ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ivthinclemlopn GIF version

Theorem ivthinclemlopn 13781
Description: Lemma for ivthinc 13788. The lower cut is open. (Contributed by Jim Kingdon, 6-Feb-2024.)
Hypotheses
Ref Expression
ivth.1 (𝜑𝐴 ∈ ℝ)
ivth.2 (𝜑𝐵 ∈ ℝ)
ivth.3 (𝜑𝑈 ∈ ℝ)
ivth.4 (𝜑𝐴 < 𝐵)
ivth.5 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
ivth.7 (𝜑𝐹 ∈ (𝐷cn→ℂ))
ivth.8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
ivth.9 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
ivthinc.i (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
ivthinclem.l 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
ivthinclem.r 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹𝑤)}
ivthinclemlopn.q (𝜑𝑄𝐿)
Assertion
Ref Expression
ivthinclemlopn (𝜑 → ∃𝑟𝐿 𝑄 < 𝑟)
Distinct variable groups:   𝑤,𝐴   𝑥,𝐴,𝑦   𝑤,𝐵   𝑥,𝐵,𝑦   𝑤,𝐹   𝑥,𝐹,𝑦   𝐿,𝑟   𝑄,𝑟   𝑤,𝑄   𝑥,𝑄,𝑦   𝑤,𝑈   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑤,𝑟)   𝐴(𝑟)   𝐵(𝑟)   𝐷(𝑥,𝑦,𝑤,𝑟)   𝑅(𝑥,𝑦,𝑤,𝑟)   𝑈(𝑥,𝑦,𝑟)   𝐹(𝑟)   𝐿(𝑥,𝑦,𝑤)

Proof of Theorem ivthinclemlopn
Dummy variables 𝑧 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ivth.7 . . 3 (𝜑𝐹 ∈ (𝐷cn→ℂ))
2 ivth.5 . . . 4 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
3 ivthinclemlopn.q . . . . . 6 (𝜑𝑄𝐿)
4 fveq2 5511 . . . . . . . 8 (𝑤 = 𝑄 → (𝐹𝑤) = (𝐹𝑄))
54breq1d 4010 . . . . . . 7 (𝑤 = 𝑄 → ((𝐹𝑤) < 𝑈 ↔ (𝐹𝑄) < 𝑈))
6 ivthinclem.l . . . . . . 7 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹𝑤) < 𝑈}
75, 6elrab2 2896 . . . . . 6 (𝑄𝐿 ↔ (𝑄 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑄) < 𝑈))
83, 7sylib 122 . . . . 5 (𝜑 → (𝑄 ∈ (𝐴[,]𝐵) ∧ (𝐹𝑄) < 𝑈))
98simpld 112 . . . 4 (𝜑𝑄 ∈ (𝐴[,]𝐵))
102, 9sseldd 3156 . . 3 (𝜑𝑄𝐷)
11 ivth.3 . . . . 5 (𝜑𝑈 ∈ ℝ)
12 fveq2 5511 . . . . . . 7 (𝑥 = 𝑄 → (𝐹𝑥) = (𝐹𝑄))
1312eleq1d 2246 . . . . . 6 (𝑥 = 𝑄 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝑄) ∈ ℝ))
14 ivth.8 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℝ)
1514ralrimiva 2550 . . . . . 6 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
1613, 15, 9rspcdva 2846 . . . . 5 (𝜑 → (𝐹𝑄) ∈ ℝ)
1711, 16resubcld 8328 . . . 4 (𝜑 → (𝑈 − (𝐹𝑄)) ∈ ℝ)
188simprd 114 . . . . 5 (𝜑 → (𝐹𝑄) < 𝑈)
1916, 11posdifd 8479 . . . . 5 (𝜑 → ((𝐹𝑄) < 𝑈 ↔ 0 < (𝑈 − (𝐹𝑄))))
2018, 19mpbid 147 . . . 4 (𝜑 → 0 < (𝑈 − (𝐹𝑄)))
2117, 20elrpd 9680 . . 3 (𝜑 → (𝑈 − (𝐹𝑄)) ∈ ℝ+)
22 cncfi 13732 . . 3 ((𝐹 ∈ (𝐷cn→ℂ) ∧ 𝑄𝐷 ∧ (𝑈 − (𝐹𝑄)) ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))
231, 10, 21, 22syl3anc 1238 . 2 (𝜑 → ∃𝑑 ∈ ℝ+𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))
24 ivth.1 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
25 ivth.2 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
26 elicc2 9925 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑄 ∈ (𝐴[,]𝐵) ↔ (𝑄 ∈ ℝ ∧ 𝐴𝑄𝑄𝐵)))
2724, 25, 26syl2anc 411 . . . . . . . . 9 (𝜑 → (𝑄 ∈ (𝐴[,]𝐵) ↔ (𝑄 ∈ ℝ ∧ 𝐴𝑄𝑄𝐵)))
289, 27mpbid 147 . . . . . . . 8 (𝜑 → (𝑄 ∈ ℝ ∧ 𝐴𝑄𝑄𝐵))
2928simp1d 1009 . . . . . . 7 (𝜑𝑄 ∈ ℝ)
3029adantr 276 . . . . . 6 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → 𝑄 ∈ ℝ)
31 simprl 529 . . . . . . . 8 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → 𝑑 ∈ ℝ+)
3231rphalfcld 9696 . . . . . . 7 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝑑 / 2) ∈ ℝ+)
3332rpred 9683 . . . . . 6 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝑑 / 2) ∈ ℝ)
3430, 33readdcld 7977 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝑄 + (𝑑 / 2)) ∈ ℝ)
3524adantr 276 . . . . . 6 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → 𝐴 ∈ ℝ)
3628simp2d 1010 . . . . . . 7 (𝜑𝐴𝑄)
3736adantr 276 . . . . . 6 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → 𝐴𝑄)
3830, 32ltaddrpd 9717 . . . . . . 7 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → 𝑄 < (𝑄 + (𝑑 / 2)))
3930, 34, 38ltled 8066 . . . . . 6 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → 𝑄 ≤ (𝑄 + (𝑑 / 2)))
4035, 30, 34, 37, 39letrd 8071 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → 𝐴 ≤ (𝑄 + (𝑑 / 2)))
4125adantr 276 . . . . . 6 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → 𝐵 ∈ ℝ)
4231rpred 9683 . . . . . . . 8 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → 𝑑 ∈ ℝ)
4330, 42readdcld 7977 . . . . . . 7 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝑄 + 𝑑) ∈ ℝ)
44 rphalflt 9670 . . . . . . . . 9 (𝑑 ∈ ℝ+ → (𝑑 / 2) < 𝑑)
4531, 44syl 14 . . . . . . . 8 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝑑 / 2) < 𝑑)
4633, 42, 30, 45ltadd2dd 8369 . . . . . . 7 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝑄 + (𝑑 / 2)) < (𝑄 + 𝑑))
4729ad2antrr 488 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → 𝑄 ∈ ℝ)
4831adantr 276 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → 𝑑 ∈ ℝ+)
4948rpred 9683 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → 𝑑 ∈ ℝ)
5047, 49resubcld 8328 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → (𝑄𝑑) ∈ ℝ)
5125ad2antrr 488 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → 𝐵 ∈ ℝ)
5247, 48ltsubrpd 9716 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → (𝑄𝑑) < 𝑄)
5328simp3d 1011 . . . . . . . . . . . . . . . . 17 (𝜑𝑄𝐵)
5453ad2antrr 488 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → 𝑄𝐵)
5550, 47, 51, 52, 54ltletrd 8370 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → (𝑄𝑑) < 𝐵)
56 simpr 110 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → 𝐵 < (𝑄 + 𝑑))
5751, 47, 49absdifltd 11171 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → ((abs‘(𝐵𝑄)) < 𝑑 ↔ ((𝑄𝑑) < 𝐵𝐵 < (𝑄 + 𝑑))))
5855, 56, 57mpbir2and 944 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → (abs‘(𝐵𝑄)) < 𝑑)
59 fvoveq1 5892 . . . . . . . . . . . . . . . . 17 (𝑧 = 𝐵 → (abs‘(𝑧𝑄)) = (abs‘(𝐵𝑄)))
6059breq1d 4010 . . . . . . . . . . . . . . . 16 (𝑧 = 𝐵 → ((abs‘(𝑧𝑄)) < 𝑑 ↔ (abs‘(𝐵𝑄)) < 𝑑))
6160imbrov2fvoveq 5894 . . . . . . . . . . . . . . 15 (𝑧 = 𝐵 → (((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))) ↔ ((abs‘(𝐵𝑄)) < 𝑑 → (abs‘((𝐹𝐵) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄)))))
62 simplrr 536 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))
6324rexrd 7997 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴 ∈ ℝ*)
6425rexrd 7997 . . . . . . . . . . . . . . . . . 18 (𝜑𝐵 ∈ ℝ*)
65 ivth.4 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐴 < 𝐵)
6624, 25, 65ltled 8066 . . . . . . . . . . . . . . . . . 18 (𝜑𝐴𝐵)
67 ubicc2 9972 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐵 ∈ (𝐴[,]𝐵))
6863, 64, 66, 67syl3anc 1238 . . . . . . . . . . . . . . . . 17 (𝜑𝐵 ∈ (𝐴[,]𝐵))
692, 68sseldd 3156 . . . . . . . . . . . . . . . 16 (𝜑𝐵𝐷)
7069ad2antrr 488 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → 𝐵𝐷)
7161, 62, 70rspcdva 2846 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → ((abs‘(𝐵𝑄)) < 𝑑 → (abs‘((𝐹𝐵) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))
7258, 71mpd 13 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → (abs‘((𝐹𝐵) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄)))
73 fveq2 5511 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐵 → (𝐹𝑥) = (𝐹𝐵))
7473eleq1d 2246 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐵 → ((𝐹𝑥) ∈ ℝ ↔ (𝐹𝐵) ∈ ℝ))
7515adantr 276 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → ∀𝑥 ∈ (𝐴[,]𝐵)(𝐹𝑥) ∈ ℝ)
7668adantr 276 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → 𝐵 ∈ (𝐴[,]𝐵))
7774, 75, 76rspcdva 2846 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝐹𝐵) ∈ ℝ)
7877adantr 276 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → (𝐹𝐵) ∈ ℝ)
7916ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → (𝐹𝑄) ∈ ℝ)
8017ad2antrr 488 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → (𝑈 − (𝐹𝑄)) ∈ ℝ)
8178, 79, 80absdifltd 11171 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → ((abs‘((𝐹𝐵) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄)) ↔ (((𝐹𝑄) − (𝑈 − (𝐹𝑄))) < (𝐹𝐵) ∧ (𝐹𝐵) < ((𝐹𝑄) + (𝑈 − (𝐹𝑄))))))
8272, 81mpbid 147 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → (((𝐹𝑄) − (𝑈 − (𝐹𝑄))) < (𝐹𝐵) ∧ (𝐹𝐵) < ((𝐹𝑄) + (𝑈 − (𝐹𝑄)))))
8382simprd 114 . . . . . . . . . . 11 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → (𝐹𝐵) < ((𝐹𝑄) + (𝑈 − (𝐹𝑄))))
8479recnd 7976 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → (𝐹𝑄) ∈ ℂ)
8511recnd 7976 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ ℂ)
8685ad2antrr 488 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → 𝑈 ∈ ℂ)
8784, 86pncan3d 8261 . . . . . . . . . . 11 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → ((𝐹𝑄) + (𝑈 − (𝐹𝑄))) = 𝑈)
8883, 87breqtrd 4026 . . . . . . . . . 10 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → (𝐹𝐵) < 𝑈)
89 ivth.9 . . . . . . . . . . . 12 (𝜑 → ((𝐹𝐴) < 𝑈𝑈 < (𝐹𝐵)))
9089simprd 114 . . . . . . . . . . 11 (𝜑𝑈 < (𝐹𝐵))
9190ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → 𝑈 < (𝐹𝐵))
9288, 91jca 306 . . . . . . . . 9 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐵)))
9311ad2antrr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → 𝑈 ∈ ℝ)
94 ltnsym2 8038 . . . . . . . . . 10 (((𝐹𝐵) ∈ ℝ ∧ 𝑈 ∈ ℝ) → ¬ ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐵)))
9578, 93, 94syl2anc 411 . . . . . . . . 9 (((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) ∧ 𝐵 < (𝑄 + 𝑑)) → ¬ ((𝐹𝐵) < 𝑈𝑈 < (𝐹𝐵)))
9692, 95pm2.65da 661 . . . . . . . 8 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → ¬ 𝐵 < (𝑄 + 𝑑))
9743, 41, 96nltled 8068 . . . . . . 7 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝑄 + 𝑑) ≤ 𝐵)
9834, 43, 41, 46, 97ltletrd 8370 . . . . . 6 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝑄 + (𝑑 / 2)) < 𝐵)
9934, 41, 98ltled 8066 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝑄 + (𝑑 / 2)) ≤ 𝐵)
100 elicc2 9925 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝑄 + (𝑑 / 2)) ∈ (𝐴[,]𝐵) ↔ ((𝑄 + (𝑑 / 2)) ∈ ℝ ∧ 𝐴 ≤ (𝑄 + (𝑑 / 2)) ∧ (𝑄 + (𝑑 / 2)) ≤ 𝐵)))
10135, 41, 100syl2anc 411 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → ((𝑄 + (𝑑 / 2)) ∈ (𝐴[,]𝐵) ↔ ((𝑄 + (𝑑 / 2)) ∈ ℝ ∧ 𝐴 ≤ (𝑄 + (𝑑 / 2)) ∧ (𝑄 + (𝑑 / 2)) ≤ 𝐵)))
10234, 40, 99, 101mpbir3and 1180 . . . 4 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝑄 + (𝑑 / 2)) ∈ (𝐴[,]𝐵))
10316adantr 276 . . . . . . 7 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝐹𝑄) ∈ ℝ)
104 fveq2 5511 . . . . . . . . 9 (𝑥 = (𝑄 + (𝑑 / 2)) → (𝐹𝑥) = (𝐹‘(𝑄 + (𝑑 / 2))))
105104eleq1d 2246 . . . . . . . 8 (𝑥 = (𝑄 + (𝑑 / 2)) → ((𝐹𝑥) ∈ ℝ ↔ (𝐹‘(𝑄 + (𝑑 / 2))) ∈ ℝ))
106105, 75, 102rspcdva 2846 . . . . . . 7 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝐹‘(𝑄 + (𝑑 / 2))) ∈ ℝ)
107 breq2 4004 . . . . . . . . . . 11 (𝑦 = (𝑄 + (𝑑 / 2)) → (𝑄 < 𝑦𝑄 < (𝑄 + (𝑑 / 2))))
108 fveq2 5511 . . . . . . . . . . . 12 (𝑦 = (𝑄 + (𝑑 / 2)) → (𝐹𝑦) = (𝐹‘(𝑄 + (𝑑 / 2))))
109108breq2d 4012 . . . . . . . . . . 11 (𝑦 = (𝑄 + (𝑑 / 2)) → ((𝐹𝑄) < (𝐹𝑦) ↔ (𝐹𝑄) < (𝐹‘(𝑄 + (𝑑 / 2)))))
110107, 109imbi12d 234 . . . . . . . . . 10 (𝑦 = (𝑄 + (𝑑 / 2)) → ((𝑄 < 𝑦 → (𝐹𝑄) < (𝐹𝑦)) ↔ (𝑄 < (𝑄 + (𝑑 / 2)) → (𝐹𝑄) < (𝐹‘(𝑄 + (𝑑 / 2))))))
111 breq1 4003 . . . . . . . . . . . . . 14 (𝑥 = 𝑄 → (𝑥 < 𝑦𝑄 < 𝑦))
11212breq1d 4010 . . . . . . . . . . . . . 14 (𝑥 = 𝑄 → ((𝐹𝑥) < (𝐹𝑦) ↔ (𝐹𝑄) < (𝐹𝑦)))
113111, 112imbi12d 234 . . . . . . . . . . . . 13 (𝑥 = 𝑄 → ((𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)) ↔ (𝑄 < 𝑦 → (𝐹𝑄) < (𝐹𝑦))))
114113ralbidv 2477 . . . . . . . . . . . 12 (𝑥 = 𝑄 → (∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)) ↔ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑄 < 𝑦 → (𝐹𝑄) < (𝐹𝑦))))
115 ivthinc.i . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹𝑥) < (𝐹𝑦))
116115expr 375 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)))
117116ralrimiva 2550 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)))
118117ralrimiva 2550 . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (𝐹𝑥) < (𝐹𝑦)))
119114, 118, 9rspcdva 2846 . . . . . . . . . . 11 (𝜑 → ∀𝑦 ∈ (𝐴[,]𝐵)(𝑄 < 𝑦 → (𝐹𝑄) < (𝐹𝑦)))
120119adantr 276 . . . . . . . . . 10 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → ∀𝑦 ∈ (𝐴[,]𝐵)(𝑄 < 𝑦 → (𝐹𝑄) < (𝐹𝑦)))
121110, 120, 102rspcdva 2846 . . . . . . . . 9 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝑄 < (𝑄 + (𝑑 / 2)) → (𝐹𝑄) < (𝐹‘(𝑄 + (𝑑 / 2)))))
12238, 121mpd 13 . . . . . . . 8 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝐹𝑄) < (𝐹‘(𝑄 + (𝑑 / 2))))
123103, 106, 122ltled 8066 . . . . . . 7 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝐹𝑄) ≤ (𝐹‘(𝑄 + (𝑑 / 2))))
124103, 106, 123abssubge0d 11169 . . . . . 6 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (abs‘((𝐹‘(𝑄 + (𝑑 / 2))) − (𝐹𝑄))) = ((𝐹‘(𝑄 + (𝑑 / 2))) − (𝐹𝑄)))
12530recnd 7976 . . . . . . . . . . 11 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → 𝑄 ∈ ℂ)
12633recnd 7976 . . . . . . . . . . 11 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝑑 / 2) ∈ ℂ)
127125, 126pncan2d 8260 . . . . . . . . . 10 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → ((𝑄 + (𝑑 / 2)) − 𝑄) = (𝑑 / 2))
128127fveq2d 5515 . . . . . . . . 9 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (abs‘((𝑄 + (𝑑 / 2)) − 𝑄)) = (abs‘(𝑑 / 2)))
12932rpge0d 9687 . . . . . . . . . 10 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → 0 ≤ (𝑑 / 2))
13033, 129absidd 11160 . . . . . . . . 9 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (abs‘(𝑑 / 2)) = (𝑑 / 2))
131128, 130eqtrd 2210 . . . . . . . 8 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (abs‘((𝑄 + (𝑑 / 2)) − 𝑄)) = (𝑑 / 2))
132131, 45eqbrtrd 4022 . . . . . . 7 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (abs‘((𝑄 + (𝑑 / 2)) − 𝑄)) < 𝑑)
133 fvoveq1 5892 . . . . . . . . . 10 (𝑧 = (𝑄 + (𝑑 / 2)) → (abs‘(𝑧𝑄)) = (abs‘((𝑄 + (𝑑 / 2)) − 𝑄)))
134133breq1d 4010 . . . . . . . . 9 (𝑧 = (𝑄 + (𝑑 / 2)) → ((abs‘(𝑧𝑄)) < 𝑑 ↔ (abs‘((𝑄 + (𝑑 / 2)) − 𝑄)) < 𝑑))
135134imbrov2fvoveq 5894 . . . . . . . 8 (𝑧 = (𝑄 + (𝑑 / 2)) → (((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))) ↔ ((abs‘((𝑄 + (𝑑 / 2)) − 𝑄)) < 𝑑 → (abs‘((𝐹‘(𝑄 + (𝑑 / 2))) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄)))))
136 simprr 531 . . . . . . . 8 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))
1372adantr 276 . . . . . . . . 9 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝐴[,]𝐵) ⊆ 𝐷)
138137, 102sseldd 3156 . . . . . . . 8 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝑄 + (𝑑 / 2)) ∈ 𝐷)
139135, 136, 138rspcdva 2846 . . . . . . 7 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → ((abs‘((𝑄 + (𝑑 / 2)) − 𝑄)) < 𝑑 → (abs‘((𝐹‘(𝑄 + (𝑑 / 2))) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))
140132, 139mpd 13 . . . . . 6 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (abs‘((𝐹‘(𝑄 + (𝑑 / 2))) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄)))
141124, 140eqbrtrrd 4024 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → ((𝐹‘(𝑄 + (𝑑 / 2))) − (𝐹𝑄)) < (𝑈 − (𝐹𝑄)))
14211adantr 276 . . . . . 6 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → 𝑈 ∈ ℝ)
143106, 142, 103ltsub1d 8501 . . . . 5 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → ((𝐹‘(𝑄 + (𝑑 / 2))) < 𝑈 ↔ ((𝐹‘(𝑄 + (𝑑 / 2))) − (𝐹𝑄)) < (𝑈 − (𝐹𝑄))))
144141, 143mpbird 167 . . . 4 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝐹‘(𝑄 + (𝑑 / 2))) < 𝑈)
145 fveq2 5511 . . . . . 6 (𝑤 = (𝑄 + (𝑑 / 2)) → (𝐹𝑤) = (𝐹‘(𝑄 + (𝑑 / 2))))
146145breq1d 4010 . . . . 5 (𝑤 = (𝑄 + (𝑑 / 2)) → ((𝐹𝑤) < 𝑈 ↔ (𝐹‘(𝑄 + (𝑑 / 2))) < 𝑈))
147146, 6elrab2 2896 . . . 4 ((𝑄 + (𝑑 / 2)) ∈ 𝐿 ↔ ((𝑄 + (𝑑 / 2)) ∈ (𝐴[,]𝐵) ∧ (𝐹‘(𝑄 + (𝑑 / 2))) < 𝑈))
148102, 144, 147sylanbrc 417 . . 3 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → (𝑄 + (𝑑 / 2)) ∈ 𝐿)
149 breq2 4004 . . . 4 (𝑟 = (𝑄 + (𝑑 / 2)) → (𝑄 < 𝑟𝑄 < (𝑄 + (𝑑 / 2))))
150149rspcev 2841 . . 3 (((𝑄 + (𝑑 / 2)) ∈ 𝐿𝑄 < (𝑄 + (𝑑 / 2))) → ∃𝑟𝐿 𝑄 < 𝑟)
151148, 38, 150syl2anc 411 . 2 ((𝜑 ∧ (𝑑 ∈ ℝ+ ∧ ∀𝑧𝐷 ((abs‘(𝑧𝑄)) < 𝑑 → (abs‘((𝐹𝑧) − (𝐹𝑄))) < (𝑈 − (𝐹𝑄))))) → ∃𝑟𝐿 𝑄 < 𝑟)
15223, 151rexlimddv 2599 1 (𝜑 → ∃𝑟𝐿 𝑄 < 𝑟)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148  wral 2455  wrex 2456  {crab 2459  wss 3129   class class class wbr 4000  cfv 5212  (class class class)co 5869  cc 7800  cr 7801  0cc0 7802   + caddc 7805  *cxr 7981   < clt 7982  cle 7983  cmin 8118   / cdiv 8618  2c2 8959  +crp 9640  [,]cicc 9878  abscabs 10990  cnccncf 13724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-map 6644  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-rp 9641  df-icc 9882  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-cncf 13725
This theorem is referenced by:  ivthinclemlr  13782
  Copyright terms: Public domain W3C validator