Theorem List for Intuitionistic Logic Explorer - 12901-13000 *Has distinct variable
group(s)
Type | Label | Description |
Statement |
|
Theorem | rexmet 12901 |
The absolute value metric is an extended metric. (Contributed by Mario
Carneiro, 28-Aug-2015.)
|
⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ
× ℝ)) ⇒ ⊢ 𝐷 ∈
(∞Met‘ℝ) |
|
Theorem | bl2ioo 12902 |
A ball in terms of an open interval of reals. (Contributed by NM,
18-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
|
⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ
× ℝ)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(ball‘𝐷)𝐵) = ((𝐴 − 𝐵)(,)(𝐴 + 𝐵))) |
|
Theorem | ioo2bl 12903 |
An open interval of reals in terms of a ball. (Contributed by NM,
18-May-2007.) (Revised by Mario Carneiro, 28-Aug-2015.)
|
⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ
× ℝ)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(,)𝐵) = (((𝐴 + 𝐵) / 2)(ball‘𝐷)((𝐵 − 𝐴) / 2))) |
|
Theorem | ioo2blex 12904 |
An open interval of reals in terms of a ball. (Contributed by Mario
Carneiro, 14-Nov-2013.)
|
⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ
× ℝ)) ⇒ ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴(,)𝐵) ∈ ran (ball‘𝐷)) |
|
Theorem | blssioo 12905 |
The balls of the standard real metric space are included in the open
real intervals. (Contributed by NM, 8-May-2007.) (Revised by Mario
Carneiro, 13-Nov-2013.)
|
⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ
× ℝ)) ⇒ ⊢ ran (ball‘𝐷) ⊆ ran
(,) |
|
Theorem | tgioo 12906 |
The topology generated by open intervals of reals is the same as the
open sets of the standard metric space on the reals. (Contributed by
NM, 7-May-2007.) (Revised by Mario Carneiro, 13-Nov-2013.)
|
⊢ 𝐷 = ((abs ∘ − ) ↾ (ℝ
× ℝ))
& ⊢ 𝐽 = (MetOpen‘𝐷) ⇒ ⊢ (topGen‘ran (,)) = 𝐽 |
|
Theorem | tgqioo 12907 |
The topology generated by open intervals of reals with rational
endpoints is the same as the open sets of the standard metric space on
the reals. In particular, this proves that the standard topology on the
reals is second-countable. (Contributed by Mario Carneiro,
17-Jun-2014.)
|
⊢ 𝑄 = (topGen‘((,) “ (ℚ
× ℚ))) ⇒ ⊢ (topGen‘ran (,)) = 𝑄 |
|
Theorem | resubmet 12908 |
The subspace topology induced by a subset of the reals. (Contributed by
Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Aug-2014.)
|
⊢ 𝑅 = (topGen‘ran (,)) & ⊢ 𝐽 = (MetOpen‘((abs ∘
− ) ↾ (𝐴
× 𝐴))) ⇒ ⊢ (𝐴 ⊆ ℝ → 𝐽 = (𝑅 ↾t 𝐴)) |
|
Theorem | tgioo2cntop 12909 |
The standard topology on the reals is a subspace of the complex metric
topology. (Contributed by Mario Carneiro, 13-Aug-2014.) (Revised by
Jim Kingdon, 6-Aug-2023.)
|
⊢ 𝐽 = (MetOpen‘(abs ∘ −
)) ⇒ ⊢ (topGen‘ran (,)) = (𝐽 ↾t
ℝ) |
|
Theorem | rerestcntop 12910 |
The subspace topology induced by a subset of the reals. (Contributed by
Mario Carneiro, 13-Aug-2014.) (Revised by Jim Kingdon, 6-Aug-2023.)
|
⊢ 𝐽 = (MetOpen‘(abs ∘ −
))
& ⊢ 𝑅 = (topGen‘ran
(,)) ⇒ ⊢ (𝐴 ⊆ ℝ → (𝐽 ↾t 𝐴) = (𝑅 ↾t 𝐴)) |
|
Theorem | addcncntoplem 12911* |
Lemma for addcncntop 12912, subcncntop 12913, and mulcncntop 12914.
(Contributed by Mario Carneiro, 5-May-2014.) (Revised by Jim Kingdon,
22-Oct-2023.)
|
⊢ 𝐽 = (MetOpen‘(abs ∘ −
))
& ⊢ + :(ℂ ×
ℂ)⟶ℂ
& ⊢ ((𝑎 ∈ ℝ+ ∧ 𝑏 ∈ ℂ ∧ 𝑐 ∈ ℂ) →
∃𝑦 ∈
ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ
(((abs‘(𝑢 −
𝑏)) < 𝑦 ∧ (abs‘(𝑣 − 𝑐)) < 𝑧) → (abs‘((𝑢 + 𝑣) − (𝑏 + 𝑐))) < 𝑎)) ⇒ ⊢ + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) |
|
Theorem | addcncntop 12912 |
Complex number addition is a continuous function. Part of Proposition
14-4.16 of [Gleason] p. 243.
(Contributed by NM, 30-Jul-2007.) (Proof
shortened by Mario Carneiro, 5-May-2014.)
|
⊢ 𝐽 = (MetOpen‘(abs ∘ −
)) ⇒ ⊢ + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) |
|
Theorem | subcncntop 12913 |
Complex number subtraction is a continuous function. Part of
Proposition 14-4.16 of [Gleason] p. 243.
(Contributed by NM,
4-Aug-2007.) (Proof shortened by Mario Carneiro, 5-May-2014.)
|
⊢ 𝐽 = (MetOpen‘(abs ∘ −
)) ⇒ ⊢ − ∈ ((𝐽 ×t 𝐽) Cn 𝐽) |
|
Theorem | mulcncntop 12914 |
Complex number multiplication is a continuous function. Part of
Proposition 14-4.16 of [Gleason] p. 243.
(Contributed by NM,
30-Jul-2007.) (Proof shortened by Mario Carneiro, 5-May-2014.)
|
⊢ 𝐽 = (MetOpen‘(abs ∘ −
)) ⇒ ⊢ · ∈ ((𝐽 ×t 𝐽) Cn 𝐽) |
|
Theorem | divcnap 12915* |
Complex number division is a continuous function, when the second
argument is apart from zero. (Contributed by Mario Carneiro,
12-Aug-2014.) (Revised by Jim Kingdon, 25-Oct-2023.)
|
⊢ 𝐽 = (MetOpen‘(abs ∘ −
))
& ⊢ 𝐾 = (𝐽 ↾t {𝑥 ∈ ℂ ∣ 𝑥 # 0}) ⇒ ⊢ (𝑦 ∈ ℂ, 𝑧 ∈ {𝑥 ∈ ℂ ∣ 𝑥 # 0} ↦ (𝑦 / 𝑧)) ∈ ((𝐽 ×t 𝐾) Cn 𝐽) |
|
Theorem | fsumcncntop 12916* |
A finite sum of functions to complex numbers from a common topological
space is continuous. The class expression for 𝐵 normally contains
free variables 𝑘 and 𝑥 to index it.
(Contributed by NM,
8-Aug-2007.) (Revised by Mario Carneiro, 23-Aug-2014.)
|
⊢ 𝐾 = (MetOpen‘(abs ∘ −
))
& ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ 𝐴 𝐵) ∈ (𝐽 Cn 𝐾)) |
|
7.2.7 Topological definitions using the
reals
|
|
Syntax | ccncf 12917 |
Extend class notation to include the operation which returns a class of
continuous complex functions.
|
class –cn→ |
|
Definition | df-cncf 12918* |
Define the operation whose value is a class of continuous complex
functions. (Contributed by Paul Chapman, 11-Oct-2007.)
|
⊢ –cn→ = (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ
↦ {𝑓 ∈ (𝑏 ↑𝑚
𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑒 ∈ ℝ+ ∃𝑑 ∈ ℝ+
∀𝑦 ∈ 𝑎 ((abs‘(𝑥 − 𝑦)) < 𝑑 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑦))) < 𝑒)}) |
|
Theorem | cncfval 12919* |
The value of the continuous complex function operation is the set of
continuous functions from 𝐴 to 𝐵. (Contributed by Paul
Chapman, 11-Oct-2007.) (Revised by Mario Carneiro, 9-Nov-2013.)
|
⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴–cn→𝐵) = {𝑓 ∈ (𝐵 ↑𝑚 𝐴) ∣ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑤))) < 𝑦)}) |
|
Theorem | elcncf 12920* |
Membership in the set of continuous complex functions from 𝐴 to
𝐵. (Contributed by Paul Chapman,
11-Oct-2007.) (Revised by Mario
Carneiro, 9-Nov-2013.)
|
⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)))) |
|
Theorem | elcncf2 12921* |
Version of elcncf 12920 with arguments commuted. (Contributed by
Mario
Carneiro, 28-Apr-2014.)
|
⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐹 ∈ (𝐴–cn→𝐵) ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+
∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝑥)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝑥))) < 𝑦)))) |
|
Theorem | cncfrss 12922 |
Reverse closure of the continuous function predicate. (Contributed by
Mario Carneiro, 25-Aug-2014.)
|
⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐴 ⊆ ℂ) |
|
Theorem | cncfrss2 12923 |
Reverse closure of the continuous function predicate. (Contributed by
Mario Carneiro, 25-Aug-2014.)
|
⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ⊆ ℂ) |
|
Theorem | cncff 12924 |
A continuous complex function's domain and codomain. (Contributed by
Paul Chapman, 17-Jan-2008.) (Revised by Mario Carneiro,
25-Aug-2014.)
|
⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐹:𝐴⟶𝐵) |
|
Theorem | cncfi 12925* |
Defining property of a continuous function. (Contributed by Mario
Carneiro, 30-Apr-2014.) (Revised by Mario Carneiro, 25-Aug-2014.)
|
⊢ ((𝐹 ∈ (𝐴–cn→𝐵) ∧ 𝐶 ∈ 𝐴 ∧ 𝑅 ∈ ℝ+) →
∃𝑧 ∈
ℝ+ ∀𝑤 ∈ 𝐴 ((abs‘(𝑤 − 𝐶)) < 𝑧 → (abs‘((𝐹‘𝑤) − (𝐹‘𝐶))) < 𝑅)) |
|
Theorem | elcncf1di 12926* |
Membership in the set of continuous complex functions from 𝐴 to
𝐵. (Contributed by Paul Chapman,
26-Nov-2007.)
|
⊢ (𝜑 → 𝐹:𝐴⟶𝐵)
& ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+) → 𝑍 ∈
ℝ+))
& ⊢ (𝜑 → (((𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ ℝ+) →
((abs‘(𝑥 −
𝑤)) < 𝑍 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦))) ⇒ ⊢ (𝜑 → ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐹 ∈ (𝐴–cn→𝐵))) |
|
Theorem | elcncf1ii 12927* |
Membership in the set of continuous complex functions from 𝐴 to
𝐵. (Contributed by Paul Chapman,
26-Nov-2007.)
|
⊢ 𝐹:𝐴⟶𝐵
& ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ℝ+) → 𝑍 ∈
ℝ+)
& ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑤 ∈ 𝐴) ∧ 𝑦 ∈ ℝ+) →
((abs‘(𝑥 −
𝑤)) < 𝑍 → (abs‘((𝐹‘𝑥) − (𝐹‘𝑤))) < 𝑦)) ⇒ ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → 𝐹 ∈ (𝐴–cn→𝐵)) |
|
Theorem | rescncf 12928 |
A continuous complex function restricted to a subset is continuous.
(Contributed by Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro,
25-Aug-2014.)
|
⊢ (𝐶 ⊆ 𝐴 → (𝐹 ∈ (𝐴–cn→𝐵) → (𝐹 ↾ 𝐶) ∈ (𝐶–cn→𝐵))) |
|
Theorem | cncffvrn 12929 |
Change the codomain of a continuous complex function. (Contributed by
Paul Chapman, 18-Oct-2007.) (Revised by Mario Carneiro, 1-May-2015.)
|
⊢ ((𝐶 ⊆ ℂ ∧ 𝐹 ∈ (𝐴–cn→𝐵)) → (𝐹 ∈ (𝐴–cn→𝐶) ↔ 𝐹:𝐴⟶𝐶)) |
|
Theorem | cncfss 12930 |
The set of continuous functions is expanded when the range is expanded.
(Contributed by Mario Carneiro, 30-Aug-2014.)
|
⊢ ((𝐵 ⊆ 𝐶 ∧ 𝐶 ⊆ ℂ) → (𝐴–cn→𝐵) ⊆ (𝐴–cn→𝐶)) |
|
Theorem | climcncf 12931 |
Image of a limit under a continuous map. (Contributed by Mario
Carneiro, 7-Apr-2015.)
|
⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐵)) & ⊢ (𝜑 → 𝐺:𝑍⟶𝐴)
& ⊢ (𝜑 → 𝐺 ⇝ 𝐷)
& ⊢ (𝜑 → 𝐷 ∈ 𝐴) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝐺) ⇝ (𝐹‘𝐷)) |
|
Theorem | abscncf 12932 |
Absolute value is continuous. (Contributed by Paul Chapman,
21-Oct-2007.) (Revised by Mario Carneiro, 28-Apr-2014.)
|
⊢ abs ∈ (ℂ–cn→ℝ) |
|
Theorem | recncf 12933 |
Real part is continuous. (Contributed by Paul Chapman, 21-Oct-2007.)
(Revised by Mario Carneiro, 28-Apr-2014.)
|
⊢ ℜ ∈ (ℂ–cn→ℝ) |
|
Theorem | imcncf 12934 |
Imaginary part is continuous. (Contributed by Paul Chapman,
21-Oct-2007.) (Revised by Mario Carneiro, 28-Apr-2014.)
|
⊢ ℑ ∈ (ℂ–cn→ℝ) |
|
Theorem | cjcncf 12935 |
Complex conjugate is continuous. (Contributed by Paul Chapman,
21-Oct-2007.) (Revised by Mario Carneiro, 28-Apr-2014.)
|
⊢ ∗ ∈ (ℂ–cn→ℂ) |
|
Theorem | mulc1cncf 12936* |
Multiplication by a constant is continuous. (Contributed by Paul
Chapman, 28-Nov-2007.) (Revised by Mario Carneiro, 30-Apr-2014.)
|
⊢ 𝐹 = (𝑥 ∈ ℂ ↦ (𝐴 · 𝑥)) ⇒ ⊢ (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ)) |
|
Theorem | divccncfap 12937* |
Division by a constant is continuous. (Contributed by Paul Chapman,
28-Nov-2007.) (Revised by Jim Kingdon, 9-Jan-2023.)
|
⊢ 𝐹 = (𝑥 ∈ ℂ ↦ (𝑥 / 𝐴)) ⇒ ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 # 0) → 𝐹 ∈ (ℂ–cn→ℂ)) |
|
Theorem | cncfco 12938 |
The composition of two continuous maps on complex numbers is also
continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by
Mario Carneiro, 25-Aug-2014.)
|
⊢ (𝜑 → 𝐹 ∈ (𝐴–cn→𝐵)) & ⊢ (𝜑 → 𝐺 ∈ (𝐵–cn→𝐶)) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹) ∈ (𝐴–cn→𝐶)) |
|
Theorem | cncfmet 12939 |
Relate complex function continuity to metric space continuity.
(Contributed by Paul Chapman, 26-Nov-2007.) (Revised by Mario Carneiro,
7-Sep-2015.)
|
⊢ 𝐶 = ((abs ∘ − ) ↾ (𝐴 × 𝐴)) & ⊢ 𝐷 = ((abs ∘ − )
↾ (𝐵 × 𝐵)) & ⊢ 𝐽 = (MetOpen‘𝐶) & ⊢ 𝐾 = (MetOpen‘𝐷)
⇒ ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴–cn→𝐵) = (𝐽 Cn 𝐾)) |
|
Theorem | cncfcncntop 12940 |
Relate complex function continuity to topological continuity.
(Contributed by Mario Carneiro, 17-Feb-2015.)
|
⊢ 𝐽 = (MetOpen‘(abs ∘ −
))
& ⊢ 𝐾 = (𝐽 ↾t 𝐴)
& ⊢ 𝐿 = (𝐽 ↾t 𝐵) ⇒ ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ) → (𝐴–cn→𝐵) = (𝐾 Cn 𝐿)) |
|
Theorem | cncfcn1cntop 12941 |
Relate complex function continuity to topological continuity.
(Contributed by Paul Chapman, 28-Nov-2007.) (Revised by Mario Carneiro,
7-Sep-2015.) (Revised by Jim Kingdon, 16-Jun-2023.)
|
⊢ 𝐽 = (MetOpen‘(abs ∘ −
)) ⇒ ⊢ (ℂ–cn→ℂ) = (𝐽 Cn 𝐽) |
|
Theorem | cncfmptc 12942* |
A constant function is a continuous function on ℂ. (Contributed
by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro,
7-Sep-2015.)
|
⊢ ((𝐴 ∈ 𝑇 ∧ 𝑆 ⊆ ℂ ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝐴) ∈ (𝑆–cn→𝑇)) |
|
Theorem | cncfmptid 12943* |
The identity function is a continuous function on ℂ. (Contributed
by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro,
17-May-2016.)
|
⊢ ((𝑆 ⊆ 𝑇 ∧ 𝑇 ⊆ ℂ) → (𝑥 ∈ 𝑆 ↦ 𝑥) ∈ (𝑆–cn→𝑇)) |
|
Theorem | cncfmpt1f 12944* |
Composition of continuous functions. –cn→ analogue of cnmpt11f 12644.
(Contributed by Mario Carneiro, 3-Sep-2014.)
|
⊢ (𝜑 → 𝐹 ∈ (ℂ–cn→ℂ)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐹‘𝐴)) ∈ (𝑋–cn→ℂ)) |
|
Theorem | cncfmpt2fcntop 12945* |
Composition of continuous functions. –cn→ analogue of cnmpt12f 12646.
(Contributed by Mario Carneiro, 3-Sep-2014.)
|
⊢ 𝐽 = (MetOpen‘(abs ∘ −
))
& ⊢ (𝜑 → 𝐹 ∈ ((𝐽 ×t 𝐽) Cn 𝐽)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝑋–cn→ℂ)) |
|
Theorem | addccncf 12946* |
Adding a constant is a continuous function. (Contributed by Jeff
Madsen, 2-Sep-2009.)
|
⊢ 𝐹 = (𝑥 ∈ ℂ ↦ (𝑥 + 𝐴)) ⇒ ⊢ (𝐴 ∈ ℂ → 𝐹 ∈ (ℂ–cn→ℂ)) |
|
Theorem | cdivcncfap 12947* |
Division with a constant numerator is continuous. (Contributed by Mario
Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 26-May-2023.)
|
⊢ 𝐹 = (𝑥 ∈ {𝑦 ∈ ℂ ∣ 𝑦 # 0} ↦ (𝐴 / 𝑥)) ⇒ ⊢ (𝐴 ∈ ℂ → 𝐹 ∈ ({𝑦 ∈ ℂ ∣ 𝑦 # 0}–cn→ℂ)) |
|
Theorem | negcncf 12948* |
The negative function is continuous. (Contributed by Mario Carneiro,
30-Dec-2016.)
|
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ -𝑥) ⇒ ⊢ (𝐴 ⊆ ℂ → 𝐹 ∈ (𝐴–cn→ℂ)) |
|
Theorem | negfcncf 12949* |
The negative of a continuous complex function is continuous.
(Contributed by Paul Chapman, 21-Jan-2008.) (Revised by Mario Carneiro,
25-Aug-2014.)
|
⊢ 𝐺 = (𝑥 ∈ 𝐴 ↦ -(𝐹‘𝑥)) ⇒ ⊢ (𝐹 ∈ (𝐴–cn→ℂ) → 𝐺 ∈ (𝐴–cn→ℂ)) |
|
Theorem | mulcncflem 12950* |
Lemma for mulcncf 12951. (Contributed by Jim Kingdon, 29-May-2023.)
|
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) & ⊢ (𝜑 → 𝑉 ∈ 𝑋)
& ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐹 ∈ ℝ+) & ⊢ (𝜑 → 𝐺 ∈ ℝ+) & ⊢ (𝜑 → 𝑆 ∈ ℝ+) & ⊢ (𝜑 → 𝑇 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑢 ∈ 𝑋 ((abs‘(𝑢 − 𝑉)) < 𝑆 → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑢) − ((𝑥 ∈ 𝑋 ↦ 𝐴)‘𝑉))) < 𝐹)) & ⊢ (𝜑 → ∀𝑢 ∈ 𝑋 ((abs‘(𝑢 − 𝑉)) < 𝑇 → (abs‘(((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑢) − ((𝑥 ∈ 𝑋 ↦ 𝐵)‘𝑉))) < 𝐺)) & ⊢ (𝜑 → ∀𝑢 ∈ 𝑋 (((abs‘(⦋𝑢 / 𝑥⦌𝐴 − ⦋𝑉 / 𝑥⦌𝐴)) < 𝐹 ∧ (abs‘(⦋𝑢 / 𝑥⦌𝐵 − ⦋𝑉 / 𝑥⦌𝐵)) < 𝐺) → (abs‘((⦋𝑢 / 𝑥⦌𝐴 · ⦋𝑢 / 𝑥⦌𝐵) − (⦋𝑉 / 𝑥⦌𝐴 · ⦋𝑉 / 𝑥⦌𝐵))) < 𝐸)) ⇒ ⊢ (𝜑 → ∃𝑑 ∈ ℝ+ ∀𝑢 ∈ 𝑋 ((abs‘(𝑢 − 𝑉)) < 𝑑 → (abs‘(((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑢) − ((𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵))‘𝑉))) < 𝐸)) |
|
Theorem | mulcncf 12951* |
The multiplication of two continuous complex functions is continuous.
(Contributed by Glauco Siliprandi, 29-Jun-2017.)
|
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝑋–cn→ℂ)) & ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝑋–cn→ℂ)) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴 · 𝐵)) ∈ (𝑋–cn→ℂ)) |
|
Theorem | expcncf 12952* |
The power function on complex numbers, for fixed exponent N, is
continuous. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
|
⊢ (𝑁 ∈ ℕ0 → (𝑥 ∈ ℂ ↦ (𝑥↑𝑁)) ∈ (ℂ–cn→ℂ)) |
|
Theorem | cnrehmeocntop 12953* |
The canonical bijection from (ℝ × ℝ)
to ℂ described in
cnref1o 9541 is in fact a homeomorphism of the usual
topologies on these
sets. (It is also an isometry, if (ℝ ×
ℝ) is metrized with the
l<SUP>2</SUP> norm.) (Contributed by Mario Carneiro,
25-Aug-2014.)
|
⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) & ⊢ 𝐽 = (topGen‘ran
(,))
& ⊢ 𝐾 = (MetOpen‘(abs ∘ −
)) ⇒ ⊢ 𝐹 ∈ ((𝐽 ×t 𝐽)Homeo𝐾) |
|
Theorem | cnopnap 12954* |
The complex numbers apart from a given complex number form an open set.
(Contributed by Jim Kingdon, 14-Dec-2023.)
|
⊢ (𝐴 ∈ ℂ → {𝑤 ∈ ℂ ∣ 𝑤 # 𝐴} ∈ (MetOpen‘(abs ∘
− ))) |
|
PART 8 BASIC REAL AND COMPLEX
ANALYSIS
|
|
8.0.1 Dedekind cuts
|
|
Theorem | dedekindeulemuub 12955* |
Lemma for dedekindeu 12961. Any element of the upper cut is an upper
bound for the lower cut. (Contributed by Jim Kingdon, 2-Feb-2024.)
|
⊢ (𝜑 → 𝐿 ⊆ ℝ) & ⊢ (𝜑 → 𝑈 ⊆ ℝ) & ⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿)
& ⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈)
& ⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟))
& ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟))
& ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) & ⊢ (𝜑 → 𝐴 ∈ 𝑈) ⇒ ⊢ (𝜑 → ∀𝑧 ∈ 𝐿 𝑧 < 𝐴) |
|
Theorem | dedekindeulemub 12956* |
Lemma for dedekindeu 12961. The lower cut has an upper bound.
(Contributed by Jim Kingdon, 31-Jan-2024.)
|
⊢ (𝜑 → 𝐿 ⊆ ℝ) & ⊢ (𝜑 → 𝑈 ⊆ ℝ) & ⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿)
& ⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈)
& ⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟))
& ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟))
& ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐿 𝑦 < 𝑥) |
|
Theorem | dedekindeulemloc 12957* |
Lemma for dedekindeu 12961. The set L is located. (Contributed by Jim
Kingdon, 31-Jan-2024.)
|
⊢ (𝜑 → 𝐿 ⊆ ℝ) & ⊢ (𝜑 → 𝑈 ⊆ ℝ) & ⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿)
& ⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈)
& ⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟))
& ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟))
& ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ ℝ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → (∃𝑧 ∈ 𝐿 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐿 𝑧 < 𝑦))) |
|
Theorem | dedekindeulemlub 12958* |
Lemma for dedekindeu 12961. The set L has a least upper bound.
(Contributed by Jim Kingdon, 31-Jan-2024.)
|
⊢ (𝜑 → 𝐿 ⊆ ℝ) & ⊢ (𝜑 → 𝑈 ⊆ ℝ) & ⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿)
& ⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈)
& ⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟))
& ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟))
& ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) |
|
Theorem | dedekindeulemlu 12959* |
Lemma for dedekindeu 12961. There is a number which separates the
lower
and upper cuts. (Contributed by Jim Kingdon, 31-Jan-2024.)
|
⊢ (𝜑 → 𝐿 ⊆ ℝ) & ⊢ (𝜑 → 𝑈 ⊆ ℝ) & ⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿)
& ⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈)
& ⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟))
& ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟))
& ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑞 ∈ 𝐿 𝑞 < 𝑥 ∧ ∀𝑟 ∈ 𝑈 𝑥 < 𝑟)) |
|
Theorem | dedekindeulemeu 12960* |
Lemma for dedekindeu 12961. Part of proving uniqueness. (Contributed
by
Jim Kingdon, 31-Jan-2024.)
|
⊢ (𝜑 → 𝐿 ⊆ ℝ) & ⊢ (𝜑 → 𝑈 ⊆ ℝ) & ⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿)
& ⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈)
& ⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟))
& ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟))
& ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → (∀𝑞 ∈ 𝐿 𝑞 < 𝐴 ∧ ∀𝑟 ∈ 𝑈 𝐴 < 𝑟))
& ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → (∀𝑞 ∈ 𝐿 𝑞 < 𝐵 ∧ ∀𝑟 ∈ 𝑈 𝐵 < 𝑟))
& ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → ⊥) |
|
Theorem | dedekindeu 12961* |
A Dedekind cut identifies a unique real number. Similar to df-inp 7369
except that the the Dedekind cut is formed by sets of reals (rather than
positive rationals). But in both cases the defining property of a
Dedekind cut is that it is inhabited (bounded), rounded, disjoint, and
located. (Contributed by Jim Kingdon, 5-Jan-2024.)
|
⊢ (𝜑 → 𝐿 ⊆ ℝ) & ⊢ (𝜑 → 𝑈 ⊆ ℝ) & ⊢ (𝜑 → ∃𝑞 ∈ ℝ 𝑞 ∈ 𝐿)
& ⊢ (𝜑 → ∃𝑟 ∈ ℝ 𝑟 ∈ 𝑈)
& ⊢ (𝜑 → ∀𝑞 ∈ ℝ (𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟))
& ⊢ (𝜑 → ∀𝑟 ∈ ℝ (𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟))
& ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ ℝ (∀𝑞 ∈ 𝐿 𝑞 < 𝑥 ∧ ∀𝑟 ∈ 𝑈 𝑥 < 𝑟)) |
|
Theorem | suplociccreex 12962* |
An inhabited, bounded-above, located set of reals in a closed interval
has a supremum. A similar theorem is axsuploc 7933 but that one is for
the entire real line rather than a closed interval. (Contributed by
Jim Kingdon, 14-Feb-2024.)
|
⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 < 𝐶)
& ⊢ (𝜑 → 𝐴 ⊆ (𝐵[,]𝐶)) & ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴)
& ⊢ (𝜑 → ∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦 ∈ (𝐵[,]𝐶)(𝑥 < 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 < 𝑦))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
|
Theorem | suplociccex 12963* |
An inhabited, bounded-above, located set of reals in a closed interval
has a supremum. A similar theorem is axsuploc 7933 but that one is for the
entire real line rather than a closed interval. (Contributed by Jim
Kingdon, 14-Feb-2024.)
|
⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐵 < 𝐶)
& ⊢ (𝜑 → 𝐴 ⊆ (𝐵[,]𝐶)) & ⊢ (𝜑 → ∃𝑥 𝑥 ∈ 𝐴)
& ⊢ (𝜑 → ∀𝑥 ∈ (𝐵[,]𝐶)∀𝑦 ∈ (𝐵[,]𝐶)(𝑥 < 𝑦 → (∃𝑧 ∈ 𝐴 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 < 𝑦))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝐵[,]𝐶)(∀𝑦 ∈ 𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐵[,]𝐶)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 < 𝑧))) |
|
Theorem | dedekindicclemuub 12964* |
Lemma for dedekindicc 12971. Any element of the upper cut is an upper
bound for the lower cut. (Contributed by Jim Kingdon,
15-Feb-2024.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝑈 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿)
& ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈)
& ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟))
& ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟))
& ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) & ⊢ (𝜑 → 𝐶 ∈ 𝑈) ⇒ ⊢ (𝜑 → ∀𝑧 ∈ 𝐿 𝑧 < 𝐶) |
|
Theorem | dedekindicclemub 12965* |
Lemma for dedekindicc 12971. The lower cut has an upper bound.
(Contributed by Jim Kingdon, 15-Feb-2024.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝑈 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿)
& ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈)
& ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟))
& ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟))
& ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ 𝐿 𝑦 < 𝑥) |
|
Theorem | dedekindicclemloc 12966* |
Lemma for dedekindicc 12971. The set L is located. (Contributed by Jim
Kingdon, 15-Feb-2024.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝑈 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿)
& ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈)
& ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟))
& ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟))
& ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ (𝐴[,]𝐵)∀𝑦 ∈ (𝐴[,]𝐵)(𝑥 < 𝑦 → (∃𝑧 ∈ 𝐿 𝑥 < 𝑧 ∨ ∀𝑧 ∈ 𝐿 𝑧 < 𝑦))) |
|
Theorem | dedekindicclemlub 12967* |
Lemma for dedekindicc 12971. The set L has a least upper bound.
(Contributed by Jim Kingdon, 15-Feb-2024.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝑈 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿)
& ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈)
& ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟))
& ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟))
& ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)(∀𝑦 ∈ 𝐿 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(𝑦 < 𝑥 → ∃𝑧 ∈ 𝐿 𝑦 < 𝑧))) |
|
Theorem | dedekindicclemlu 12968* |
Lemma for dedekindicc 12971. There is a number which separates the
lower
and upper cuts. (Contributed by Jim Kingdon, 15-Feb-2024.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝑈 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿)
& ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈)
& ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟))
& ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟))
& ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝐴[,]𝐵)(∀𝑞 ∈ 𝐿 𝑞 < 𝑥 ∧ ∀𝑟 ∈ 𝑈 𝑥 < 𝑟)) |
|
Theorem | dedekindicclemeu 12969* |
Lemma for dedekindicc 12971. Part of proving uniqueness. (Contributed
by Jim Kingdon, 15-Feb-2024.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝑈 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿)
& ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈)
& ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟))
& ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟))
& ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) & ⊢ (𝜑 → 𝐴 < 𝐵)
& ⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) & ⊢ (𝜑 → (∀𝑞 ∈ 𝐿 𝑞 < 𝐶 ∧ ∀𝑟 ∈ 𝑈 𝐶 < 𝑟))
& ⊢ (𝜑 → 𝐷 ∈ (𝐴[,]𝐵)) & ⊢ (𝜑 → (∀𝑞 ∈ 𝐿 𝑞 < 𝐷 ∧ ∀𝑟 ∈ 𝑈 𝐷 < 𝑟))
& ⊢ (𝜑 → 𝐶 < 𝐷) ⇒ ⊢ (𝜑 → ⊥) |
|
Theorem | dedekindicclemicc 12970* |
Lemma for dedekindicc 12971. Same as dedekindicc 12971, except that we
merely show 𝑥 to be an element of (𝐴[,]𝐵). Later we will
strengthen that to (𝐴(,)𝐵). (Contributed by Jim Kingdon,
5-Jan-2024.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝑈 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿)
& ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈)
& ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟))
& ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟))
& ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ (𝐴[,]𝐵)(∀𝑞 ∈ 𝐿 𝑞 < 𝑥 ∧ ∀𝑟 ∈ 𝑈 𝑥 < 𝑟)) |
|
Theorem | dedekindicc 12971* |
A Dedekind cut identifies a unique real number. Similar to df-inp 7369
except that the Dedekind cut is formed by sets of reals (rather than
positive rationals). But in both cases the defining property of a
Dedekind cut is that it is inhabited (bounded), rounded, disjoint, and
located. (Contributed by Jim Kingdon, 19-Feb-2024.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐿 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → 𝑈 ⊆ (𝐴[,]𝐵)) & ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿)
& ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑈)
& ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟))
& ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑈 ↔ ∃𝑞 ∈ 𝑈 𝑞 < 𝑟))
& ⊢ (𝜑 → (𝐿 ∩ 𝑈) = ∅) & ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑈))) & ⊢ (𝜑 → 𝐴 < 𝐵) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ (𝐴(,)𝐵)(∀𝑞 ∈ 𝐿 𝑞 < 𝑥 ∧ ∀𝑟 ∈ 𝑈 𝑥 < 𝑟)) |
|
8.0.2 Intermediate value theorem
|
|
Theorem | ivthinclemlm 12972* |
Lemma for ivthinc 12981. The lower cut is bounded. (Contributed by
Jim Kingdon, 18-Feb-2024.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵)
& ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
& ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) & ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦))
& ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈}
& ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} ⇒ ⊢ (𝜑 → ∃𝑞 ∈ (𝐴[,]𝐵)𝑞 ∈ 𝐿) |
|
Theorem | ivthinclemum 12973* |
Lemma for ivthinc 12981. The upper cut is bounded. (Contributed by
Jim Kingdon, 18-Feb-2024.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵)
& ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
& ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) & ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦))
& ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈}
& ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} ⇒ ⊢ (𝜑 → ∃𝑟 ∈ (𝐴[,]𝐵)𝑟 ∈ 𝑅) |
|
Theorem | ivthinclemlopn 12974* |
Lemma for ivthinc 12981. The lower cut is open. (Contributed by
Jim
Kingdon, 6-Feb-2024.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵)
& ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
& ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) & ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦))
& ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈}
& ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)}
& ⊢ (𝜑 → 𝑄 ∈ 𝐿) ⇒ ⊢ (𝜑 → ∃𝑟 ∈ 𝐿 𝑄 < 𝑟) |
|
Theorem | ivthinclemlr 12975* |
Lemma for ivthinc 12981. The lower cut is rounded. (Contributed by
Jim Kingdon, 18-Feb-2024.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵)
& ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
& ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) & ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦))
& ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈}
& ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} ⇒ ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)(𝑞 ∈ 𝐿 ↔ ∃𝑟 ∈ 𝐿 𝑞 < 𝑟)) |
|
Theorem | ivthinclemuopn 12976* |
Lemma for ivthinc 12981. The upper cut is open. (Contributed by
Jim
Kingdon, 19-Feb-2024.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵)
& ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
& ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) & ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦))
& ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈}
& ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)}
& ⊢ (𝜑 → 𝑆 ∈ 𝑅) ⇒ ⊢ (𝜑 → ∃𝑞 ∈ 𝑅 𝑞 < 𝑆) |
|
Theorem | ivthinclemur 12977* |
Lemma for ivthinc 12981. The upper cut is rounded. (Contributed by
Jim Kingdon, 18-Feb-2024.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵)
& ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
& ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) & ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦))
& ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈}
& ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} ⇒ ⊢ (𝜑 → ∀𝑟 ∈ (𝐴[,]𝐵)(𝑟 ∈ 𝑅 ↔ ∃𝑞 ∈ 𝑅 𝑞 < 𝑟)) |
|
Theorem | ivthinclemdisj 12978* |
Lemma for ivthinc 12981. The lower and upper cuts are disjoint.
(Contributed by Jim Kingdon, 18-Feb-2024.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵)
& ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
& ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) & ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦))
& ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈}
& ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} ⇒ ⊢ (𝜑 → (𝐿 ∩ 𝑅) = ∅) |
|
Theorem | ivthinclemloc 12979* |
Lemma for ivthinc 12981. Locatedness. (Contributed by Jim Kingdon,
18-Feb-2024.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵)
& ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
& ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) & ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦))
& ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈}
& ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} ⇒ ⊢ (𝜑 → ∀𝑞 ∈ (𝐴[,]𝐵)∀𝑟 ∈ (𝐴[,]𝐵)(𝑞 < 𝑟 → (𝑞 ∈ 𝐿 ∨ 𝑟 ∈ 𝑅))) |
|
Theorem | ivthinclemex 12980* |
Lemma for ivthinc 12981. Existence of a number between the lower
cut
and the upper cut. (Contributed by Jim Kingdon, 20-Feb-2024.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵)
& ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
& ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) & ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦))
& ⊢ 𝐿 = {𝑤 ∈ (𝐴[,]𝐵) ∣ (𝐹‘𝑤) < 𝑈}
& ⊢ 𝑅 = {𝑤 ∈ (𝐴[,]𝐵) ∣ 𝑈 < (𝐹‘𝑤)} ⇒ ⊢ (𝜑 → ∃!𝑧 ∈ (𝐴(,)𝐵)(∀𝑞 ∈ 𝐿 𝑞 < 𝑧 ∧ ∀𝑟 ∈ 𝑅 𝑧 < 𝑟)) |
|
Theorem | ivthinc 12981* |
The intermediate value theorem, increasing case, for a strictly
monotonic function. Theorem 5.5 of [Bauer], p. 494. This is
Metamath 100 proof #79. (Contributed by Jim Kingdon,
5-Feb-2024.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵)
& ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
& ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐴) < 𝑈 ∧ 𝑈 < (𝐹‘𝐵))) & ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑥) < (𝐹‘𝑦)) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈) |
|
Theorem | ivthdec 12982* |
The intermediate value theorem, decreasing case, for a strictly
monotonic function. (Contributed by Jim Kingdon, 20-Feb-2024.)
|
⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝑈 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵)
& ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐷)
& ⊢ (𝜑 → 𝐹 ∈ (𝐷–cn→ℂ)) & ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℝ) & ⊢ (𝜑 → ((𝐹‘𝐵) < 𝑈 ∧ 𝑈 < (𝐹‘𝐴))) & ⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ (𝑦 ∈ (𝐴[,]𝐵) ∧ 𝑥 < 𝑦)) → (𝐹‘𝑦) < (𝐹‘𝑥)) ⇒ ⊢ (𝜑 → ∃𝑐 ∈ (𝐴(,)𝐵)(𝐹‘𝑐) = 𝑈) |
|
8.1 Derivatives
|
|
8.1.1 Real and complex
differentiation
|
|
8.1.1.1 Derivatives of functions of one complex
or real variable
|
|
Syntax | climc 12983 |
The limit operator.
|
class limℂ |
|
Syntax | cdv 12984 |
The derivative operator.
|
class D |
|
Definition | df-limced 12985* |
Define the set of limits of a complex function at a point. Under normal
circumstances, this will be a singleton or empty, depending on whether
the limit exists. (Contributed by Mario Carneiro, 24-Dec-2016.)
(Revised by Jim Kingdon, 3-Jun-2023.)
|
⊢ limℂ = (𝑓 ∈ (ℂ ↑pm
ℂ), 𝑥 ∈ ℂ
↦ {𝑦 ∈ ℂ
∣ ((𝑓:dom 𝑓⟶ℂ ∧ dom 𝑓 ⊆ ℂ) ∧ (𝑥 ∈ ℂ ∧
∀𝑒 ∈
ℝ+ ∃𝑑 ∈ ℝ+ ∀𝑧 ∈ dom 𝑓((𝑧 # 𝑥 ∧ (abs‘(𝑧 − 𝑥)) < 𝑑) → (abs‘((𝑓‘𝑧) − 𝑦)) < 𝑒)))}) |
|
Definition | df-dvap 12986* |
Define the derivative operator. This acts on functions to produce a
function that is defined where the original function is differentiable,
with value the derivative of the function at these points. The set
𝑠 here is the ambient topological space
under which we are
evaluating the continuity of the difference quotient. Although the
definition is valid for any subset of ℂ
and is well-behaved when
𝑠 contains no isolated points, we will
restrict our attention to the
cases 𝑠 = ℝ or 𝑠 = ℂ for the
majority of the development,
these corresponding respectively to real and complex differentiation.
(Contributed by Mario Carneiro, 7-Aug-2014.) (Revised by Jim Kingdon,
25-Jun-2023.)
|
⊢ D = (𝑠 ∈ 𝒫 ℂ, 𝑓 ∈ (ℂ
↑pm 𝑠) ↦ ∪ 𝑥 ∈ ((int‘((MetOpen‘(abs
∘ − )) ↾t 𝑠))‘dom 𝑓)({𝑥} × ((𝑧 ∈ {𝑤 ∈ dom 𝑓 ∣ 𝑤 # 𝑥} ↦ (((𝑓‘𝑧) − (𝑓‘𝑥)) / (𝑧 − 𝑥))) limℂ 𝑥))) |
|
Theorem | limcrcl 12987 |
Reverse closure for the limit operator. (Contributed by Mario Carneiro,
28-Dec-2016.)
|
⊢ (𝐶 ∈ (𝐹 limℂ 𝐵) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ)) |
|
Theorem | limccl 12988 |
Closure of the limit operator. (Contributed by Mario Carneiro,
25-Dec-2016.)
|
⊢ (𝐹 limℂ 𝐵) ⊆ ℂ |
|
Theorem | ellimc3apf 12989* |
Write the epsilon-delta definition of a limit. (Contributed by Mario
Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 4-Nov-2023.)
|
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢
Ⅎ𝑧𝐹 ⇒ ⊢ (𝜑 → (𝐶 ∈ (𝐹 limℂ 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈
ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑦) → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥)))) |
|
Theorem | ellimc3ap 12990* |
Write the epsilon-delta definition of a limit. (Contributed by Mario
Carneiro, 28-Dec-2016.) Use apartness. (Revised by Jim Kingdon,
3-Jun-2023.)
|
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐶 ∈ (𝐹 limℂ 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈
ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑦) → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥)))) |
|
Theorem | limcdifap 12991* |
It suffices to consider functions which are not defined at 𝐵 to
define the limit of a function. In particular, the value of the
original function 𝐹 at 𝐵 does not affect the
limit of 𝐹.
(Contributed by Mario Carneiro, 25-Dec-2016.) (Revised by Jim Kingdon,
3-Jun-2023.)
|
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℂ)
⇒ ⊢ (𝜑 → (𝐹 limℂ 𝐵) = ((𝐹 ↾ {𝑥 ∈ 𝐴 ∣ 𝑥 # 𝐵}) limℂ 𝐵)) |
|
Theorem | limcmpted 12992* |
Express the limit operator for a function defined by a mapping, via
epsilon-delta. (Contributed by Jim Kingdon, 3-Nov-2023.)
|
⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐷 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐶 ∈ ((𝑧 ∈ 𝐴 ↦ 𝐷) limℂ 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+
∃𝑦 ∈
ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑦) → (abs‘(𝐷 − 𝐶)) < 𝑥)))) |
|
Theorem | limcimolemlt 12993* |
Lemma for limcimo 12994. (Contributed by Jim Kingdon, 3-Jul-2023.)
|
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ 𝐶)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ (𝐾 ↾t 𝑆)) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → {𝑞 ∈ 𝐶 ∣ 𝑞 # 𝐵} ⊆ 𝐴)
& ⊢ 𝐾 = (MetOpen‘(abs ∘ −
))
& ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝑋 ∈ (𝐹 limℂ 𝐵)) & ⊢ (𝜑 → 𝑌 ∈ (𝐹 limℂ 𝐵)) & ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝐷) → (abs‘((𝐹‘𝑧) − 𝑋)) < ((abs‘(𝑋 − 𝑌)) / 2))) & ⊢ (𝜑 → 𝐺 ∈ ℝ+) & ⊢ (𝜑 → ∀𝑤 ∈ 𝐴 ((𝑤 # 𝐵 ∧ (abs‘(𝑤 − 𝐵)) < 𝐺) → (abs‘((𝐹‘𝑤) − 𝑌)) < ((abs‘(𝑋 − 𝑌)) / 2))) ⇒ ⊢ (𝜑 → (abs‘(𝑋 − 𝑌)) < (abs‘(𝑋 − 𝑌))) |
|
Theorem | limcimo 12994* |
Conditions which ensure there is at most one limit value of 𝐹 at
𝐵. (Contributed by Mario Carneiro,
25-Dec-2016.) (Revised by
Jim Kingdon, 8-Jul-2023.)
|
⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ 𝐶)
& ⊢ (𝜑 → 𝐵 ∈ 𝑆)
& ⊢ (𝜑 → 𝐶 ∈ (𝐾 ↾t 𝑆)) & ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) & ⊢ (𝜑 → {𝑞 ∈ 𝐶 ∣ 𝑞 # 𝐵} ⊆ 𝐴)
& ⊢ 𝐾 = (MetOpen‘(abs ∘ −
)) ⇒ ⊢ (𝜑 → ∃*𝑥 𝑥 ∈ (𝐹 limℂ 𝐵)) |
|
Theorem | limcresi 12995 |
Any limit of 𝐹 is also a limit of the restriction
of 𝐹.
(Contributed by Mario Carneiro, 28-Dec-2016.)
|
⊢ (𝐹 limℂ 𝐵) ⊆ ((𝐹 ↾ 𝐶) limℂ 𝐵) |
|
Theorem | cnplimcim 12996 |
If a function is continuous at 𝐵, its limit at 𝐵 equals the
value of the function there. (Contributed by Mario Carneiro,
28-Dec-2016.) (Revised by Jim Kingdon, 14-Jun-2023.)
|
⊢ 𝐾 = (MetOpen‘(abs ∘ −
))
& ⊢ 𝐽 = (𝐾 ↾t 𝐴) ⇒ ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) → (𝐹:𝐴⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)))) |
|
Theorem | cnplimclemle 12997 |
Lemma for cnplimccntop 12999. Satisfying the epsilon condition for
continuity. (Contributed by Mario Carneiro and Jim Kingdon,
17-Nov-2023.)
|
⊢ 𝐾 = (MetOpen‘(abs ∘ −
))
& ⊢ 𝐽 = (𝐾 ↾t 𝐴)
& ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐵 ∈ 𝐴)
& ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝐷 ∈ ℝ+) & ⊢ (𝜑 → 𝑍 ∈ 𝐴)
& ⊢ ((𝜑 ∧ 𝑍 # 𝐵 ∧ (abs‘(𝑍 − 𝐵)) < 𝐷) → (abs‘((𝐹‘𝑍) − (𝐹‘𝐵))) < (𝐸 / 2)) & ⊢ (𝜑 → (abs‘(𝑍 − 𝐵)) < 𝐷) ⇒ ⊢ (𝜑 → (abs‘((𝐹‘𝑍) − (𝐹‘𝐵))) < 𝐸) |
|
Theorem | cnplimclemr 12998 |
Lemma for cnplimccntop 12999. The reverse direction. (Contributed by
Mario Carneiro and Jim Kingdon, 17-Nov-2023.)
|
⊢ 𝐾 = (MetOpen‘(abs ∘ −
))
& ⊢ 𝐽 = (𝐾 ↾t 𝐴)
& ⊢ (𝜑 → 𝐴 ⊆ ℂ) & ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) & ⊢ (𝜑 → 𝐵 ∈ 𝐴)
& ⊢ (𝜑 → (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)) ⇒ ⊢ (𝜑 → 𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵)) |
|
Theorem | cnplimccntop 12999 |
A function is continuous at 𝐵 iff its limit at 𝐵 equals
the
value of the function there. (Contributed by Mario Carneiro,
28-Dec-2016.)
|
⊢ 𝐾 = (MetOpen‘(abs ∘ −
))
& ⊢ 𝐽 = (𝐾 ↾t 𝐴) ⇒ ⊢ ((𝐴 ⊆ ℂ ∧ 𝐵 ∈ 𝐴) → (𝐹 ∈ ((𝐽 CnP 𝐾)‘𝐵) ↔ (𝐹:𝐴⟶ℂ ∧ (𝐹‘𝐵) ∈ (𝐹 limℂ 𝐵)))) |
|
Theorem | cnlimcim 13000* |
If 𝐹 is a continuous function, the limit
of the function at each
point equals the value of the function. (Contributed by Mario Carneiro,
28-Dec-2016.) (Revised by Jim Kingdon, 16-Jun-2023.)
|
⊢ (𝐴 ⊆ ℂ → (𝐹 ∈ (𝐴–cn→ℂ) → (𝐹:𝐴⟶ℂ ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ (𝐹 limℂ 𝑥)))) |