![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > lenlt | GIF version |
Description: 'Less than or equal to' expressed in terms of 'less than'. Part of definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 13-May-1999.) |
Ref | Expression |
---|---|
lenlt | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexr 8065 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
2 | rexr 8065 | . 2 ⊢ (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*) | |
3 | xrlenlt 8084 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) | |
4 | 1, 2, 3 | syl2an 289 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≤ 𝐵 ↔ ¬ 𝐵 < 𝐴)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2164 class class class wbr 4029 ℝcr 7871 ℝ*cxr 8053 < clt 8054 ≤ cle 8055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-xp 4665 df-cnv 4667 df-xr 8058 df-le 8060 |
This theorem is referenced by: letri3 8100 ltleletr 8101 letr 8102 leid 8103 eqlelt 8106 ltle 8107 lelttr 8108 ltletr 8109 lenlti 8120 lenltd 8137 lemul1 8612 msqge0 8635 mulge0 8638 ltleap 8651 recgt0 8869 lediv1 8888 dfinfre 8975 nnge1 9005 nnnlt1 9008 avgle1 9223 avgle2 9224 nn0nlt0 9266 zltnle 9363 zleloe 9364 zdcle 9393 recnz 9410 btwnnz 9411 prime 9416 fznlem 10107 nelfzo 10218 fzonlt0 10234 qltnle 10313 bcval4 10823 resqrexlemgt0 11164 climge0 11468 infpnlem1 12497 efle 14911 logleb 15010 cxple 15051 cxple3 15055 lgsval2lem 15126 lgsneg 15140 lgsdilem 15143 gausslemma2dlem1a 15174 gausslemma2dlem3 15179 supfz 15561 inffz 15562 |
Copyright terms: Public domain | W3C validator |