![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lenlt | GIF version |
Description: 'Less than or equal to' expressed in terms of 'less than'. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-May-1999.) |
Ref | Expression |
---|---|
lenlt | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 8067 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
2 | rexr 8067 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
3 | xrlenlt 8086 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
4 | 1, 2, 3 | syl2an 289 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2164 class class class wbr 4030 ℝcr 7873 ℝ*cxr 8055 < clt 8056 ≤ cle 8057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-br 4031 df-opab 4092 df-xp 4666 df-cnv 4668 df-xr 8060 df-le 8062 |
This theorem is referenced by: letri3 8102 ltleletr 8103 letr 8104 leid 8105 eqlelt 8108 ltle 8109 lelttr 8110 ltletr 8111 lenlti 8122 lenltd 8139 lemul1 8614 msqge0 8637 mulge0 8640 ltleap 8653 recgt0 8871 lediv1 8890 dfinfre 8977 nnge1 9007 nnnlt1 9010 avgle1 9226 avgle2 9227 nn0nlt0 9269 zltnle 9366 zleloe 9367 zdcle 9396 recnz 9413 btwnnz 9414 prime 9419 fznlem 10110 nelfzo 10221 fzonlt0 10237 qltnle 10316 bcval4 10826 resqrexlemgt0 11167 climge0 11471 infpnlem1 12500 efle 14952 logleb 15051 cxple 15092 cxple3 15096 lgsval2lem 15167 lgsneg 15181 lgsdilem 15184 gausslemma2dlem1a 15215 gausslemma2dlem3 15220 supfz 15631 inffz 15632 |
Copyright terms: Public domain | W3C validator |