| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lenlt | GIF version | ||
| Description: 'Less than or equal to' expressed in terms of 'less than'. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-May-1999.) |
| Ref | Expression |
|---|---|
| lenlt | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 8153 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 2 | rexr 8153 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
| 3 | xrlenlt 8172 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
| 4 | 1, 2, 3 | syl2an 289 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2178 class class class wbr 4059 ℝcr 7959 ℝ*cxr 8141 < clt 8142 ≤ cle 8143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-xp 4699 df-cnv 4701 df-xr 8146 df-le 8148 |
| This theorem is referenced by: letri3 8188 ltleletr 8189 letr 8190 leid 8191 eqlelt 8194 ltle 8195 lelttr 8196 ltletr 8197 lenlti 8208 lenltd 8225 lemul1 8701 msqge0 8724 mulge0 8727 ltleap 8740 recgt0 8958 lediv1 8977 dfinfre 9064 nnge1 9094 nnnlt1 9097 avgle1 9313 avgle2 9314 nn0nlt0 9356 zltnle 9453 zleloe 9454 zdcle 9484 recnz 9501 btwnnz 9502 prime 9507 fznlem 10198 nelfzo 10309 fzonlt0 10326 qltnle 10423 bcval4 10934 ccatsymb 11096 swrd0g 11151 resqrexlemgt0 11446 climge0 11751 infpnlem1 12797 efle 15363 logleb 15462 cxple 15504 cxple3 15508 lgsval2lem 15602 lgsneg 15616 lgsdilem 15619 gausslemma2dlem1a 15650 gausslemma2dlem3 15655 supfz 16212 inffz 16213 |
| Copyright terms: Public domain | W3C validator |