ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismndd GIF version

Theorem ismndd 12673
Description: Deduce a monoid from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
ismndd.b (𝜑𝐵 = (Base‘𝐺))
ismndd.p (𝜑+ = (+g𝐺))
ismndd.c ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
ismndd.a ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
ismndd.z (𝜑0𝐵)
ismndd.i ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
ismndd.j ((𝜑𝑥𝐵) → (𝑥 + 0 ) = 𝑥)
Assertion
Ref Expression
ismndd (𝜑𝐺 ∈ Mnd)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥,𝐺,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥, 0
Allowed substitution hints:   + (𝑥,𝑦,𝑧)   0 (𝑦,𝑧)

Proof of Theorem ismndd
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 ismndd.c . . . . . 6 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
213expb 1199 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
3 simpll 524 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧𝐵) → 𝜑)
4 simplrl 530 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧𝐵) → 𝑥𝐵)
5 simplrr 531 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧𝐵) → 𝑦𝐵)
6 simpr 109 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧𝐵) → 𝑧𝐵)
7 ismndd.a . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
83, 4, 5, 6, 7syl13anc 1235 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧𝐵) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
98ralrimiva 2543 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
102, 9jca 304 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))))
1110ralrimivva 2552 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))))
12 ismndd.b . . . 4 (𝜑𝐵 = (Base‘𝐺))
13 ismndd.p . . . . . . . 8 (𝜑+ = (+g𝐺))
1413oveqd 5870 . . . . . . 7 (𝜑 → (𝑥 + 𝑦) = (𝑥(+g𝐺)𝑦))
1514, 12eleq12d 2241 . . . . . 6 (𝜑 → ((𝑥 + 𝑦) ∈ 𝐵 ↔ (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺)))
16 eqidd 2171 . . . . . . . . 9 (𝜑𝑧 = 𝑧)
1713, 14, 16oveq123d 5874 . . . . . . . 8 (𝜑 → ((𝑥 + 𝑦) + 𝑧) = ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧))
18 eqidd 2171 . . . . . . . . 9 (𝜑𝑥 = 𝑥)
1913oveqd 5870 . . . . . . . . 9 (𝜑 → (𝑦 + 𝑧) = (𝑦(+g𝐺)𝑧))
2013, 18, 19oveq123d 5874 . . . . . . . 8 (𝜑 → (𝑥 + (𝑦 + 𝑧)) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))
2117, 20eqeq12d 2185 . . . . . . 7 (𝜑 → (((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)) ↔ ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧))))
2212, 21raleqbidv 2677 . . . . . 6 (𝜑 → (∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)) ↔ ∀𝑧 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧))))
2315, 22anbi12d 470 . . . . 5 (𝜑 → (((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ↔ ((𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) ∧ ∀𝑧 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))))
2412, 23raleqbidv 2677 . . . 4 (𝜑 → (∀𝑦𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ↔ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) ∧ ∀𝑧 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))))
2512, 24raleqbidv 2677 . . 3 (𝜑 → (∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) ∧ ∀𝑧 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))))
2611, 25mpbid 146 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) ∧ ∀𝑧 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧))))
27 ismndd.z . . . 4 (𝜑0𝐵)
2827, 12eleqtrd 2249 . . 3 (𝜑0 ∈ (Base‘𝐺))
2912eleq2d 2240 . . . . . 6 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝐺)))
3029biimpar 295 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐺)) → 𝑥𝐵)
3113adantr 274 . . . . . . . 8 ((𝜑𝑥𝐵) → + = (+g𝐺))
3231oveqd 5870 . . . . . . 7 ((𝜑𝑥𝐵) → ( 0 + 𝑥) = ( 0 (+g𝐺)𝑥))
33 ismndd.i . . . . . . 7 ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
3432, 33eqtr3d 2205 . . . . . 6 ((𝜑𝑥𝐵) → ( 0 (+g𝐺)𝑥) = 𝑥)
3531oveqd 5870 . . . . . . 7 ((𝜑𝑥𝐵) → (𝑥 + 0 ) = (𝑥(+g𝐺) 0 ))
36 ismndd.j . . . . . . 7 ((𝜑𝑥𝐵) → (𝑥 + 0 ) = 𝑥)
3735, 36eqtr3d 2205 . . . . . 6 ((𝜑𝑥𝐵) → (𝑥(+g𝐺) 0 ) = 𝑥)
3834, 37jca 304 . . . . 5 ((𝜑𝑥𝐵) → (( 0 (+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺) 0 ) = 𝑥))
3930, 38syldan 280 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐺)) → (( 0 (+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺) 0 ) = 𝑥))
4039ralrimiva 2543 . . 3 (𝜑 → ∀𝑥 ∈ (Base‘𝐺)(( 0 (+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺) 0 ) = 𝑥))
41 oveq1 5860 . . . . . 6 (𝑢 = 0 → (𝑢(+g𝐺)𝑥) = ( 0 (+g𝐺)𝑥))
4241eqeq1d 2179 . . . . 5 (𝑢 = 0 → ((𝑢(+g𝐺)𝑥) = 𝑥 ↔ ( 0 (+g𝐺)𝑥) = 𝑥))
4342ovanraleqv 5877 . . . 4 (𝑢 = 0 → (∀𝑥 ∈ (Base‘𝐺)((𝑢(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑢) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝐺)(( 0 (+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺) 0 ) = 𝑥)))
4443rspcev 2834 . . 3 (( 0 ∈ (Base‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)(( 0 (+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺) 0 ) = 𝑥)) → ∃𝑢 ∈ (Base‘𝐺)∀𝑥 ∈ (Base‘𝐺)((𝑢(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑢) = 𝑥))
4528, 40, 44syl2anc 409 . 2 (𝜑 → ∃𝑢 ∈ (Base‘𝐺)∀𝑥 ∈ (Base‘𝐺)((𝑢(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑢) = 𝑥))
46 eqid 2170 . . 3 (Base‘𝐺) = (Base‘𝐺)
47 eqid 2170 . . 3 (+g𝐺) = (+g𝐺)
4846, 47ismnd 12655 . 2 (𝐺 ∈ Mnd ↔ (∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) ∧ ∀𝑧 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧))) ∧ ∃𝑢 ∈ (Base‘𝐺)∀𝑥 ∈ (Base‘𝐺)((𝑢(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑢) = 𝑥)))
4926, 45, 48sylanbrc 415 1 (𝜑𝐺 ∈ Mnd)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 973   = wceq 1348  wcel 2141  wral 2448  wrex 2449  cfv 5198  (class class class)co 5853  Basecbs 12416  +gcplusg 12480  Mndcmnd 12652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fn 5201  df-fv 5206  df-ov 5856  df-inn 8879  df-2 8937  df-ndx 12419  df-slot 12420  df-base 12422  df-plusg 12493  df-mgm 12610  df-sgrp 12643  df-mnd 12653
This theorem is referenced by:  isgrpde  12728
  Copyright terms: Public domain W3C validator