ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcdiv GIF version

Theorem pcdiv 12243
Description: Division property of the prime power function. (Contributed by Mario Carneiro, 1-Mar-2014.)
Assertion
Ref Expression
pcdiv ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt (𝐴 / 𝐵)) = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)))

Proof of Theorem pcdiv
Dummy variables 𝑥 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 992 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝑃 ∈ ℙ)
2 simp2l 1018 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
3 simp3 994 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℕ)
4 znq 9570 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)
52, 3, 4syl2anc 409 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)
62zcnd 9322 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℂ)
73nncnd 8879 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℂ)
8 simp2r 1019 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝐴 ≠ 0)
9 0z 9210 . . . . . . 7 0 ∈ ℤ
10 zapne 9273 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → (𝐴 # 0 ↔ 𝐴 ≠ 0))
112, 9, 10sylancl 411 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝐴 # 0 ↔ 𝐴 ≠ 0))
128, 11mpbird 166 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝐴 # 0)
133nnap0d 8911 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝐵 # 0)
146, 7, 12, 13divap0d 8710 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) # 0)
15 zq 9572 . . . . . 6 (0 ∈ ℤ → 0 ∈ ℚ)
169, 15ax-mp 5 . . . . 5 0 ∈ ℚ
17 qapne 9585 . . . . 5 (((𝐴 / 𝐵) ∈ ℚ ∧ 0 ∈ ℚ) → ((𝐴 / 𝐵) # 0 ↔ (𝐴 / 𝐵) ≠ 0))
185, 16, 17sylancl 411 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) # 0 ↔ (𝐴 / 𝐵) ≠ 0))
1914, 18mpbid 146 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≠ 0)
20 eqid 2170 . . . 4 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < )
21 eqid 2170 . . . 4 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )
2220, 21pcval 12237 . . 3 ((𝑃 ∈ ℙ ∧ ((𝐴 / 𝐵) ∈ ℚ ∧ (𝐴 / 𝐵) ≠ 0)) → (𝑃 pCnt (𝐴 / 𝐵)) = (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))))
231, 5, 19, 22syl12anc 1231 . 2 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt (𝐴 / 𝐵)) = (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))))
24 eqid 2170 . . . . . . . 8 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < )
2524pczpre 12238 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ))
26253adant3 1012 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt 𝐴) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ))
27 nnz 9218 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
28 nnne0 8893 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
2927, 28jca 304 . . . . . . . 8 (𝐵 ∈ ℕ → (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0))
30 eqid 2170 . . . . . . . . 9 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < )
3130pczpre 12238 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐵) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < ))
3229, 31sylan2 284 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt 𝐵) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < ))
33323adant2 1011 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt 𝐵) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < ))
3426, 33oveq12d 5868 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < )))
35 eqid 2170 . . . . 5 (𝐴 / 𝐵) = (𝐴 / 𝐵)
3634, 35jctil 310 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) = (𝐴 / 𝐵) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < ))))
37 oveq1 5857 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 / 𝑦) = (𝐴 / 𝑦))
3837eqeq2d 2182 . . . . . 6 (𝑥 = 𝐴 → ((𝐴 / 𝐵) = (𝑥 / 𝑦) ↔ (𝐴 / 𝐵) = (𝐴 / 𝑦)))
39 breq2 3991 . . . . . . . . . 10 (𝑥 = 𝐴 → ((𝑃𝑛) ∥ 𝑥 ↔ (𝑃𝑛) ∥ 𝐴))
4039rabbidv 2719 . . . . . . . . 9 (𝑥 = 𝐴 → {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴})
4140supeq1d 6960 . . . . . . . 8 (𝑥 = 𝐴 → sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ))
4241oveq1d 5865 . . . . . . 7 (𝑥 = 𝐴 → (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))
4342eqeq2d 2182 . . . . . 6 (𝑥 = 𝐴 → (((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )) ↔ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
4438, 43anbi12d 470 . . . . 5 (𝑥 = 𝐴 → (((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))) ↔ ((𝐴 / 𝐵) = (𝐴 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))))
45 oveq2 5858 . . . . . . 7 (𝑦 = 𝐵 → (𝐴 / 𝑦) = (𝐴 / 𝐵))
4645eqeq2d 2182 . . . . . 6 (𝑦 = 𝐵 → ((𝐴 / 𝐵) = (𝐴 / 𝑦) ↔ (𝐴 / 𝐵) = (𝐴 / 𝐵)))
47 breq2 3991 . . . . . . . . . 10 (𝑦 = 𝐵 → ((𝑃𝑛) ∥ 𝑦 ↔ (𝑃𝑛) ∥ 𝐵))
4847rabbidv 2719 . . . . . . . . 9 (𝑦 = 𝐵 → {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵})
4948supeq1d 6960 . . . . . . . 8 (𝑦 = 𝐵 → sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < ))
5049oveq2d 5866 . . . . . . 7 (𝑦 = 𝐵 → (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < )))
5150eqeq2d 2182 . . . . . 6 (𝑦 = 𝐵 → (((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )) ↔ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < ))))
5246, 51anbi12d 470 . . . . 5 (𝑦 = 𝐵 → (((𝐴 / 𝐵) = (𝐴 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))) ↔ ((𝐴 / 𝐵) = (𝐴 / 𝐵) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < )))))
5344, 52rspc2ev 2849 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ∧ ((𝐴 / 𝐵) = (𝐴 / 𝐵) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < )))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
542, 3, 36, 53syl3anc 1233 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
55 pczcl 12239 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℕ0)
56553adant3 1012 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt 𝐴) ∈ ℕ0)
5756nn0zd 9319 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt 𝐴) ∈ ℤ)
581, 3pccld 12241 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt 𝐵) ∈ ℕ0)
5958nn0zd 9319 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt 𝐵) ∈ ℤ)
6057, 59zsubcld 9326 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) ∈ ℤ)
6120, 21pceu 12236 . . . . 5 ((𝑃 ∈ ℙ ∧ ((𝐴 / 𝐵) ∈ ℚ ∧ (𝐴 / 𝐵) ≠ 0)) → ∃!𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
621, 5, 19, 61syl12anc 1231 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → ∃!𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
63 eqeq1 2177 . . . . . . 7 (𝑧 = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) → (𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )) ↔ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
6463anbi2d 461 . . . . . 6 (𝑧 = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) → (((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))) ↔ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))))
65642rexbidv 2495 . . . . 5 (𝑧 = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))))
6665iota2 5186 . . . 4 ((((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) ∈ ℤ ∧ ∃!𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))) ↔ (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))) = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵))))
6760, 62, 66syl2anc 409 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))) ↔ (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))) = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵))))
6854, 67mpbid 146 . 2 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))) = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)))
6923, 68eqtrd 2203 1 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt (𝐴 / 𝐵)) = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 973   = wceq 1348  ∃!weu 2019  wcel 2141  wne 2340  wrex 2449  {crab 2452   class class class wbr 3987  cio 5156  (class class class)co 5850  supcsup 6955  cr 7760  0cc0 7761   < clt 7941  cmin 8077   # cap 8487   / cdiv 8576  cn 8865  0cn0 9122  cz 9199  cq 9565  cexp 10462  cdvds 11736  cprime 12048   pCnt cpc 12225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-precex 7871  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877  ax-pre-mulgt0 7878  ax-pre-mulext 7879  ax-arch 7880  ax-caucvg 7881
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-isom 5205  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-frec 6367  df-1o 6392  df-2o 6393  df-er 6509  df-en 6715  df-sup 6957  df-inf 6958  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-reap 8481  df-ap 8488  df-div 8577  df-inn 8866  df-2 8924  df-3 8925  df-4 8926  df-n0 9123  df-z 9200  df-uz 9475  df-q 9566  df-rp 9598  df-fz 9953  df-fzo 10086  df-fl 10213  df-mod 10266  df-seqfrec 10389  df-exp 10463  df-cj 10793  df-re 10794  df-im 10795  df-rsqrt 10949  df-abs 10950  df-dvds 11737  df-gcd 11885  df-prm 12049  df-pc 12226
This theorem is referenced by:  pcqmul  12244  pcqcl  12247  pcid  12264  pcneg  12265  pc2dvds  12270  pcz  12272  pcaddlem  12279  pcadd  12280  pcmpt2  12283  pcbc  12290
  Copyright terms: Public domain W3C validator