ∃𝑟𝐿 𝑄 < 𝑟)
151148, 38, 150syl2anc 409 . 2 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → ∃𝑟𝐿 𝑄 < 𝑟)
15223, 151rexlimddv 2579 1 (𝜑 → ∃𝑟𝐿 𝑄 < 𝑟)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3a 963   = wceq 1335  wcel 2128  wral 2435  wrex 2436  {crab 2439  wss 3102   class class class wbr 3967  cfv 5172  (class class class)co 5826  cc 7732  cr 7733  0cc0 7734   + caddc 7737  *cxr 7913   < clt 7914  cle 7915  cmin 8050   / cdiv 8549  2c2 8889  +crp 9566  [,]cicc 9801  abscabs 10908  cnccncf 13027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4081  ax-sep 4084  ax-nul 4092  ax-pow 4137  ax-pr 4171  ax-un 4395  ax-setind 4498  ax-iinf 4549  ax-cnex 7825  ax-resscn 7826  ax-1cn 7827  ax-1re 7828  ax-icn 7829  ax-addcl 7830  ax-addrcl 7831  ax-mulcl 7832  ax-mulrcl 7833  ax-addcom 7834  ax-mulcom 7835  ax-addass 7836  ax-mulass 7837  ax-distr 7838  ax-i2m1 7839  ax-0lt1 7840  ax-1rid 7841  ax-0id 7842  ax-rnegex 7843  ax-precex 7844  ax-cnre 7845  ax-pre-ltirr 7846  ax-pre-ltwlin 7847  ax-pre-lttrn 7848  ax-pre-apti 7849  ax-pre-ltadd 7850  ax-pre-mulgt0 7851  ax-pre-mulext 7852  ax-arch 7853  ax-caucvg 7854
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-if 3507  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4028  df-mpt 4029  df-tr 4065  df-id 4255  df-po 4258  df-iso 4259  df-iord 4328  df-on 4330  df-ilim 4331  df-suc 4333  df-iom 4552  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-iota 5137  df-fun 5174  df-fn 5175  df-f 5176  df-f1 5177  df-fo 5178  df-f1o 5179  df-fv 5180  df-riota 5782  df-ov 5829  df-oprab 5830  df-mpo 5831  df-1st 6090  df-2nd 6091  df-recs 6254  df-frec 6340  df-map 6597  df-pnf 7916  df-mnf 7917  df-xr 7918  df-ltxr 7919  df-le 7920  df-sub 8052  df-neg 8053  df-reap 8454  df-ap 8461  df-div 8550  df-inn 8839  df-2 8897  df-3 8898  df-4 8899  df-n0 9096  df-z 9173  df-uz 9445  df-rp 9567  df-icc 9805  df-seqfrec 10354  df-exp 10428  df-cj 10753  df-re 10754  df-im 10755  df-rsqrt 10909  df-abs 10910  df-cncf 13028
This theorem is referenced by:  ivthinclemlr  13085
  Copyright terms: Public domain W3C validator