| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovrspc2v | GIF version | ||
| Description: If an operation value is element of a class for all operands of two classes, then the operation value is an element of the class for specific operands of the two classes. (Contributed by Mario Carneiro, 6-Dec-2014.) |
| Ref | Expression |
|---|---|
| ovrspc2v | ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) ∈ 𝐶) → (𝑋𝐹𝑌) ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5951 | . . 3 ⊢ (𝑥 = 𝑋 → (𝑥𝐹𝑦) = (𝑋𝐹𝑦)) | |
| 2 | 1 | eleq1d 2274 | . 2 ⊢ (𝑥 = 𝑋 → ((𝑥𝐹𝑦) ∈ 𝐶 ↔ (𝑋𝐹𝑦) ∈ 𝐶)) |
| 3 | oveq2 5952 | . . 3 ⊢ (𝑦 = 𝑌 → (𝑋𝐹𝑦) = (𝑋𝐹𝑌)) | |
| 4 | 3 | eleq1d 2274 | . 2 ⊢ (𝑦 = 𝑌 → ((𝑋𝐹𝑦) ∈ 𝐶 ↔ (𝑋𝐹𝑌) ∈ 𝐶)) |
| 5 | 2, 4 | rspc2va 2891 | 1 ⊢ (((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) ∈ 𝐶) → (𝑋𝐹𝑌) ∈ 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2176 ∀wral 2484 (class class class)co 5944 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 |
| This theorem is referenced by: ercpbl 13163 mgmcl 13191 sgrppropd 13245 mndpropd 13272 issubmnd 13274 submcl 13311 issubg2m 13525 lmodprop2d 14110 lsspropdg 14193 |
| Copyright terms: Public domain | W3C validator |