| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lenlt | GIF version | ||
| Description: 'Less than or equal to' expressed in terms of 'less than'. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-May-1999.) |
| Ref | Expression |
|---|---|
| lenlt | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 8118 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 2 | rexr 8118 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
| 3 | xrlenlt 8137 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
| 4 | 1, 2, 3 | syl2an 289 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2176 class class class wbr 4044 ℝcr 7924 ℝ*cxr 8106 < clt 8107 ≤ cle 8108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-xp 4681 df-cnv 4683 df-xr 8111 df-le 8113 |
| This theorem is referenced by: letri3 8153 ltleletr 8154 letr 8155 leid 8156 eqlelt 8159 ltle 8160 lelttr 8161 ltletr 8162 lenlti 8173 lenltd 8190 lemul1 8666 msqge0 8689 mulge0 8692 ltleap 8705 recgt0 8923 lediv1 8942 dfinfre 9029 nnge1 9059 nnnlt1 9062 avgle1 9278 avgle2 9279 nn0nlt0 9321 zltnle 9418 zleloe 9419 zdcle 9449 recnz 9466 btwnnz 9467 prime 9472 fznlem 10163 nelfzo 10274 fzonlt0 10291 qltnle 10386 bcval4 10897 ccatsymb 11058 swrd0g 11113 resqrexlemgt0 11331 climge0 11636 infpnlem1 12682 efle 15248 logleb 15347 cxple 15389 cxple3 15393 lgsval2lem 15487 lgsneg 15501 lgsdilem 15504 gausslemma2dlem1a 15535 gausslemma2dlem3 15540 supfz 16010 inffz 16011 |
| Copyright terms: Public domain | W3C validator |