ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcdiv GIF version

Theorem pcdiv 12285
Description: Division property of the prime power function. (Contributed by Mario Carneiro, 1-Mar-2014.)
Assertion
Ref Expression
pcdiv ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt (𝐴 / 𝐵)) = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)))

Proof of Theorem pcdiv
Dummy variables 𝑥 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 997 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝑃 ∈ ℙ)
2 simp2l 1023 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
3 simp3 999 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℕ)
4 znq 9613 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)
52, 3, 4syl2anc 411 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)
62zcnd 9365 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℂ)
73nncnd 8922 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℂ)
8 simp2r 1024 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝐴 ≠ 0)
9 0z 9253 . . . . . . 7 0 ∈ ℤ
10 zapne 9316 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → (𝐴 # 0 ↔ 𝐴 ≠ 0))
112, 9, 10sylancl 413 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝐴 # 0 ↔ 𝐴 ≠ 0))
128, 11mpbird 167 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝐴 # 0)
133nnap0d 8954 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝐵 # 0)
146, 7, 12, 13divap0d 8752 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) # 0)
15 zq 9615 . . . . . 6 (0 ∈ ℤ → 0 ∈ ℚ)
169, 15ax-mp 5 . . . . 5 0 ∈ ℚ
17 qapne 9628 . . . . 5 (((𝐴 / 𝐵) ∈ ℚ ∧ 0 ∈ ℚ) → ((𝐴 / 𝐵) # 0 ↔ (𝐴 / 𝐵) ≠ 0))
185, 16, 17sylancl 413 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) # 0 ↔ (𝐴 / 𝐵) ≠ 0))
1914, 18mpbid 147 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≠ 0)
20 eqid 2177 . . . 4 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < )
21 eqid 2177 . . . 4 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )
2220, 21pcval 12279 . . 3 ((𝑃 ∈ ℙ ∧ ((𝐴 / 𝐵) ∈ ℚ ∧ (𝐴 / 𝐵) ≠ 0)) → (𝑃 pCnt (𝐴 / 𝐵)) = (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))))
231, 5, 19, 22syl12anc 1236 . 2 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt (𝐴 / 𝐵)) = (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))))
24 eqid 2177 . . . . . . . 8 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < )
2524pczpre 12280 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ))
26253adant3 1017 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt 𝐴) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ))
27 nnz 9261 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
28 nnne0 8936 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
2927, 28jca 306 . . . . . . . 8 (𝐵 ∈ ℕ → (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0))
30 eqid 2177 . . . . . . . . 9 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < )
3130pczpre 12280 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐵) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < ))
3229, 31sylan2 286 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt 𝐵) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < ))
33323adant2 1016 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt 𝐵) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < ))
3426, 33oveq12d 5887 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < )))
35 eqid 2177 . . . . 5 (𝐴 / 𝐵) = (𝐴 / 𝐵)
3634, 35jctil 312 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) = (𝐴 / 𝐵) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < ))))
37 oveq1 5876 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 / 𝑦) = (𝐴 / 𝑦))
3837eqeq2d 2189 . . . . . 6 (𝑥 = 𝐴 → ((𝐴 / 𝐵) = (𝑥 / 𝑦) ↔ (𝐴 / 𝐵) = (𝐴 / 𝑦)))
39 breq2 4004 . . . . . . . . . 10 (𝑥 = 𝐴 → ((𝑃𝑛) ∥ 𝑥 ↔ (𝑃𝑛) ∥ 𝐴))
4039rabbidv 2726 . . . . . . . . 9 (𝑥 = 𝐴 → {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴})
4140supeq1d 6980 . . . . . . . 8 (𝑥 = 𝐴 → sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ))
4241oveq1d 5884 . . . . . . 7 (𝑥 = 𝐴 → (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))
4342eqeq2d 2189 . . . . . 6 (𝑥 = 𝐴 → (((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )) ↔ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
4438, 43anbi12d 473 . . . . 5 (𝑥 = 𝐴 → (((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))) ↔ ((𝐴 / 𝐵) = (𝐴 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))))
45 oveq2 5877 . . . . . . 7 (𝑦 = 𝐵 → (𝐴 / 𝑦) = (𝐴 / 𝐵))
4645eqeq2d 2189 . . . . . 6 (𝑦 = 𝐵 → ((𝐴 / 𝐵) = (𝐴 / 𝑦) ↔ (𝐴 / 𝐵) = (𝐴 / 𝐵)))
47 breq2 4004 . . . . . . . . . 10 (𝑦 = 𝐵 → ((𝑃𝑛) ∥ 𝑦 ↔ (𝑃𝑛) ∥ 𝐵))
4847rabbidv 2726 . . . . . . . . 9 (𝑦 = 𝐵 → {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵})
4948supeq1d 6980 . . . . . . . 8 (𝑦 = 𝐵 → sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < ))
5049oveq2d 5885 . . . . . . 7 (𝑦 = 𝐵 → (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < )))
5150eqeq2d 2189 . . . . . 6 (𝑦 = 𝐵 → (((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )) ↔ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < ))))
5246, 51anbi12d 473 . . . . 5 (𝑦 = 𝐵 → (((𝐴 / 𝐵) = (𝐴 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))) ↔ ((𝐴 / 𝐵) = (𝐴 / 𝐵) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < )))))
5344, 52rspc2ev 2856 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ∧ ((𝐴 / 𝐵) = (𝐴 / 𝐵) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < )))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
542, 3, 36, 53syl3anc 1238 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
55 pczcl 12281 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℕ0)
56553adant3 1017 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt 𝐴) ∈ ℕ0)
5756nn0zd 9362 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt 𝐴) ∈ ℤ)
581, 3pccld 12283 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt 𝐵) ∈ ℕ0)
5958nn0zd 9362 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt 𝐵) ∈ ℤ)
6057, 59zsubcld 9369 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) ∈ ℤ)
6120, 21pceu 12278 . . . . 5 ((𝑃 ∈ ℙ ∧ ((𝐴 / 𝐵) ∈ ℚ ∧ (𝐴 / 𝐵) ≠ 0)) → ∃!𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
621, 5, 19, 61syl12anc 1236 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → ∃!𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
63 eqeq1 2184 . . . . . . 7 (𝑧 = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) → (𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )) ↔ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
6463anbi2d 464 . . . . . 6 (𝑧 = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) → (((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))) ↔ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))))
65642rexbidv 2502 . . . . 5 (𝑧 = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))))
6665iota2 5202 . . . 4 ((((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) ∈ ℤ ∧ ∃!𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))) ↔ (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))) = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵))))
6760, 62, 66syl2anc 411 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))) ↔ (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))) = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵))))
6854, 67mpbid 147 . 2 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))) = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)))
6923, 68eqtrd 2210 1 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt (𝐴 / 𝐵)) = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  ∃!weu 2026  wcel 2148  wne 2347  wrex 2456  {crab 2459   class class class wbr 4000  cio 5172  (class class class)co 5869  supcsup 6975  cr 7801  0cc0 7802   < clt 7982  cmin 8118   # cap 8528   / cdiv 8618  cn 8908  0cn0 9165  cz 9242  cq 9608  cexp 10505  cdvds 11778  cprime 12090   pCnt cpc 12267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-1o 6411  df-2o 6412  df-er 6529  df-en 6735  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-dvds 11779  df-gcd 11927  df-prm 12091  df-pc 12268
This theorem is referenced by:  pcqmul  12286  pcqcl  12289  pcid  12306  pcneg  12307  pc2dvds  12312  pcz  12314  pcaddlem  12321  pcadd  12322  pcmpt2  12325  pcbc  12332
  Copyright terms: Public domain W3C validator