| Intuitionistic Logic Explorer Theorem List (p. 130 of 159) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > ILE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | topgrpbasd 12901 | The base set of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.) |
| ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → 𝐽 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝑊)) | ||
| Theorem | topgrpplusgd 12902 | The additive operation of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.) |
| ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → 𝐽 ∈ 𝑋) ⇒ ⊢ (𝜑 → + = (+g‘𝑊)) | ||
| Theorem | topgrptsetd 12903 | The topology of a constructed topological group. (Contributed by Mario Carneiro, 29-Aug-2015.) (Revised by Jim Kingdon, 9-Feb-2023.) |
| ⊢ 𝑊 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉} & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → 𝐽 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝐽 = (TopSet‘𝑊)) | ||
| Theorem | plendx 12904 | Index value of the df-ple 12802 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) (Revised by AV, 9-Sep-2021.) |
| ⊢ (le‘ndx) = ;10 | ||
| Theorem | pleid 12905 | Utility theorem: self-referencing, index-independent form of df-ple 12802. (Contributed by NM, 9-Nov-2012.) (Revised by AV, 9-Sep-2021.) |
| ⊢ le = Slot (le‘ndx) | ||
| Theorem | pleslid 12906 | Slot property of le. (Contributed by Jim Kingdon, 9-Feb-2023.) |
| ⊢ (le = Slot (le‘ndx) ∧ (le‘ndx) ∈ ℕ) | ||
| Theorem | plendxnn 12907 | The index value of the order slot is a positive integer. This property should be ensured for every concrete coding because otherwise it could not be used in an extensible structure (slots must be positive integers). (Contributed by AV, 30-Oct-2024.) |
| ⊢ (le‘ndx) ∈ ℕ | ||
| Theorem | basendxltplendx 12908 | The index value of the Base slot is less than the index value of the le slot. (Contributed by AV, 30-Oct-2024.) |
| ⊢ (Base‘ndx) < (le‘ndx) | ||
| Theorem | plendxnbasendx 12909 | The slot for the order is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 30-Oct-2024.) |
| ⊢ (le‘ndx) ≠ (Base‘ndx) | ||
| Theorem | plendxnplusgndx 12910 | The slot for the "less than or equal to" ordering is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.) |
| ⊢ (le‘ndx) ≠ (+g‘ndx) | ||
| Theorem | plendxnmulrndx 12911 | The slot for the "less than or equal to" ordering is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 1-Nov-2024.) |
| ⊢ (le‘ndx) ≠ (.r‘ndx) | ||
| Theorem | plendxnscandx 12912 | The slot for the "less than or equal to" ordering is not the slot for the scalar in an extensible structure. (Contributed by AV, 1-Nov-2024.) |
| ⊢ (le‘ndx) ≠ (Scalar‘ndx) | ||
| Theorem | plendxnvscandx 12913 | The slot for the "less than or equal to" ordering is not the slot for the scalar product in an extensible structure. (Contributed by AV, 1-Nov-2024.) |
| ⊢ (le‘ndx) ≠ ( ·𝑠 ‘ndx) | ||
| Theorem | slotsdifplendx 12914 | The index of the slot for the distance is not the index of other slots. (Contributed by AV, 11-Nov-2024.) |
| ⊢ ((*𝑟‘ndx) ≠ (le‘ndx) ∧ (TopSet‘ndx) ≠ (le‘ndx)) | ||
| Theorem | ocndx 12915 | Index value of the df-ocomp 12803 slot. (Contributed by Mario Carneiro, 25-Oct-2015.) (New usage is discouraged.) |
| ⊢ (oc‘ndx) = ;11 | ||
| Theorem | ocid 12916 | Utility theorem: index-independent form of df-ocomp 12803. (Contributed by Mario Carneiro, 25-Oct-2015.) |
| ⊢ oc = Slot (oc‘ndx) | ||
| Theorem | basendxnocndx 12917 | The slot for the orthocomplementation is not the slot for the base set in an extensible structure. (Contributed by AV, 11-Nov-2024.) |
| ⊢ (Base‘ndx) ≠ (oc‘ndx) | ||
| Theorem | plendxnocndx 12918 | The slot for the orthocomplementation is not the slot for the order in an extensible structure. (Contributed by AV, 11-Nov-2024.) |
| ⊢ (le‘ndx) ≠ (oc‘ndx) | ||
| Theorem | dsndx 12919 | Index value of the df-ds 12804 slot. (Contributed by Mario Carneiro, 14-Aug-2015.) |
| ⊢ (dist‘ndx) = ;12 | ||
| Theorem | dsid 12920 | Utility theorem: index-independent form of df-ds 12804. (Contributed by Mario Carneiro, 23-Dec-2013.) |
| ⊢ dist = Slot (dist‘ndx) | ||
| Theorem | dsslid 12921 | Slot property of dist. (Contributed by Jim Kingdon, 6-May-2023.) |
| ⊢ (dist = Slot (dist‘ndx) ∧ (dist‘ndx) ∈ ℕ) | ||
| Theorem | dsndxnn 12922 | The index of the slot for the distance in an extensible structure is a positive integer. (Contributed by AV, 28-Oct-2024.) |
| ⊢ (dist‘ndx) ∈ ℕ | ||
| Theorem | basendxltdsndx 12923 | The index of the slot for the base set is less then the index of the slot for the distance in an extensible structure. (Contributed by AV, 28-Oct-2024.) |
| ⊢ (Base‘ndx) < (dist‘ndx) | ||
| Theorem | dsndxnbasendx 12924 | The slot for the distance is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) (Proof shortened by AV, 28-Oct-2024.) |
| ⊢ (dist‘ndx) ≠ (Base‘ndx) | ||
| Theorem | dsndxnplusgndx 12925 | The slot for the distance function is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.) |
| ⊢ (dist‘ndx) ≠ (+g‘ndx) | ||
| Theorem | dsndxnmulrndx 12926 | The slot for the distance function is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 31-Oct-2024.) |
| ⊢ (dist‘ndx) ≠ (.r‘ndx) | ||
| Theorem | slotsdnscsi 12927 | The slots Scalar, ·𝑠 and ·𝑖 are different from the slot dist. (Contributed by AV, 29-Oct-2024.) |
| ⊢ ((dist‘ndx) ≠ (Scalar‘ndx) ∧ (dist‘ndx) ≠ ( ·𝑠 ‘ndx) ∧ (dist‘ndx) ≠ (·𝑖‘ndx)) | ||
| Theorem | dsndxntsetndx 12928 | The slot for the distance function is not the slot for the topology in an extensible structure. (Contributed by AV, 29-Oct-2024.) |
| ⊢ (dist‘ndx) ≠ (TopSet‘ndx) | ||
| Theorem | slotsdifdsndx 12929 | The index of the slot for the distance is not the index of other slots. (Contributed by AV, 11-Nov-2024.) |
| ⊢ ((*𝑟‘ndx) ≠ (dist‘ndx) ∧ (le‘ndx) ≠ (dist‘ndx)) | ||
| Theorem | unifndx 12930 | Index value of the df-unif 12805 slot. (Contributed by Thierry Arnoux, 17-Dec-2017.) (New usage is discouraged.) |
| ⊢ (UnifSet‘ndx) = ;13 | ||
| Theorem | unifid 12931 | Utility theorem: index-independent form of df-unif 12805. (Contributed by Thierry Arnoux, 17-Dec-2017.) |
| ⊢ UnifSet = Slot (UnifSet‘ndx) | ||
| Theorem | unifndxnn 12932 | The index of the slot for the uniform set in an extensible structure is a positive integer. (Contributed by AV, 28-Oct-2024.) |
| ⊢ (UnifSet‘ndx) ∈ ℕ | ||
| Theorem | basendxltunifndx 12933 | The index of the slot for the base set is less then the index of the slot for the uniform set in an extensible structure. (Contributed by AV, 28-Oct-2024.) |
| ⊢ (Base‘ndx) < (UnifSet‘ndx) | ||
| Theorem | unifndxnbasendx 12934 | The slot for the uniform set is not the slot for the base set in an extensible structure. (Contributed by AV, 21-Oct-2024.) |
| ⊢ (UnifSet‘ndx) ≠ (Base‘ndx) | ||
| Theorem | unifndxntsetndx 12935 | The slot for the uniform set is not the slot for the topology in an extensible structure. (Contributed by AV, 28-Oct-2024.) |
| ⊢ (UnifSet‘ndx) ≠ (TopSet‘ndx) | ||
| Theorem | slotsdifunifndx 12936 | The index of the slot for the uniform set is not the index of other slots. (Contributed by AV, 10-Nov-2024.) |
| ⊢ (((+g‘ndx) ≠ (UnifSet‘ndx) ∧ (.r‘ndx) ≠ (UnifSet‘ndx) ∧ (*𝑟‘ndx) ≠ (UnifSet‘ndx)) ∧ ((le‘ndx) ≠ (UnifSet‘ndx) ∧ (dist‘ndx) ≠ (UnifSet‘ndx))) | ||
| Theorem | homndx 12937 | Index value of the df-hom 12806 slot. (Contributed by Mario Carneiro, 7-Jan-2017.) (New usage is discouraged.) |
| ⊢ (Hom ‘ndx) = ;14 | ||
| Theorem | homid 12938 | Utility theorem: index-independent form of df-hom 12806. (Contributed by Mario Carneiro, 7-Jan-2017.) |
| ⊢ Hom = Slot (Hom ‘ndx) | ||
| Theorem | homslid 12939 | Slot property of Hom. (Contributed by Jim Kingdon, 20-Mar-2025.) |
| ⊢ (Hom = Slot (Hom ‘ndx) ∧ (Hom ‘ndx) ∈ ℕ) | ||
| Theorem | ccondx 12940 | Index value of the df-cco 12807 slot. (Contributed by Mario Carneiro, 7-Jan-2017.) (New usage is discouraged.) |
| ⊢ (comp‘ndx) = ;15 | ||
| Theorem | ccoid 12941 | Utility theorem: index-independent form of df-cco 12807. (Contributed by Mario Carneiro, 7-Jan-2017.) |
| ⊢ comp = Slot (comp‘ndx) | ||
| Theorem | ccoslid 12942 | Slot property of comp. (Contributed by Jim Kingdon, 20-Mar-2025.) |
| ⊢ (comp = Slot (comp‘ndx) ∧ (comp‘ndx) ∈ ℕ) | ||
| Syntax | crest 12943 | Extend class notation with the function returning a subspace topology. |
| class ↾t | ||
| Syntax | ctopn 12944 | Extend class notation with the topology extractor function. |
| class TopOpen | ||
| Definition | df-rest 12945* | Function returning the subspace topology induced by the topology 𝑦 and the set 𝑥. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.) |
| ⊢ ↾t = (𝑗 ∈ V, 𝑥 ∈ V ↦ ran (𝑦 ∈ 𝑗 ↦ (𝑦 ∩ 𝑥))) | ||
| Definition | df-topn 12946 | Define the topology extractor function. This differs from df-tset 12801 when a structure has been restricted using df-iress 12713; in this case the TopSet component will still have a topology over the larger set, and this function fixes this by restricting the topology as well. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ TopOpen = (𝑤 ∈ V ↦ ((TopSet‘𝑤) ↾t (Base‘𝑤))) | ||
| Theorem | restfn 12947 | The subspace topology operator is a function on pairs. (Contributed by Mario Carneiro, 1-May-2015.) |
| ⊢ ↾t Fn (V × V) | ||
| Theorem | topnfn 12948 | The topology extractor function is a function on the universe. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ TopOpen Fn V | ||
| Theorem | restval 12949* | The subspace topology induced by the topology 𝐽 on the set 𝐴. (Contributed by FL, 20-Sep-2010.) (Revised by Mario Carneiro, 1-May-2015.) |
| ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (𝐽 ↾t 𝐴) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐴))) | ||
| Theorem | elrest 12950* | The predicate "is an open set of a subspace topology". (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
| ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵))) | ||
| Theorem | elrestr 12951 | Sufficient condition for being an open set in a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
| ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐴 ∈ 𝐽) → (𝐴 ∩ 𝑆) ∈ (𝐽 ↾t 𝑆)) | ||
| Theorem | restid2 12952 | The subspace topology over a subset of the base set is the original topology. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐴) → (𝐽 ↾t 𝐴) = 𝐽) | ||
| Theorem | restsspw 12953 | The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ (𝐽 ↾t 𝐴) ⊆ 𝒫 𝐴 | ||
| Theorem | restid 12954 | The subspace topology of the base set is the original topology. (Contributed by Jeff Hankins, 9-Jul-2009.) (Revised by Mario Carneiro, 13-Aug-2015.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ 𝑉 → (𝐽 ↾t 𝑋) = 𝐽) | ||
| Theorem | topnvalg 12955 | Value of the topology extractor function. (Contributed by Mario Carneiro, 13-Aug-2015.) (Revised by Jim Kingdon, 11-Feb-2023.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (TopSet‘𝑊) ⇒ ⊢ (𝑊 ∈ 𝑉 → (𝐽 ↾t 𝐵) = (TopOpen‘𝑊)) | ||
| Theorem | topnidg 12956 | Value of the topology extractor function when the topology is defined over the same set as the base. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| ⊢ 𝐵 = (Base‘𝑊) & ⊢ 𝐽 = (TopSet‘𝑊) ⇒ ⊢ ((𝑊 ∈ 𝑉 ∧ 𝐽 ⊆ 𝒫 𝐵) → 𝐽 = (TopOpen‘𝑊)) | ||
| Theorem | topnpropgd 12957 | The topology extractor function depends only on the base and topology components. (Contributed by NM, 18-Jul-2006.) (Revised by Jim Kingdon, 13-Feb-2023.) |
| ⊢ (𝜑 → (Base‘𝐾) = (Base‘𝐿)) & ⊢ (𝜑 → (TopSet‘𝐾) = (TopSet‘𝐿)) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝐿 ∈ 𝑊) ⇒ ⊢ (𝜑 → (TopOpen‘𝐾) = (TopOpen‘𝐿)) | ||
| Syntax | ctg 12958 | Extend class notation with a function that converts a basis to its corresponding topology. |
| class topGen | ||
| Syntax | cpt 12959 | Extend class notation with a function whose value is a product topology. |
| class ∏t | ||
| Syntax | c0g 12960 | Extend class notation with group identity element. |
| class 0g | ||
| Syntax | cgsu 12961 | Extend class notation to include finitely supported group sums. |
| class Σg | ||
| Definition | df-0g 12962* | Define group identity element. Remark: this definition is required here because the symbol 0g is already used in df-igsum 12963. The related theorems will be provided later. (Contributed by NM, 20-Aug-2011.) |
| ⊢ 0g = (𝑔 ∈ V ↦ (℩𝑒(𝑒 ∈ (Base‘𝑔) ∧ ∀𝑥 ∈ (Base‘𝑔)((𝑒(+g‘𝑔)𝑥) = 𝑥 ∧ (𝑥(+g‘𝑔)𝑒) = 𝑥)))) | ||
| Definition | df-igsum 12963* |
Define a finite group sum (also called "iterated sum") of a
structure.
Given 𝐺 Σg 𝐹 where 𝐹:𝐴⟶(Base‘𝐺), the set of indices is 𝐴 and the values are given by 𝐹 at each index. A group sum over a multiplicative group may be viewed as a product. The definition is meaningful in different contexts, depending on the size of the index set 𝐴 and each demanding different properties of 𝐺. 1. If 𝐴 = ∅ and 𝐺 has an identity element, then the sum equals this identity. 2. If 𝐴 = (𝑀...𝑁) and 𝐺 is any magma, then the sum is the sum of the elements, evaluated left-to-right, i.e., ((𝐹‘1) + (𝐹‘2)) + (𝐹‘3), etc. 3. This definition does not handle other cases. (Contributed by FL, 5-Sep-2010.) (Revised by Mario Carneiro, 7-Dec-2014.) (Revised by Jim Kingdon, 27-Jun-2025.) |
| ⊢ Σg = (𝑤 ∈ V, 𝑓 ∈ V ↦ (℩𝑥((dom 𝑓 = ∅ ∧ 𝑥 = (0g‘𝑤)) ∨ ∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(dom 𝑓 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚((+g‘𝑤), 𝑓)‘𝑛))))) | ||
| Definition | df-topgen 12964* | Define a function that converts a basis to its corresponding topology. Equivalent to the definition of a topology generated by a basis in [Munkres] p. 78. (Contributed by NM, 16-Jul-2006.) |
| ⊢ topGen = (𝑥 ∈ V ↦ {𝑦 ∣ 𝑦 ⊆ ∪ (𝑥 ∩ 𝒫 𝑦)}) | ||
| Definition | df-pt 12965* | Define the product topology on a collection of topologies. For convenience, it is defined on arbitrary collections of sets, expressed as a function from some index set to the subbases of each factor space. (Contributed by Mario Carneiro, 3-Feb-2015.) |
| ⊢ ∏t = (𝑓 ∈ V ↦ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn dom 𝑓 ∧ ∀𝑦 ∈ dom 𝑓(𝑔‘𝑦) ∈ (𝑓‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (dom 𝑓 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝑓‘𝑦)) ∧ 𝑥 = X𝑦 ∈ dom 𝑓(𝑔‘𝑦))})) | ||
| Theorem | tgval 12966* | The topology generated by a basis. See also tgval2 14395 and tgval3 14402. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
| ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) = {𝑥 ∣ 𝑥 ⊆ ∪ (𝐵 ∩ 𝒫 𝑥)}) | ||
| Theorem | tgvalex 12967 | The topology generated by a basis is a set. (Contributed by Jim Kingdon, 4-Mar-2023.) |
| ⊢ (𝐵 ∈ 𝑉 → (topGen‘𝐵) ∈ V) | ||
| Theorem | ptex 12968 | Existence of the product topology. (Contributed by Jim Kingdon, 19-Mar-2025.) |
| ⊢ (𝐹 ∈ 𝑉 → (∏t‘𝐹) ∈ V) | ||
| Syntax | cprds 12969 | The function constructing structure products. |
| class Xs | ||
| Syntax | cpws 12970 | The function constructing structure powers. |
| class ↑s | ||
| Definition | df-prds 12971* | Define a structure product. This can be a product of groups, rings, modules, or ordered topological fields; any unused components will have garbage in them but this is usually not relevant for the purpose of inheriting the structures present in the factors. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Thierry Arnoux, 15-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.) |
| ⊢ Xs = (𝑠 ∈ V, 𝑟 ∈ V ↦ ⦋X𝑥 ∈ dom 𝑟(Base‘(𝑟‘𝑥)) / 𝑣⦌⦋(𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) / ℎ⦌(({〈(Base‘ndx), 𝑣〉, 〈(+g‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(+g‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(.r‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(.r‘(𝑟‘𝑥))(𝑔‘𝑥))))〉} ∪ {〈(Scalar‘ndx), 𝑠〉, 〈( ·𝑠 ‘ndx), (𝑓 ∈ (Base‘𝑠), 𝑔 ∈ 𝑣 ↦ (𝑥 ∈ dom 𝑟 ↦ (𝑓( ·𝑠 ‘(𝑟‘𝑥))(𝑔‘𝑥))))〉, 〈(·𝑖‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ (𝑠 Σg (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑟‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx), (∏t‘(TopOpen ∘ 𝑟))〉, 〈(le‘ndx), {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝑣 ∧ ∀𝑥 ∈ dom 𝑟(𝑓‘𝑥)(le‘(𝑟‘𝑥))(𝑔‘𝑥))}〉, 〈(dist‘ndx), (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ sup((ran (𝑥 ∈ dom 𝑟 ↦ ((𝑓‘𝑥)(dist‘(𝑟‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))〉} ∪ {〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑎 ∈ (𝑣 × 𝑣), 𝑐 ∈ 𝑣 ↦ (𝑑 ∈ ((2nd ‘𝑎)ℎ𝑐), 𝑒 ∈ (ℎ‘𝑎) ↦ (𝑥 ∈ dom 𝑟 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑟‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉}))) | ||
| Theorem | reldmprds 12972 | The structure product is a well-behaved binary operator. (Contributed by Stefan O'Rear, 7-Jan-2015.) (Revised by Thierry Arnoux, 15-Jun-2019.) |
| ⊢ Rel dom Xs | ||
| Theorem | prdsex 12973 | Existence of the structure product. (Contributed by Jim Kingdon, 18-Mar-2025.) |
| ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊) → (𝑆Xs𝑅) ∈ V) | ||
| Theorem | imasvalstrd 12974 | An image structure value is a structure. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ 𝑈 = (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ {〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌) & ⊢ (𝜑 → · ∈ 𝑍) & ⊢ (𝜑 → , ∈ 𝑃) & ⊢ (𝜑 → 𝑂 ∈ 𝑄) & ⊢ (𝜑 → 𝐿 ∈ 𝑅) & ⊢ (𝜑 → 𝐷 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝑈 Struct 〈1, ;12〉) | ||
| Theorem | prdsvalstrd 12975 | Structure product value is a structure. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 30-Apr-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → + ∈ 𝑊) & ⊢ (𝜑 → × ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌) & ⊢ (𝜑 → · ∈ 𝑍) & ⊢ (𝜑 → , ∈ 𝑃) & ⊢ (𝜑 → 𝑂 ∈ 𝑄) & ⊢ (𝜑 → 𝐿 ∈ 𝑅) & ⊢ (𝜑 → 𝐷 ∈ 𝐴) & ⊢ (𝜑 → 𝐻 ∈ 𝑇) & ⊢ (𝜑 → ∙ ∈ 𝑈) ⇒ ⊢ (𝜑 → (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ ({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), 𝐿〉, 〈(dist‘ndx), 𝐷〉} ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙ 〉})) Struct 〈1, ;15〉) | ||
| Theorem | prdsvallem 12976* | Lemma for prdsval 12977. (Contributed by Stefan O'Rear, 3-Jan-2015.) Extracted from the former proof of prdsval 12977, dependency on df-hom 12806 removed. (Revised by AV, 13-Oct-2024.) |
| ⊢ (𝑓 ∈ 𝑣, 𝑔 ∈ 𝑣 ↦ X𝑥 ∈ dom 𝑟((𝑓‘𝑥)(Hom ‘(𝑟‘𝑥))(𝑔‘𝑥))) ∈ V | ||
| Theorem | prdsval 12977* | Value of the structure product. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 7-Jan-2017.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.) |
| ⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ 𝐾 = (Base‘𝑆) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ (𝜑 → 𝐵 = X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))) & ⊢ (𝜑 → + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))) & ⊢ (𝜑 → × = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))) & ⊢ (𝜑 → · = (𝑓 ∈ 𝐾, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠 ‘(𝑅‘𝑥))(𝑔‘𝑥))))) & ⊢ (𝜑 → , = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))) & ⊢ (𝜑 → 𝑂 = (∏t‘(TopOpen ∘ 𝑅))) & ⊢ (𝜑 → ≤ = {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))}) & ⊢ (𝜑 → 𝐷 = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, < ))) & ⊢ (𝜑 → 𝐻 = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))) & ⊢ (𝜑 → ∙ = (𝑎 ∈ (𝐵 × 𝐵), 𝑐 ∈ 𝐵 ↦ (𝑑 ∈ ((2nd ‘𝑎)𝐻𝑐), 𝑒 ∈ (𝐻‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))) & ⊢ (𝜑 → 𝑆 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 ∈ 𝑍) ⇒ ⊢ (𝜑 → 𝑃 = (({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑆〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉}) ∪ ({〈(TopSet‘ndx), 𝑂〉, 〈(le‘ndx), ≤ 〉, 〈(dist‘ndx), 𝐷〉} ∪ {〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), ∙ 〉}))) | ||
| Theorem | prdsbaslemss 12978 | Lemma for prdsbas 12980 and similar theorems. (Contributed by Jim Kingdon, 10-Nov-2025.) |
| ⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐴 = (𝐸‘𝑃) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ∈ ℕ & ⊢ (𝜑 → 𝑇 ∈ 𝑋) & ⊢ (𝜑 → {〈(𝐸‘ndx), 𝑇〉} ⊆ 𝑃) ⇒ ⊢ (𝜑 → 𝐴 = 𝑇) | ||
| Theorem | prdssca 12979 | Scalar ring of a structure product. (Contributed by Stefan O'Rear, 5-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.) |
| ⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) ⇒ ⊢ (𝜑 → 𝑆 = (Scalar‘𝑃)) | ||
| Theorem | prdsbas 12980* | Base set of a structure product. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.) |
| ⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) ⇒ ⊢ (𝜑 → 𝐵 = X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))) | ||
| Theorem | prdsplusg 12981* | Addition in a structure product. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.) |
| ⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ + = (+g‘𝑃) ⇒ ⊢ (𝜑 → + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))) | ||
| Theorem | prdsmulr 12982* | Multiplication in a structure product. (Contributed by Mario Carneiro, 11-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) (Revised by Thierry Arnoux, 16-Jun-2019.) (Revised by Zhi Wang, 18-Aug-2024.) |
| ⊢ 𝑃 = (𝑆Xs𝑅) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ (𝜑 → dom 𝑅 = 𝐼) & ⊢ · = (.r‘𝑃) ⇒ ⊢ (𝜑 → · = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))) | ||
| Theorem | prdsbas2 12983* | The base set of a structure product is an indexed set product. (Contributed by Stefan O'Rear, 10-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) ⇒ ⊢ (𝜑 → 𝐵 = X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))) | ||
| Theorem | prdsbasmpt 12984* | A constructed tuple is a point in a structure product iff each coordinate is in the proper base set. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ 𝑈) ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐼 𝑈 ∈ (Base‘(𝑅‘𝑥)))) | ||
| Theorem | prdsbasfn 12985 | Points in the structure product are functions; use this with dffn5im 5609 to establish equalities. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) & ⊢ (𝜑 → 𝑇 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑇 Fn 𝐼) | ||
| Theorem | prdsbasprj 12986 | Each point in a structure product restricts on each coordinate to the relevant base set. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) & ⊢ (𝜑 → 𝑇 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐼) ⇒ ⊢ (𝜑 → (𝑇‘𝐽) ∈ (Base‘(𝑅‘𝐽))) | ||
| Theorem | prdsplusgval 12987* | Value of a componentwise sum in a structure product. (Contributed by Stefan O'Rear, 10-Jan-2015.) (Revised by Mario Carneiro, 15-Aug-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ + = (+g‘𝑌) ⇒ ⊢ (𝜑 → (𝐹 + 𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(+g‘(𝑅‘𝑥))(𝐺‘𝑥)))) | ||
| Theorem | prdsplusgfval 12988 | Value of a structure product sum at a single coordinate. (Contributed by Stefan O'Rear, 10-Jan-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ + = (+g‘𝑌) & ⊢ (𝜑 → 𝐽 ∈ 𝐼) ⇒ ⊢ (𝜑 → ((𝐹 + 𝐺)‘𝐽) = ((𝐹‘𝐽)(+g‘(𝑅‘𝐽))(𝐺‘𝐽))) | ||
| Theorem | prdsmulrval 12989* | Value of a componentwise ring product in a structure product. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ · = (.r‘𝑌) ⇒ ⊢ (𝜑 → (𝐹 · 𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(.r‘(𝑅‘𝑥))(𝐺‘𝑥)))) | ||
| Theorem | prdsmulrfval 12990 | Value of a structure product's ring product at a single coordinate. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| ⊢ 𝑌 = (𝑆Xs𝑅) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝑅 Fn 𝐼) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ · = (.r‘𝑌) & ⊢ (𝜑 → 𝐽 ∈ 𝐼) ⇒ ⊢ (𝜑 → ((𝐹 · 𝐺)‘𝐽) = ((𝐹‘𝐽)(.r‘(𝑅‘𝐽))(𝐺‘𝐽))) | ||
| Theorem | prdsbas3 12991* | The base set of an indexed structure product. (Contributed by Mario Carneiro, 13-Sep-2015.) |
| ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋) & ⊢ 𝐾 = (Base‘𝑅) ⇒ ⊢ (𝜑 → 𝐵 = X𝑥 ∈ 𝐼 𝐾) | ||
| Theorem | prdsbasmpt2 12992* | A constructed tuple is a point in a structure product iff each coordinate is in the proper base set. (Contributed by Mario Carneiro, 3-Jul-2015.) (Revised by Mario Carneiro, 13-Sep-2015.) |
| ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋) & ⊢ 𝐾 = (Base‘𝑅) ⇒ ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ 𝑈) ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐼 𝑈 ∈ 𝐾)) | ||
| Theorem | prdsbascl 12993* | An element of the base has projections closed in the factors. (Contributed by Mario Carneiro, 27-Aug-2015.) |
| ⊢ 𝑌 = (𝑆Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑆 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 𝑅 ∈ 𝑋) & ⊢ 𝐾 = (Base‘𝑅) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → ∀𝑥 ∈ 𝐼 (𝐹‘𝑥) ∈ 𝐾) | ||
| Definition | df-pws 12994* | Define a structure power, which is just a structure product where all the factors are the same. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| ⊢ ↑s = (𝑟 ∈ V, 𝑖 ∈ V ↦ ((Scalar‘𝑟)Xs(𝑖 × {𝑟}))) | ||
| Theorem | pwsval 12995 | Value of a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐹 = (Scalar‘𝑅) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑌 = (𝐹Xs(𝐼 × {𝑅}))) | ||
| Theorem | pwsbas 12996 | Base set of a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → (𝐵 ↑𝑚 𝐼) = (Base‘𝑌)) | ||
| Theorem | pwselbasb 12997 | Membership in the base set of a structure product. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑉 = (Base‘𝑌) ⇒ ⊢ ((𝑅 ∈ 𝑊 ∧ 𝐼 ∈ 𝑍) → (𝑋 ∈ 𝑉 ↔ 𝑋:𝐼⟶𝐵)) | ||
| Theorem | pwselbas 12998 | An element of a structure power is a function from the index set to the base set of the structure. (Contributed by Mario Carneiro, 11-Jan-2015.) (Revised by Mario Carneiro, 5-Jun-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑉 = (Base‘𝑌) & ⊢ (𝜑 → 𝑅 ∈ 𝑊) & ⊢ (𝜑 → 𝐼 ∈ 𝑍) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝑋:𝐼⟶𝐵) | ||
| Theorem | pwsplusgval 12999 | Value of addition in a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ + = (+g‘𝑅) & ⊢ ✚ = (+g‘𝑌) ⇒ ⊢ (𝜑 → (𝐹 ✚ 𝐺) = (𝐹 ∘𝑓 + 𝐺)) | ||
| Theorem | pwsmulrval 13000 | Value of multiplication in a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝑅 ∈ 𝑉) & ⊢ (𝜑 → 𝐼 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) & ⊢ (𝜑 → 𝐺 ∈ 𝐵) & ⊢ · = (.r‘𝑅) & ⊢ ∙ = (.r‘𝑌) ⇒ ⊢ (𝜑 → (𝐹 ∙ 𝐺) = (𝐹 ∘𝑓 · 𝐺)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |