| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > lenlt | GIF version | ||
| Description: 'Less than or equal to' expressed in terms of 'less than'. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-May-1999.) |
| Ref | Expression |
|---|---|
| lenlt | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexr 8188 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 2 | rexr 8188 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
| 3 | xrlenlt 8207 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
| 4 | 1, 2, 3 | syl2an 289 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2200 class class class wbr 4082 ℝcr 7994 ℝ*cxr 8176 < clt 8177 ≤ cle 8178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4724 df-cnv 4726 df-xr 8181 df-le 8183 |
| This theorem is referenced by: letri3 8223 ltleletr 8224 letr 8225 leid 8226 eqlelt 8229 ltle 8230 lelttr 8231 ltletr 8232 lenlti 8243 lenltd 8260 lemul1 8736 msqge0 8759 mulge0 8762 ltleap 8775 recgt0 8993 lediv1 9012 dfinfre 9099 nnge1 9129 nnnlt1 9132 avgle1 9348 avgle2 9349 nn0nlt0 9391 zltnle 9488 zleloe 9489 zdcle 9519 recnz 9536 btwnnz 9537 prime 9542 fznlem 10233 nelfzo 10344 fzonlt0 10361 qltnle 10458 bcval4 10969 ccatsymb 11132 swrd0g 11187 resqrexlemgt0 11526 climge0 11831 infpnlem1 12877 efle 15444 logleb 15543 cxple 15585 cxple3 15589 lgsval2lem 15683 lgsneg 15697 lgsdilem 15700 gausslemma2dlem1a 15731 gausslemma2dlem3 15736 supfz 16398 inffz 16399 |
| Copyright terms: Public domain | W3C validator |