HomeHome Intuitionistic Logic Explorer
Theorem List (p. 130 of 154)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 12901-13000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Definitiondf-mnd 12901* A monoid is a semigroup, which has a two-sided neutral element. Definition 2 in [BourbakiAlg1] p. 12. In other words (according to the definition in [Lang] p. 3), a monoid is a set equipped with an everywhere defined internal operation (see mndcl 12907), whose operation is associative (see mndass 12908) and has a two-sided neutral element (see mndid 12909), see also ismnd 12903. (Contributed by Mario Carneiro, 6-Jan-2015.) (Revised by AV, 1-Feb-2020.)
Mnd = {𝑔 ∈ Smgrp ∣ [(Base‘𝑔) / 𝑏][(+g𝑔) / 𝑝]𝑒𝑏𝑥𝑏 ((𝑒𝑝𝑥) = 𝑥 ∧ (𝑥𝑝𝑒) = 𝑥)}
 
Theoremismnddef 12902* The predicate "is a monoid", corresponding 1-to-1 to the definition. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 1-Feb-2020.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       (𝐺 ∈ Mnd ↔ (𝐺 ∈ Smgrp ∧ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
 
Theoremismnd 12903* The predicate "is a monoid". This is the defining theorem of a monoid by showing that a set is a monoid if and only if it is a set equipped with a closed, everywhere defined internal operation (so, a magma, see mndcl 12907), whose operation is associative (so, a semigroup, see also mndass 12908) and has a two-sided neutral element (see mndid 12909). (Contributed by Mario Carneiro, 6-Jan-2015.) (Revised by AV, 1-Feb-2020.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       (𝐺 ∈ Mnd ↔ (∀𝑎𝐵𝑏𝐵 ((𝑎 + 𝑏) ∈ 𝐵 ∧ ∀𝑐𝐵 ((𝑎 + 𝑏) + 𝑐) = (𝑎 + (𝑏 + 𝑐))) ∧ ∃𝑒𝐵𝑎𝐵 ((𝑒 + 𝑎) = 𝑎 ∧ (𝑎 + 𝑒) = 𝑎)))
 
Theoremsgrpidmndm 12904* A semigroup with an identity element which is inhabited is a monoid. Of course there could be monoids with the empty set as identity element, but these cannot be proven to be monoids with this theorem. (Contributed by AV, 29-Jan-2024.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ Smgrp ∧ ∃𝑒𝐵 (∃𝑤 𝑤𝑒𝑒 = 0 )) → 𝐺 ∈ Mnd)
 
Theoremmndsgrp 12905 A monoid is a semigroup. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) (Proof shortened by AV, 6-Feb-2020.)
(𝐺 ∈ Mnd → 𝐺 ∈ Smgrp)
 
Theoremmndmgm 12906 A monoid is a magma. (Contributed by FL, 2-Nov-2009.) (Revised by AV, 6-Jan-2020.) (Proof shortened by AV, 6-Feb-2020.)
(𝑀 ∈ Mnd → 𝑀 ∈ Mgm)
 
Theoremmndcl 12907 Closure of the operation of a monoid. (Contributed by NM, 14-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) (Proof shortened by AV, 8-Feb-2020.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
 
Theoremmndass 12908 A monoid operation is associative. (Contributed by NM, 14-Aug-2011.) (Proof shortened by AV, 8-Feb-2020.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Mnd ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
 
Theoremmndid 12909* A monoid has a two-sided identity element. (Contributed by NM, 16-Aug-2011.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       (𝐺 ∈ Mnd → ∃𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥))
 
Theoremmndideu 12910* The two-sided identity element of a monoid is unique. Lemma 2.2.1(a) of [Herstein] p. 55. (Contributed by Mario Carneiro, 8-Dec-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       (𝐺 ∈ Mnd → ∃!𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥))
 
Theoremmnd32g 12911 Commutative/associative law for monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺 ∈ Mnd)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑 → (𝑌 + 𝑍) = (𝑍 + 𝑌))       (𝜑 → ((𝑋 + 𝑌) + 𝑍) = ((𝑋 + 𝑍) + 𝑌))
 
Theoremmnd12g 12912 Commutative/associative law for monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺 ∈ Mnd)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑 → (𝑋 + 𝑌) = (𝑌 + 𝑋))       (𝜑 → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍)))
 
Theoremmnd4g 12913 Commutative/associative law for commutative monoids, with an explicit commutativity hypothesis. (Contributed by Mario Carneiro, 21-Apr-2016.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺 ∈ Mnd)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)    &   (𝜑𝑊𝐵)    &   (𝜑 → (𝑌 + 𝑍) = (𝑍 + 𝑌))       (𝜑 → ((𝑋 + 𝑌) + (𝑍 + 𝑊)) = ((𝑋 + 𝑍) + (𝑌 + 𝑊)))
 
Theoremmndidcl 12914 The identity element of a monoid belongs to the monoid. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)       (𝐺 ∈ Mnd → 0𝐵)
 
Theoremmndbn0 12915 The base set of a monoid is not empty. (It is also inhabited, as seen at mndidcl 12914). Statement in [Lang] p. 3. (Contributed by AV, 29-Dec-2023.)
𝐵 = (Base‘𝐺)       (𝐺 ∈ Mnd → 𝐵 ≠ ∅)
 
Theoremhashfinmndnn 12916 A finite monoid has positive integer size. (Contributed by Rohan Ridenour, 3-Aug-2023.)
𝐵 = (Base‘𝐺)    &   (𝜑𝐺 ∈ Mnd)    &   (𝜑𝐵 ∈ Fin)       (𝜑 → (♯‘𝐵) ∈ ℕ)
 
Theoremmndplusf 12917 The group addition operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015.) (Proof shortened by AV, 3-Feb-2020.)
𝐵 = (Base‘𝐺)    &    = (+𝑓𝐺)       (𝐺 ∈ Mnd → :(𝐵 × 𝐵)⟶𝐵)
 
Theoremmndlrid 12918 A monoid's identity element is a two-sided identity. (Contributed by NM, 18-Aug-2011.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋))
 
Theoremmndlid 12919 The identity element of a monoid is a left identity. (Contributed by NM, 18-Aug-2011.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → ( 0 + 𝑋) = 𝑋)
 
Theoremmndrid 12920 The identity element of a monoid is a right identity. (Contributed by NM, 18-Aug-2011.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (𝑋 + 0 ) = 𝑋)
 
Theoremismndd 12921* Deduce a monoid from its properties. (Contributed by Mario Carneiro, 6-Jan-2015.)
(𝜑𝐵 = (Base‘𝐺))    &   (𝜑+ = (+g𝐺))    &   ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑0𝐵)    &   ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)    &   ((𝜑𝑥𝐵) → (𝑥 + 0 ) = 𝑥)       (𝜑𝐺 ∈ Mnd)
 
Theoremmndpfo 12922 The addition operation of a monoid as a function is an onto function. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 11-Oct-2013.) (Revised by AV, 23-Jan-2020.)
𝐵 = (Base‘𝐺)    &    = (+𝑓𝐺)       (𝐺 ∈ Mnd → :(𝐵 × 𝐵)–onto𝐵)
 
Theoremmndfo 12923 The addition operation of a monoid is an onto function (assuming it is a function). (Contributed by Mario Carneiro, 11-Oct-2013.) (Proof shortened by AV, 23-Jan-2020.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Mnd ∧ + Fn (𝐵 × 𝐵)) → + :(𝐵 × 𝐵)–onto𝐵)
 
Theoremmndpropd 12924* If two structures have the same base set, and the values of their group (addition) operations are equal for all pairs of elements of the base set, one is a monoid iff the other one is. (Contributed by Mario Carneiro, 6-Jan-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))       (𝜑 → (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd))
 
Theoremmndprop 12925 If two structures have the same group components (properties), one is a monoid iff the other one is. (Contributed by Mario Carneiro, 11-Oct-2013.)
(Base‘𝐾) = (Base‘𝐿)    &   (+g𝐾) = (+g𝐿)       (𝐾 ∈ Mnd ↔ 𝐿 ∈ Mnd)
 
Theoremissubmnd 12926* Characterize a submonoid by closure properties. (Contributed by Mario Carneiro, 10-Jan-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)    &   𝐻 = (𝐺s 𝑆)       ((𝐺 ∈ Mnd ∧ 𝑆𝐵0𝑆) → (𝐻 ∈ Mnd ↔ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))
 
Theoremress0g 12927 0g is unaffected by restriction. This is a bit more generic than submnd0 12928. (Contributed by Thierry Arnoux, 23-Oct-2017.)
𝑆 = (𝑅s 𝐴)    &   𝐵 = (Base‘𝑅)    &    0 = (0g𝑅)       ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 0 = (0g𝑆))
 
Theoremsubmnd0 12928 The zero of a submonoid is the same as the zero in the parent monoid. (Note that we must add the condition that the zero of the parent monoid is actually contained in the submonoid, because it is possible to have "subsets that are monoids" which are not submonoids because they have a different identity element. (Contributed by Mario Carneiro, 10-Jan-2015.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &   𝐻 = (𝐺s 𝑆)       (((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) ∧ (𝑆𝐵0𝑆)) → 0 = (0g𝐻))
 
Theoremmndinvmod 12929* Uniqueness of an inverse element in a monoid, if it exists. (Contributed by AV, 20-Jan-2024.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺 ∈ Mnd)    &   (𝜑𝐴𝐵)       (𝜑 → ∃*𝑤𝐵 ((𝑤 + 𝐴) = 0 ∧ (𝐴 + 𝑤) = 0 ))
 
Theoremmnd1 12930 The (smallest) structure representing a trivial monoid consists of one element. (Contributed by AV, 28-Apr-2019.) (Proof shortened by AV, 11-Feb-2020.)
𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}       (𝐼𝑉𝑀 ∈ Mnd)
 
Theoremmnd1id 12931 The singleton element of a trivial monoid is its identity element. (Contributed by AV, 23-Jan-2020.)
𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}       (𝐼𝑉 → (0g𝑀) = 𝐼)
 
7.1.6  Monoid homomorphisms and submonoids
 
Syntaxcmhm 12932 Hom-set generator class for monoids.
class MndHom
 
Syntaxcsubmnd 12933 Class function taking a monoid to its lattice of submonoids.
class SubMnd
 
Definitiondf-mhm 12934* A monoid homomorphism is a function on the base sets which preserves the binary operation and the identity. (Contributed by Mario Carneiro, 7-Mar-2015.)
MndHom = (𝑠 ∈ Mnd, 𝑡 ∈ Mnd ↦ {𝑓 ∈ ((Base‘𝑡) ↑𝑚 (Base‘𝑠)) ∣ (∀𝑥 ∈ (Base‘𝑠)∀𝑦 ∈ (Base‘𝑠)(𝑓‘(𝑥(+g𝑠)𝑦)) = ((𝑓𝑥)(+g𝑡)(𝑓𝑦)) ∧ (𝑓‘(0g𝑠)) = (0g𝑡))})
 
Definitiondf-submnd 12935* A submonoid is a subset of a monoid which contains the identity and is closed under the operation. Such subsets are themselves monoids with the same identity. (Contributed by Mario Carneiro, 7-Mar-2015.)
SubMnd = (𝑠 ∈ Mnd ↦ {𝑡 ∈ 𝒫 (Base‘𝑠) ∣ ((0g𝑠) ∈ 𝑡 ∧ ∀𝑥𝑡𝑦𝑡 (𝑥(+g𝑠)𝑦) ∈ 𝑡)})
 
Theoremismhm 12936* Property of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.)
𝐵 = (Base‘𝑆)    &   𝐶 = (Base‘𝑇)    &    + = (+g𝑆)    &    = (+g𝑇)    &    0 = (0g𝑆)    &   𝑌 = (0g𝑇)       (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐵𝐶 ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ∧ (𝐹0 ) = 𝑌)))
 
Theoremmhmex 12937 The set of monoid homomorphisms exists. (Contributed by Jim Kingdon, 15-May-2025.)
((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑆 MndHom 𝑇) ∈ V)
 
Theoremmhmrcl1 12938 Reverse closure of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.)
(𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑆 ∈ Mnd)
 
Theoremmhmrcl2 12939 Reverse closure of a monoid homomorphism. (Contributed by Mario Carneiro, 7-Mar-2015.)
(𝐹 ∈ (𝑆 MndHom 𝑇) → 𝑇 ∈ Mnd)
 
Theoremmhmf 12940 A monoid homomorphism is a function. (Contributed by Mario Carneiro, 7-Mar-2015.)
𝐵 = (Base‘𝑆)    &   𝐶 = (Base‘𝑇)       (𝐹 ∈ (𝑆 MndHom 𝑇) → 𝐹:𝐵𝐶)
 
Theoremmhmpropd 12941* Monoid homomorphism depends only on the monoidal attributes of structures. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 7-Nov-2015.)
(𝜑𝐵 = (Base‘𝐽))    &   (𝜑𝐶 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   (𝜑𝐶 = (Base‘𝑀))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐽)𝑦) = (𝑥(+g𝐿)𝑦))    &   ((𝜑 ∧ (𝑥𝐶𝑦𝐶)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝑀)𝑦))       (𝜑 → (𝐽 MndHom 𝐾) = (𝐿 MndHom 𝑀))
 
Theoremmhmlin 12942 A monoid homomorphism commutes with composition. (Contributed by Mario Carneiro, 7-Mar-2015.)
𝐵 = (Base‘𝑆)    &    + = (+g𝑆)    &    = (+g𝑇)       ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋𝐵𝑌𝐵) → (𝐹‘(𝑋 + 𝑌)) = ((𝐹𝑋) (𝐹𝑌)))
 
Theoremmhm0 12943 A monoid homomorphism preserves zero. (Contributed by Mario Carneiro, 7-Mar-2015.)
0 = (0g𝑆)    &   𝑌 = (0g𝑇)       (𝐹 ∈ (𝑆 MndHom 𝑇) → (𝐹0 ) = 𝑌)
 
Theoremidmhm 12944 The identity homomorphism on a monoid. (Contributed by AV, 14-Feb-2020.)
𝐵 = (Base‘𝑀)       (𝑀 ∈ Mnd → ( I ↾ 𝐵) ∈ (𝑀 MndHom 𝑀))
 
Theoremmhmf1o 12945 A monoid homomorphism is bijective iff its converse is also a monoid homomorphism. (Contributed by AV, 22-Oct-2019.)
𝐵 = (Base‘𝑅)    &   𝐶 = (Base‘𝑆)       (𝐹 ∈ (𝑅 MndHom 𝑆) → (𝐹:𝐵1-1-onto𝐶𝐹 ∈ (𝑆 MndHom 𝑅)))
 
Theoremsubmrcl 12946 Reverse closure for submonoids. (Contributed by Mario Carneiro, 7-Mar-2015.)
(𝑆 ∈ (SubMnd‘𝑀) → 𝑀 ∈ Mnd)
 
Theoremissubm 12947* Expand definition of a submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.)
𝐵 = (Base‘𝑀)    &    0 = (0g𝑀)    &    + = (+g𝑀)       (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆𝐵0𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)))
 
Theoremissubm2 12948 Submonoids are subsets that are also monoids with the same zero. (Contributed by Mario Carneiro, 7-Mar-2015.)
𝐵 = (Base‘𝑀)    &    0 = (0g𝑀)    &   𝐻 = (𝑀s 𝑆)       (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆𝐵0𝑆𝐻 ∈ Mnd)))
 
Theoremissubmd 12949* Deduction for proving a submonoid. (Contributed by Stefan O'Rear, 23-Aug-2015.) (Revised by Stefan O'Rear, 5-Sep-2015.)
𝐵 = (Base‘𝑀)    &    + = (+g𝑀)    &    0 = (0g𝑀)    &   (𝜑𝑀 ∈ Mnd)    &   (𝜑𝜒)    &   ((𝜑 ∧ ((𝑥𝐵𝑦𝐵) ∧ (𝜃𝜏))) → 𝜂)    &   (𝑧 = 0 → (𝜓𝜒))    &   (𝑧 = 𝑥 → (𝜓𝜃))    &   (𝑧 = 𝑦 → (𝜓𝜏))    &   (𝑧 = (𝑥 + 𝑦) → (𝜓𝜂))       (𝜑 → {𝑧𝐵𝜓} ∈ (SubMnd‘𝑀))
 
Theoremmndissubm 12950 If the base set of a monoid is contained in the base set of another monoid, and the group operation of the monoid is the restriction of the group operation of the other monoid to its base set, and the identity element of the the other monoid is contained in the base set of the monoid, then the (base set of the) monoid is a submonoid of the other monoid. (Contributed by AV, 17-Feb-2024.)
𝐵 = (Base‘𝐺)    &   𝑆 = (Base‘𝐻)    &    0 = (0g𝐺)       ((𝐺 ∈ Mnd ∧ 𝐻 ∈ Mnd) → ((𝑆𝐵0𝑆 ∧ (+g𝐻) = ((+g𝐺) ↾ (𝑆 × 𝑆))) → 𝑆 ∈ (SubMnd‘𝐺)))
 
Theoremsubmss 12951 Submonoids are subsets of the base set. (Contributed by Mario Carneiro, 7-Mar-2015.)
𝐵 = (Base‘𝑀)       (𝑆 ∈ (SubMnd‘𝑀) → 𝑆𝐵)
 
Theoremsubmid 12952 Every monoid is trivially a submonoid of itself. (Contributed by Stefan O'Rear, 15-Aug-2015.)
𝐵 = (Base‘𝑀)       (𝑀 ∈ Mnd → 𝐵 ∈ (SubMnd‘𝑀))
 
Theoremsubm0cl 12953 Submonoids contain zero. (Contributed by Mario Carneiro, 7-Mar-2015.)
0 = (0g𝑀)       (𝑆 ∈ (SubMnd‘𝑀) → 0𝑆)
 
Theoremsubmcl 12954 Submonoids are closed under the monoid operation. (Contributed by Mario Carneiro, 10-Mar-2015.)
+ = (+g𝑀)       ((𝑆 ∈ (SubMnd‘𝑀) ∧ 𝑋𝑆𝑌𝑆) → (𝑋 + 𝑌) ∈ 𝑆)
 
Theoremsubmmnd 12955 Submonoids are themselves monoids under the given operation. (Contributed by Mario Carneiro, 7-Mar-2015.)
𝐻 = (𝑀s 𝑆)       (𝑆 ∈ (SubMnd‘𝑀) → 𝐻 ∈ Mnd)
 
Theoremsubmbas 12956 The base set of a submonoid. (Contributed by Stefan O'Rear, 15-Jun-2015.)
𝐻 = (𝑀s 𝑆)       (𝑆 ∈ (SubMnd‘𝑀) → 𝑆 = (Base‘𝐻))
 
Theoremsubm0 12957 Submonoids have the same identity. (Contributed by Mario Carneiro, 7-Mar-2015.)
𝐻 = (𝑀s 𝑆)    &    0 = (0g𝑀)       (𝑆 ∈ (SubMnd‘𝑀) → 0 = (0g𝐻))
 
Theoremsubsubm 12958 A submonoid of a submonoid is a submonoid. (Contributed by Mario Carneiro, 21-Jun-2015.)
𝐻 = (𝐺s 𝑆)       (𝑆 ∈ (SubMnd‘𝐺) → (𝐴 ∈ (SubMnd‘𝐻) ↔ (𝐴 ∈ (SubMnd‘𝐺) ∧ 𝐴𝑆)))
 
Theorem0subm 12959 The zero submonoid of an arbitrary monoid. (Contributed by AV, 17-Feb-2024.)
0 = (0g𝐺)       (𝐺 ∈ Mnd → { 0 } ∈ (SubMnd‘𝐺))
 
Theoreminsubm 12960 The intersection of two submonoids is a submonoid. (Contributed by AV, 25-Feb-2024.)
((𝐴 ∈ (SubMnd‘𝑀) ∧ 𝐵 ∈ (SubMnd‘𝑀)) → (𝐴𝐵) ∈ (SubMnd‘𝑀))
 
Theorem0mhm 12961 The constant zero linear function between two monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.)
0 = (0g𝑁)    &   𝐵 = (Base‘𝑀)       ((𝑀 ∈ Mnd ∧ 𝑁 ∈ Mnd) → (𝐵 × { 0 }) ∈ (𝑀 MndHom 𝑁))
 
Theoremresmhm 12962 Restriction of a monoid homomorphism to a submonoid is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015.)
𝑈 = (𝑆s 𝑋)       ((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝑋 ∈ (SubMnd‘𝑆)) → (𝐹𝑋) ∈ (𝑈 MndHom 𝑇))
 
Theoremresmhm2 12963 One direction of resmhm2b 12964. (Contributed by Mario Carneiro, 18-Jun-2015.)
𝑈 = (𝑇s 𝑋)       ((𝐹 ∈ (𝑆 MndHom 𝑈) ∧ 𝑋 ∈ (SubMnd‘𝑇)) → 𝐹 ∈ (𝑆 MndHom 𝑇))
 
Theoremresmhm2b 12964 Restriction of the codomain of a homomorphism. (Contributed by Mario Carneiro, 18-Jun-2015.)
𝑈 = (𝑇s 𝑋)       ((𝑋 ∈ (SubMnd‘𝑇) ∧ ran 𝐹𝑋) → (𝐹 ∈ (𝑆 MndHom 𝑇) ↔ 𝐹 ∈ (𝑆 MndHom 𝑈)))
 
Theoremmhmco 12965 The composition of monoid homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.)
((𝐹 ∈ (𝑇 MndHom 𝑈) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → (𝐹𝐺) ∈ (𝑆 MndHom 𝑈))
 
Theoremmhmima 12966 The homomorphic image of a submonoid is a submonoid. (Contributed by Mario Carneiro, 10-Mar-2015.)
((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubMnd‘𝑀)) → (𝐹𝑋) ∈ (SubMnd‘𝑁))
 
Theoremmhmeql 12967 The equalizer of two monoid homomorphisms is a submonoid. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.)
((𝐹 ∈ (𝑆 MndHom 𝑇) ∧ 𝐺 ∈ (𝑆 MndHom 𝑇)) → dom (𝐹𝐺) ∈ (SubMnd‘𝑆))
 
7.2  Groups
 
7.2.1  Definition and basic properties
 
Syntaxcgrp 12968 Extend class notation with class of all groups.
class Grp
 
Syntaxcminusg 12969 Extend class notation with inverse of group element.
class invg
 
Syntaxcsg 12970 Extend class notation with group subtraction (or division) operation.
class -g
 
Definitiondf-grp 12971* Define class of all groups. A group is a monoid (df-mnd 12901) whose internal operation is such that every element admits a left inverse (which can be proven to be a two-sided inverse). Thus, a group 𝐺 is an algebraic structure formed from a base set of elements (notated (Base‘𝐺) per df-base 12529) and an internal group operation (notated (+g𝐺) per df-plusg 12613). The operation combines any two elements of the group base set and must satisfy the 4 group axioms: closure (the result of the group operation must always be a member of the base set, see grpcl 12976), associativity (so ((𝑎+g𝑏)+g𝑐) = (𝑎+g(𝑏+g𝑐)) for any a, b, c, see grpass 12977), identity (there must be an element 𝑒 = (0g𝐺) such that 𝑒+g𝑎 = 𝑎+g𝑒 = 𝑎 for any a), and inverse (for each element a in the base set, there must be an element 𝑏 = invg𝑎 in the base set such that 𝑎+g𝑏 = 𝑏+g𝑎 = 𝑒). It can be proven that the identity element is unique (grpideu 12979). Groups need not be commutative; a commutative group is an Abelian group. Subgroups can often be formed from groups. An example of an (Abelian) group is the set of complex numbers over the group operation + (addition). Other structures include groups, including unital rings and fields. (Contributed by NM, 17-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.)
Grp = {𝑔 ∈ Mnd ∣ ∀𝑎 ∈ (Base‘𝑔)∃𝑚 ∈ (Base‘𝑔)(𝑚(+g𝑔)𝑎) = (0g𝑔)}
 
Definitiondf-minusg 12972* Define inverse of group element. (Contributed by NM, 24-Aug-2011.)
invg = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔) ↦ (𝑤 ∈ (Base‘𝑔)(𝑤(+g𝑔)𝑥) = (0g𝑔))))
 
Definitiondf-sbg 12973* Define group subtraction (also called division for multiplicative groups). (Contributed by NM, 31-Mar-2014.)
-g = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘𝑔), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥(+g𝑔)((invg𝑔)‘𝑦))))
 
Theoremisgrp 12974* The predicate "is a group". (This theorem demonstrates the use of symbols as variable names, first proposed by FL in 2010.) (Contributed by NM, 17-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)       (𝐺 ∈ Grp ↔ (𝐺 ∈ Mnd ∧ ∀𝑎𝐵𝑚𝐵 (𝑚 + 𝑎) = 0 ))
 
Theoremgrpmnd 12975 A group is a monoid. (Contributed by Mario Carneiro, 6-Jan-2015.)
(𝐺 ∈ Grp → 𝐺 ∈ Mnd)
 
Theoremgrpcl 12976 Closure of the operation of a group. (Contributed by NM, 14-Aug-2011.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵𝑌𝐵) → (𝑋 + 𝑌) ∈ 𝐵)
 
Theoremgrpass 12977 A group operation is associative. (Contributed by NM, 14-Aug-2011.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       ((𝐺 ∈ Grp ∧ (𝑋𝐵𝑌𝐵𝑍𝐵)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
 
Theoremgrpinvex 12978* Every member of a group has a left inverse. (Contributed by NM, 16-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃𝑦𝐵 (𝑦 + 𝑋) = 0 )
 
Theoremgrpideu 12979* The two-sided identity element of a group is unique. Lemma 2.2.1(a) of [Herstein] p. 55. (Contributed by NM, 16-Aug-2011.) (Revised by Mario Carneiro, 8-Dec-2014.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)       (𝐺 ∈ Grp → ∃!𝑢𝐵𝑥𝐵 ((𝑢 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑢) = 𝑥))
 
Theoremgrpassd 12980 A group operation is associative. (Contributed by SN, 29-Jan-2025.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)    &   (𝜑𝑍𝐵)       (𝜑 → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
 
Theoremgrpmndd 12981 A group is a monoid. (Contributed by SN, 1-Jun-2024.)
(𝜑𝐺 ∈ Grp)       (𝜑𝐺 ∈ Mnd)
 
Theoremgrpcld 12982 Closure of the operation of a group. (Contributed by SN, 29-Jul-2024.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝑋𝐵)    &   (𝜑𝑌𝐵)       (𝜑 → (𝑋 + 𝑌) ∈ 𝐵)
 
Theoremgrpplusf 12983 The group addition operation is a function. (Contributed by Mario Carneiro, 14-Aug-2015.)
𝐵 = (Base‘𝐺)    &   𝐹 = (+𝑓𝐺)       (𝐺 ∈ Grp → 𝐹:(𝐵 × 𝐵)⟶𝐵)
 
Theoremgrpplusfo 12984 The group addition operation is a function onto the base set/set of group elements. (Contributed by NM, 30-Oct-2006.) (Revised by AV, 30-Aug-2021.)
𝐵 = (Base‘𝐺)    &   𝐹 = (+𝑓𝐺)       (𝐺 ∈ Grp → 𝐹:(𝐵 × 𝐵)–onto𝐵)
 
Theoremgrppropd 12985* If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 2-Oct-2015.)
(𝜑𝐵 = (Base‘𝐾))    &   (𝜑𝐵 = (Base‘𝐿))    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐾)𝑦) = (𝑥(+g𝐿)𝑦))       (𝜑 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp))
 
Theoremgrpprop 12986 If two structures have the same group components (properties), one is a group iff the other one is. (Contributed by NM, 11-Oct-2013.)
(Base‘𝐾) = (Base‘𝐿)    &   (+g𝐾) = (+g𝐿)       (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp)
 
Theoremgrppropstrg 12987 Generalize a specific 2-element group 𝐿 to show that any set 𝐾 with the same (relevant) properties is also a group. (Contributed by NM, 28-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.)
(Base‘𝐾) = 𝐵    &   (+g𝐾) = +    &   𝐿 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩}       (𝐾𝑉 → (𝐾 ∈ Grp ↔ 𝐿 ∈ Grp))
 
Theoremisgrpd2e 12988* Deduce a group from its properties. In this version of isgrpd2 12989, we don't assume there is an expression for the inverse of 𝑥. (Contributed by NM, 10-Aug-2013.)
(𝜑𝐵 = (Base‘𝐺))    &   (𝜑+ = (+g𝐺))    &   (𝜑0 = (0g𝐺))    &   (𝜑𝐺 ∈ Mnd)    &   ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 0 )       (𝜑𝐺 ∈ Grp)
 
Theoremisgrpd2 12989* Deduce a group from its properties. 𝑁 (negative) is normally dependent on 𝑥 i.e. read it as 𝑁(𝑥). Note: normally we don't use a 𝜑 antecedent on hypotheses that name structure components, since they can be eliminated with eqid 2189, but we make an exception for theorems such as isgrpd2 12989 and ismndd 12921 since theorems using them often rewrite the structure components. (Contributed by NM, 10-Aug-2013.)
(𝜑𝐵 = (Base‘𝐺))    &   (𝜑+ = (+g𝐺))    &   (𝜑0 = (0g𝐺))    &   (𝜑𝐺 ∈ Mnd)    &   ((𝜑𝑥𝐵) → 𝑁𝐵)    &   ((𝜑𝑥𝐵) → (𝑁 + 𝑥) = 0 )       (𝜑𝐺 ∈ Grp)
 
Theoremisgrpde 12990* Deduce a group from its properties. In this version of isgrpd 12991, we don't assume there is an expression for the inverse of 𝑥. (Contributed by NM, 6-Jan-2015.)
(𝜑𝐵 = (Base‘𝐺))    &   (𝜑+ = (+g𝐺))    &   ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑0𝐵)    &   ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)    &   ((𝜑𝑥𝐵) → ∃𝑦𝐵 (𝑦 + 𝑥) = 0 )       (𝜑𝐺 ∈ Grp)
 
Theoremisgrpd 12991* Deduce a group from its properties. Unlike isgrpd2 12989, this one goes straight from the base properties rather than going through Mnd. 𝑁 (negative) is normally dependent on 𝑥 i.e. read it as 𝑁(𝑥). (Contributed by NM, 6-Jun-2013.) (Revised by Mario Carneiro, 6-Jan-2015.)
(𝜑𝐵 = (Base‘𝐺))    &   (𝜑+ = (+g𝐺))    &   ((𝜑𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)    &   ((𝜑 ∧ (𝑥𝐵𝑦𝐵𝑧𝐵)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &   (𝜑0𝐵)    &   ((𝜑𝑥𝐵) → ( 0 + 𝑥) = 𝑥)    &   ((𝜑𝑥𝐵) → 𝑁𝐵)    &   ((𝜑𝑥𝐵) → (𝑁 + 𝑥) = 0 )       (𝜑𝐺 ∈ Grp)
 
Theoremisgrpi 12992* Properties that determine a group. 𝑁 (negative) is normally dependent on 𝑥 i.e. read it as 𝑁(𝑥). (Contributed by NM, 3-Sep-2011.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &   ((𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)    &   ((𝑥𝐵𝑦𝐵𝑧𝐵) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))    &    0𝐵    &   (𝑥𝐵 → ( 0 + 𝑥) = 𝑥)    &   (𝑥𝐵𝑁𝐵)    &   (𝑥𝐵 → (𝑁 + 𝑥) = 0 )       𝐺 ∈ Grp
 
Theoremgrpsgrp 12993 A group is a semigroup. (Contributed by AV, 28-Aug-2021.)
(𝐺 ∈ Grp → 𝐺 ∈ Smgrp)
 
Theoremdfgrp2 12994* Alternate definition of a group as semigroup with a left identity and a left inverse for each element. This "definition" is weaker than df-grp 12971, based on the definition of a monoid which provides a left and a right identity. (Contributed by AV, 28-Aug-2021.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       (𝐺 ∈ Grp ↔ (𝐺 ∈ Smgrp ∧ ∃𝑛𝐵𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛)))
 
Theoremdfgrp2e 12995* Alternate definition of a group as a set with a closed, associative operation, a left identity and a left inverse for each element. Alternate definition in [Lang] p. 7. (Contributed by NM, 10-Oct-2006.) (Revised by AV, 28-Aug-2021.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)       (𝐺 ∈ Grp ↔ (∀𝑥𝐵𝑦𝐵 ((𝑥 + 𝑦) ∈ 𝐵 ∧ ∀𝑧𝐵 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑛𝐵𝑥𝐵 ((𝑛 + 𝑥) = 𝑥 ∧ ∃𝑖𝐵 (𝑖 + 𝑥) = 𝑛)))
 
Theoremgrpidcl 12996 The identity element of a group belongs to the group. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
𝐵 = (Base‘𝐺)    &    0 = (0g𝐺)       (𝐺 ∈ Grp → 0𝐵)
 
Theoremgrpbn0 12997 The base set of a group is not empty. It is also inhabited (see grpidcl 12996). (Contributed by Szymon Jaroszewicz, 3-Apr-2007.)
𝐵 = (Base‘𝐺)       (𝐺 ∈ Grp → 𝐵 ≠ ∅)
 
Theoremgrplid 12998 The identity element of a group is a left identity. (Contributed by NM, 18-Aug-2011.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ( 0 + 𝑋) = 𝑋)
 
Theoremgrprid 12999 The identity element of a group is a right identity. (Contributed by NM, 18-Aug-2011.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)       ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑋 + 0 ) = 𝑋)
 
Theoremgrplidd 13000 The identity element of a group is a left identity. Deduction associated with grplid 12998. (Contributed by SN, 29-Jan-2025.)
𝐵 = (Base‘𝐺)    &    + = (+g𝐺)    &    0 = (0g𝐺)    &   (𝜑𝐺 ∈ Grp)    &   (𝜑𝑋𝐵)       (𝜑 → ( 0 + 𝑋) = 𝑋)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15320
  Copyright terms: Public domain < Previous  Next >