ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismndd GIF version

Theorem ismndd 13344
Description: Deduce a monoid from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
ismndd.b (𝜑𝐵 = (Base‘𝐺))
ismndd.p (𝜑+ = (+g𝐺))
ismndd.c ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
ismndd.a ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
ismndd.z (𝜑0𝐵)
ismndd.i ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
ismndd.j ((𝜑𝑥𝐵) → (𝑥 + 0 ) = 𝑥)
Assertion
Ref Expression
ismndd (𝜑𝐺 ∈ Mnd)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥,𝐺,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥, 0
Allowed substitution hints:   + (𝑥,𝑦,𝑧)   0 (𝑦,𝑧)

Proof of Theorem ismndd
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 ismndd.c . . . . . 6 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
213expb 1207 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
3 simpll 527 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧𝐵) → 𝜑)
4 simplrl 535 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧𝐵) → 𝑥𝐵)
5 simplrr 536 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧𝐵) → 𝑦𝐵)
6 simpr 110 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧𝐵) → 𝑧𝐵)
7 ismndd.a . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
83, 4, 5, 6, 7syl13anc 1252 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧𝐵) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
98ralrimiva 2580 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
102, 9jca 306 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))))
1110ralrimivva 2589 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))))
12 ismndd.b . . . 4 (𝜑𝐵 = (Base‘𝐺))
13 ismndd.p . . . . . . . 8 (𝜑+ = (+g𝐺))
1413oveqd 5974 . . . . . . 7 (𝜑 → (𝑥 + 𝑦) = (𝑥(+g𝐺)𝑦))
1514, 12eleq12d 2277 . . . . . 6 (𝜑 → ((𝑥 + 𝑦) ∈ 𝐵 ↔ (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺)))
16 eqidd 2207 . . . . . . . . 9 (𝜑𝑧 = 𝑧)
1713, 14, 16oveq123d 5978 . . . . . . . 8 (𝜑 → ((𝑥 + 𝑦) + 𝑧) = ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧))
18 eqidd 2207 . . . . . . . . 9 (𝜑𝑥 = 𝑥)
1913oveqd 5974 . . . . . . . . 9 (𝜑 → (𝑦 + 𝑧) = (𝑦(+g𝐺)𝑧))
2013, 18, 19oveq123d 5978 . . . . . . . 8 (𝜑 → (𝑥 + (𝑦 + 𝑧)) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))
2117, 20eqeq12d 2221 . . . . . . 7 (𝜑 → (((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)) ↔ ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧))))
2212, 21raleqbidv 2719 . . . . . 6 (𝜑 → (∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)) ↔ ∀𝑧 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧))))
2315, 22anbi12d 473 . . . . 5 (𝜑 → (((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ↔ ((𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) ∧ ∀𝑧 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))))
2412, 23raleqbidv 2719 . . . 4 (𝜑 → (∀𝑦𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ↔ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) ∧ ∀𝑧 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))))
2512, 24raleqbidv 2719 . . 3 (𝜑 → (∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) ∧ ∀𝑧 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))))
2611, 25mpbid 147 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) ∧ ∀𝑧 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧))))
27 ismndd.z . . . 4 (𝜑0𝐵)
2827, 12eleqtrd 2285 . . 3 (𝜑0 ∈ (Base‘𝐺))
2912eleq2d 2276 . . . . . 6 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝐺)))
3029biimpar 297 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐺)) → 𝑥𝐵)
3113adantr 276 . . . . . . . 8 ((𝜑𝑥𝐵) → + = (+g𝐺))
3231oveqd 5974 . . . . . . 7 ((𝜑𝑥𝐵) → ( 0 + 𝑥) = ( 0 (+g𝐺)𝑥))
33 ismndd.i . . . . . . 7 ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
3432, 33eqtr3d 2241 . . . . . 6 ((𝜑𝑥𝐵) → ( 0 (+g𝐺)𝑥) = 𝑥)
3531oveqd 5974 . . . . . . 7 ((𝜑𝑥𝐵) → (𝑥 + 0 ) = (𝑥(+g𝐺) 0 ))
36 ismndd.j . . . . . . 7 ((𝜑𝑥𝐵) → (𝑥 + 0 ) = 𝑥)
3735, 36eqtr3d 2241 . . . . . 6 ((𝜑𝑥𝐵) → (𝑥(+g𝐺) 0 ) = 𝑥)
3834, 37jca 306 . . . . 5 ((𝜑𝑥𝐵) → (( 0 (+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺) 0 ) = 𝑥))
3930, 38syldan 282 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐺)) → (( 0 (+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺) 0 ) = 𝑥))
4039ralrimiva 2580 . . 3 (𝜑 → ∀𝑥 ∈ (Base‘𝐺)(( 0 (+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺) 0 ) = 𝑥))
41 oveq1 5964 . . . . . 6 (𝑢 = 0 → (𝑢(+g𝐺)𝑥) = ( 0 (+g𝐺)𝑥))
4241eqeq1d 2215 . . . . 5 (𝑢 = 0 → ((𝑢(+g𝐺)𝑥) = 𝑥 ↔ ( 0 (+g𝐺)𝑥) = 𝑥))
4342ovanraleqv 5981 . . . 4 (𝑢 = 0 → (∀𝑥 ∈ (Base‘𝐺)((𝑢(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑢) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝐺)(( 0 (+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺) 0 ) = 𝑥)))
4443rspcev 2881 . . 3 (( 0 ∈ (Base‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)(( 0 (+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺) 0 ) = 𝑥)) → ∃𝑢 ∈ (Base‘𝐺)∀𝑥 ∈ (Base‘𝐺)((𝑢(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑢) = 𝑥))
4528, 40, 44syl2anc 411 . 2 (𝜑 → ∃𝑢 ∈ (Base‘𝐺)∀𝑥 ∈ (Base‘𝐺)((𝑢(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑢) = 𝑥))
46 eqid 2206 . . 3 (Base‘𝐺) = (Base‘𝐺)
47 eqid 2206 . . 3 (+g𝐺) = (+g𝐺)
4846, 47ismnd 13326 . 2 (𝐺 ∈ Mnd ↔ (∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) ∧ ∀𝑧 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧))) ∧ ∃𝑢 ∈ (Base‘𝐺)∀𝑥 ∈ (Base‘𝐺)((𝑢(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑢) = 𝑥)))
4926, 45, 48sylanbrc 417 1 (𝜑𝐺 ∈ Mnd)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 981   = wceq 1373  wcel 2177  wral 2485  wrex 2486  cfv 5280  (class class class)co 5957  Basecbs 12907  +gcplusg 12984  Mndcmnd 13323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-cnex 8036  ax-resscn 8037  ax-1re 8039  ax-addrcl 8042
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-iota 5241  df-fun 5282  df-fn 5283  df-fv 5288  df-ov 5960  df-inn 9057  df-2 9115  df-ndx 12910  df-slot 12911  df-base 12913  df-plusg 12997  df-mgm 13263  df-sgrp 13309  df-mnd 13324
This theorem is referenced by:  issubmnd  13349  prdsmndd  13355  imasmnd2  13359  isgrpde  13429  isringd  13878  iscrngd  13879
  Copyright terms: Public domain W3C validator