ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pcdiv GIF version

Theorem pcdiv 12193
Description: Division property of the prime power function. (Contributed by Mario Carneiro, 1-Mar-2014.)
Assertion
Ref Expression
pcdiv ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt (𝐴 / 𝐵)) = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)))

Proof of Theorem pcdiv
Dummy variables 𝑥 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 982 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝑃 ∈ ℙ)
2 simp2l 1008 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
3 simp3 984 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℕ)
4 znq 9540 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)
52, 3, 4syl2anc 409 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℚ)
62zcnd 9293 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℂ)
73nncnd 8853 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℂ)
8 simp2r 1009 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝐴 ≠ 0)
9 0z 9184 . . . . . . 7 0 ∈ ℤ
10 zapne 9244 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → (𝐴 # 0 ↔ 𝐴 ≠ 0))
112, 9, 10sylancl 410 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝐴 # 0 ↔ 𝐴 ≠ 0))
128, 11mpbird 166 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝐴 # 0)
133nnap0d 8885 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → 𝐵 # 0)
146, 7, 12, 13divap0d 8684 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) # 0)
15 zq 9542 . . . . . 6 (0 ∈ ℤ → 0 ∈ ℚ)
169, 15ax-mp 5 . . . . 5 0 ∈ ℚ
17 qapne 9555 . . . . 5 (((𝐴 / 𝐵) ∈ ℚ ∧ 0 ∈ ℚ) → ((𝐴 / 𝐵) # 0 ↔ (𝐴 / 𝐵) ≠ 0))
185, 16, 17sylancl 410 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) # 0 ↔ (𝐴 / 𝐵) ≠ 0))
1914, 18mpbid 146 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ≠ 0)
20 eqid 2157 . . . 4 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < )
21 eqid 2157 . . . 4 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )
2220, 21pcval 12187 . . 3 ((𝑃 ∈ ℙ ∧ ((𝐴 / 𝐵) ∈ ℚ ∧ (𝐴 / 𝐵) ≠ 0)) → (𝑃 pCnt (𝐴 / 𝐵)) = (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))))
231, 5, 19, 22syl12anc 1218 . 2 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt (𝐴 / 𝐵)) = (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))))
24 eqid 2157 . . . . . . . 8 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < )
2524pczpre 12188 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ))
26253adant3 1002 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt 𝐴) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ))
27 nnz 9192 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
28 nnne0 8867 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
2927, 28jca 304 . . . . . . . 8 (𝐵 ∈ ℕ → (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0))
30 eqid 2157 . . . . . . . . 9 sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < )
3130pczpre 12188 . . . . . . . 8 ((𝑃 ∈ ℙ ∧ (𝐵 ∈ ℤ ∧ 𝐵 ≠ 0)) → (𝑃 pCnt 𝐵) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < ))
3229, 31sylan2 284 . . . . . . 7 ((𝑃 ∈ ℙ ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt 𝐵) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < ))
33323adant2 1001 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt 𝐵) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < ))
3426, 33oveq12d 5845 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < )))
35 eqid 2157 . . . . 5 (𝐴 / 𝐵) = (𝐴 / 𝐵)
3634, 35jctil 310 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) = (𝐴 / 𝐵) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < ))))
37 oveq1 5834 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 / 𝑦) = (𝐴 / 𝑦))
3837eqeq2d 2169 . . . . . 6 (𝑥 = 𝐴 → ((𝐴 / 𝐵) = (𝑥 / 𝑦) ↔ (𝐴 / 𝐵) = (𝐴 / 𝑦)))
39 breq2 3971 . . . . . . . . . 10 (𝑥 = 𝐴 → ((𝑃𝑛) ∥ 𝑥 ↔ (𝑃𝑛) ∥ 𝐴))
4039rabbidv 2701 . . . . . . . . 9 (𝑥 = 𝐴 → {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴})
4140supeq1d 6934 . . . . . . . 8 (𝑥 = 𝐴 → sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ))
4241oveq1d 5842 . . . . . . 7 (𝑥 = 𝐴 → (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))
4342eqeq2d 2169 . . . . . 6 (𝑥 = 𝐴 → (((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )) ↔ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
4438, 43anbi12d 465 . . . . 5 (𝑥 = 𝐴 → (((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))) ↔ ((𝐴 / 𝐵) = (𝐴 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))))
45 oveq2 5835 . . . . . . 7 (𝑦 = 𝐵 → (𝐴 / 𝑦) = (𝐴 / 𝐵))
4645eqeq2d 2169 . . . . . 6 (𝑦 = 𝐵 → ((𝐴 / 𝐵) = (𝐴 / 𝑦) ↔ (𝐴 / 𝐵) = (𝐴 / 𝐵)))
47 breq2 3971 . . . . . . . . . 10 (𝑦 = 𝐵 → ((𝑃𝑛) ∥ 𝑦 ↔ (𝑃𝑛) ∥ 𝐵))
4847rabbidv 2701 . . . . . . . . 9 (𝑦 = 𝐵 → {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦} = {𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵})
4948supeq1d 6934 . . . . . . . 8 (𝑦 = 𝐵 → sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ) = sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < ))
5049oveq2d 5843 . . . . . . 7 (𝑦 = 𝐵 → (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < )))
5150eqeq2d 2169 . . . . . 6 (𝑦 = 𝐵 → (((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )) ↔ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < ))))
5246, 51anbi12d 465 . . . . 5 (𝑦 = 𝐵 → (((𝐴 / 𝐵) = (𝐴 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))) ↔ ((𝐴 / 𝐵) = (𝐴 / 𝐵) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < )))))
5344, 52rspc2ev 2831 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ∧ ((𝐴 / 𝐵) = (𝐴 / 𝐵) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐴}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝐵}, ℝ, < )))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
542, 3, 36, 53syl3anc 1220 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
55 pczcl 12189 . . . . . . 7 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0)) → (𝑃 pCnt 𝐴) ∈ ℕ0)
56553adant3 1002 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt 𝐴) ∈ ℕ0)
5756nn0zd 9290 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt 𝐴) ∈ ℤ)
581, 3pccld 12191 . . . . . 6 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt 𝐵) ∈ ℕ0)
5958nn0zd 9290 . . . . 5 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt 𝐵) ∈ ℤ)
6057, 59zsubcld 9297 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) ∈ ℤ)
6120, 21pceu 12186 . . . . 5 ((𝑃 ∈ ℙ ∧ ((𝐴 / 𝐵) ∈ ℚ ∧ (𝐴 / 𝐵) ≠ 0)) → ∃!𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
621, 5, 19, 61syl12anc 1218 . . . 4 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → ∃!𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
63 eqeq1 2164 . . . . . . 7 (𝑧 = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) → (𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )) ↔ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))))
6463anbi2d 460 . . . . . 6 (𝑧 = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) → (((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))) ↔ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))))
65642rexbidv 2482 . . . . 5 (𝑧 = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))) ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))))
6665iota2 5164 . . . 4 ((((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) ∈ ℤ ∧ ∃!𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))) ↔ (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))) = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵))))
6760, 62, 66syl2anc 409 . . 3 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)) = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < ))) ↔ (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))) = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵))))
6854, 67mpbid 146 . 2 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (℩𝑧𝑥 ∈ ℤ ∃𝑦 ∈ ℕ ((𝐴 / 𝐵) = (𝑥 / 𝑦) ∧ 𝑧 = (sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑥}, ℝ, < ) − sup({𝑛 ∈ ℕ0 ∣ (𝑃𝑛) ∥ 𝑦}, ℝ, < )))) = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)))
6923, 68eqtrd 2190 1 ((𝑃 ∈ ℙ ∧ (𝐴 ∈ ℤ ∧ 𝐴 ≠ 0) ∧ 𝐵 ∈ ℕ) → (𝑃 pCnt (𝐴 / 𝐵)) = ((𝑃 pCnt 𝐴) − (𝑃 pCnt 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 963   = wceq 1335  ∃!weu 2006  wcel 2128  wne 2327  wrex 2436  {crab 2439   class class class wbr 3967  cio 5136  (class class class)co 5827  supcsup 6929  cr 7734  0cc0 7735   < clt 7915  cmin 8051   # cap 8461   / cdiv 8550  cn 8839  0cn0 9096  cz 9173  cq 9535  cexp 10428  cdvds 11695  cprime 12000   pCnt cpc 12175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4082  ax-sep 4085  ax-nul 4093  ax-pow 4138  ax-pr 4172  ax-un 4396  ax-setind 4499  ax-iinf 4550  ax-cnex 7826  ax-resscn 7827  ax-1cn 7828  ax-1re 7829  ax-icn 7830  ax-addcl 7831  ax-addrcl 7832  ax-mulcl 7833  ax-mulrcl 7834  ax-addcom 7835  ax-mulcom 7836  ax-addass 7837  ax-mulass 7838  ax-distr 7839  ax-i2m1 7840  ax-0lt1 7841  ax-1rid 7842  ax-0id 7843  ax-rnegex 7844  ax-precex 7845  ax-cnre 7846  ax-pre-ltirr 7847  ax-pre-ltwlin 7848  ax-pre-lttrn 7849  ax-pre-apti 7850  ax-pre-ltadd 7851  ax-pre-mulgt0 7852  ax-pre-mulext 7853  ax-arch 7854  ax-caucvg 7855
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3396  df-if 3507  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-int 3810  df-iun 3853  df-br 3968  df-opab 4029  df-mpt 4030  df-tr 4066  df-id 4256  df-po 4259  df-iso 4260  df-iord 4329  df-on 4331  df-ilim 4332  df-suc 4334  df-iom 4553  df-xp 4595  df-rel 4596  df-cnv 4597  df-co 4598  df-dm 4599  df-rn 4600  df-res 4601  df-ima 4602  df-iota 5138  df-fun 5175  df-fn 5176  df-f 5177  df-f1 5178  df-fo 5179  df-f1o 5180  df-fv 5181  df-isom 5182  df-riota 5783  df-ov 5830  df-oprab 5831  df-mpo 5832  df-1st 6091  df-2nd 6092  df-recs 6255  df-frec 6341  df-1o 6366  df-2o 6367  df-er 6483  df-en 6689  df-sup 6931  df-inf 6932  df-pnf 7917  df-mnf 7918  df-xr 7919  df-ltxr 7920  df-le 7921  df-sub 8053  df-neg 8054  df-reap 8455  df-ap 8462  df-div 8551  df-inn 8840  df-2 8898  df-3 8899  df-4 8900  df-n0 9097  df-z 9174  df-uz 9446  df-q 9536  df-rp 9568  df-fz 9920  df-fzo 10052  df-fl 10179  df-mod 10232  df-seqfrec 10355  df-exp 10429  df-cj 10754  df-re 10755  df-im 10756  df-rsqrt 10910  df-abs 10911  df-dvds 11696  df-gcd 11843  df-prm 12001  df-pc 12176
This theorem is referenced by:  pcqmul  12194  pcqcl  12197  pcid  12213  pcneg  12214
  Copyright terms: Public domain W3C validator