ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ismndd GIF version

Theorem ismndd 13018
Description: Deduce a monoid from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
ismndd.b (𝜑𝐵 = (Base‘𝐺))
ismndd.p (𝜑+ = (+g𝐺))
ismndd.c ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
ismndd.a ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
ismndd.z (𝜑0𝐵)
ismndd.i ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
ismndd.j ((𝜑𝑥𝐵) → (𝑥 + 0 ) = 𝑥)
Assertion
Ref Expression
ismndd (𝜑𝐺 ∈ Mnd)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐵   𝑥,𝐺,𝑦,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥, 0
Allowed substitution hints:   + (𝑥,𝑦,𝑧)   0 (𝑦,𝑧)

Proof of Theorem ismndd
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 ismndd.c . . . . . 6 ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
213expb 1206 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
3 simpll 527 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧𝐵) → 𝜑)
4 simplrl 535 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧𝐵) → 𝑥𝐵)
5 simplrr 536 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧𝐵) → 𝑦𝐵)
6 simpr 110 . . . . . . 7 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧𝐵) → 𝑧𝐵)
7 ismndd.a . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
83, 4, 5, 6, 7syl13anc 1251 . . . . . 6 (((𝜑 ∧ (𝑥𝐵𝑦𝐵)) ∧ 𝑧𝐵) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
98ralrimiva 2567 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
102, 9jca 306 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))))
1110ralrimivva 2576 . . 3 (𝜑 → ∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))))
12 ismndd.b . . . 4 (𝜑𝐵 = (Base‘𝐺))
13 ismndd.p . . . . . . . 8 (𝜑+ = (+g𝐺))
1413oveqd 5935 . . . . . . 7 (𝜑 → (𝑥 + 𝑦) = (𝑥(+g𝐺)𝑦))
1514, 12eleq12d 2264 . . . . . 6 (𝜑 → ((𝑥 + 𝑦) ∈ 𝐵 ↔ (𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺)))
16 eqidd 2194 . . . . . . . . 9 (𝜑𝑧 = 𝑧)
1713, 14, 16oveq123d 5939 . . . . . . . 8 (𝜑 → ((𝑥 + 𝑦) + 𝑧) = ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧))
18 eqidd 2194 . . . . . . . . 9 (𝜑𝑥 = 𝑥)
1913oveqd 5935 . . . . . . . . 9 (𝜑 → (𝑦 + 𝑧) = (𝑦(+g𝐺)𝑧))
2013, 18, 19oveq123d 5939 . . . . . . . 8 (𝜑 → (𝑥 + (𝑦 + 𝑧)) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))
2117, 20eqeq12d 2208 . . . . . . 7 (𝜑 → (((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)) ↔ ((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧))))
2212, 21raleqbidv 2706 . . . . . 6 (𝜑 → (∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)) ↔ ∀𝑧 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧))))
2315, 22anbi12d 473 . . . . 5 (𝜑 → (((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ↔ ((𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) ∧ ∀𝑧 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))))
2412, 23raleqbidv 2706 . . . 4 (𝜑 → (∀𝑦𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ↔ ∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) ∧ ∀𝑧 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))))
2512, 24raleqbidv 2706 . . 3 (𝜑 → (∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ↔ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) ∧ ∀𝑧 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧)))))
2611, 25mpbid 147 . 2 (𝜑 → ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) ∧ ∀𝑧 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧))))
27 ismndd.z . . . 4 (𝜑0𝐵)
2827, 12eleqtrd 2272 . . 3 (𝜑0 ∈ (Base‘𝐺))
2912eleq2d 2263 . . . . . 6 (𝜑 → (𝑥𝐵𝑥 ∈ (Base‘𝐺)))
3029biimpar 297 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐺)) → 𝑥𝐵)
3113adantr 276 . . . . . . . 8 ((𝜑𝑥𝐵) → + = (+g𝐺))
3231oveqd 5935 . . . . . . 7 ((𝜑𝑥𝐵) → ( 0 + 𝑥) = ( 0 (+g𝐺)𝑥))
33 ismndd.i . . . . . . 7 ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)
3432, 33eqtr3d 2228 . . . . . 6 ((𝜑𝑥𝐵) → ( 0 (+g𝐺)𝑥) = 𝑥)
3531oveqd 5935 . . . . . . 7 ((𝜑𝑥𝐵) → (𝑥 + 0 ) = (𝑥(+g𝐺) 0 ))
36 ismndd.j . . . . . . 7 ((𝜑𝑥𝐵) → (𝑥 + 0 ) = 𝑥)
3735, 36eqtr3d 2228 . . . . . 6 ((𝜑𝑥𝐵) → (𝑥(+g𝐺) 0 ) = 𝑥)
3834, 37jca 306 . . . . 5 ((𝜑𝑥𝐵) → (( 0 (+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺) 0 ) = 𝑥))
3930, 38syldan 282 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐺)) → (( 0 (+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺) 0 ) = 𝑥))
4039ralrimiva 2567 . . 3 (𝜑 → ∀𝑥 ∈ (Base‘𝐺)(( 0 (+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺) 0 ) = 𝑥))
41 oveq1 5925 . . . . . 6 (𝑢 = 0 → (𝑢(+g𝐺)𝑥) = ( 0 (+g𝐺)𝑥))
4241eqeq1d 2202 . . . . 5 (𝑢 = 0 → ((𝑢(+g𝐺)𝑥) = 𝑥 ↔ ( 0 (+g𝐺)𝑥) = 𝑥))
4342ovanraleqv 5942 . . . 4 (𝑢 = 0 → (∀𝑥 ∈ (Base‘𝐺)((𝑢(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑢) = 𝑥) ↔ ∀𝑥 ∈ (Base‘𝐺)(( 0 (+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺) 0 ) = 𝑥)))
4443rspcev 2864 . . 3 (( 0 ∈ (Base‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)(( 0 (+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺) 0 ) = 𝑥)) → ∃𝑢 ∈ (Base‘𝐺)∀𝑥 ∈ (Base‘𝐺)((𝑢(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑢) = 𝑥))
4528, 40, 44syl2anc 411 . 2 (𝜑 → ∃𝑢 ∈ (Base‘𝐺)∀𝑥 ∈ (Base‘𝐺)((𝑢(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑢) = 𝑥))
46 eqid 2193 . . 3 (Base‘𝐺) = (Base‘𝐺)
47 eqid 2193 . . 3 (+g𝐺) = (+g𝐺)
4846, 47ismnd 13000 . 2 (𝐺 ∈ Mnd ↔ (∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) ∈ (Base‘𝐺) ∧ ∀𝑧 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦)(+g𝐺)𝑧) = (𝑥(+g𝐺)(𝑦(+g𝐺)𝑧))) ∧ ∃𝑢 ∈ (Base‘𝐺)∀𝑥 ∈ (Base‘𝐺)((𝑢(+g𝐺)𝑥) = 𝑥 ∧ (𝑥(+g𝐺)𝑢) = 𝑥)))
4926, 45, 48sylanbrc 417 1 (𝜑𝐺 ∈ Mnd)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 980   = wceq 1364  wcel 2164  wral 2472  wrex 2473  cfv 5254  (class class class)co 5918  Basecbs 12618  +gcplusg 12695  Mndcmnd 12997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-ov 5921  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-mgm 12939  df-sgrp 12985  df-mnd 12998
This theorem is referenced by:  issubmnd  13023  isgrpde  13094  isringd  13537  iscrngd  13538
  Copyright terms: Public domain W3C validator