![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > oprabex3 | GIF version |
Description: Existence of an operation class abstraction (special case). (Contributed by NM, 19-Oct-2004.) |
Ref | Expression |
---|---|
oprabex3.1 | ⊢ 𝐻 ∈ V |
oprabex3.2 | ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅))} |
Ref | Expression |
---|---|
oprabex3 | ⊢ 𝐹 ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oprabex3.1 | . . 3 ⊢ 𝐻 ∈ V | |
2 | 1, 1 | xpex 4756 | . 2 ⊢ (𝐻 × 𝐻) ∈ V |
3 | moeq 2927 | . . . . . 6 ⊢ ∃*𝑧 𝑧 = 𝑅 | |
4 | 3 | mosubop 4707 | . . . . 5 ⊢ ∃*𝑧∃𝑢∃𝑓(𝑦 = 〈𝑢, 𝑓〉 ∧ 𝑧 = 𝑅) |
5 | 4 | mosubop 4707 | . . . 4 ⊢ ∃*𝑧∃𝑤∃𝑣(𝑥 = 〈𝑤, 𝑣〉 ∧ ∃𝑢∃𝑓(𝑦 = 〈𝑢, 𝑓〉 ∧ 𝑧 = 𝑅)) |
6 | anass 401 | . . . . . . . 8 ⊢ (((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) ↔ (𝑥 = 〈𝑤, 𝑣〉 ∧ (𝑦 = 〈𝑢, 𝑓〉 ∧ 𝑧 = 𝑅))) | |
7 | 6 | 2exbii 1617 | . . . . . . 7 ⊢ (∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) ↔ ∃𝑢∃𝑓(𝑥 = 〈𝑤, 𝑣〉 ∧ (𝑦 = 〈𝑢, 𝑓〉 ∧ 𝑧 = 𝑅))) |
8 | 19.42vv 1923 | . . . . . . 7 ⊢ (∃𝑢∃𝑓(𝑥 = 〈𝑤, 𝑣〉 ∧ (𝑦 = 〈𝑢, 𝑓〉 ∧ 𝑧 = 𝑅)) ↔ (𝑥 = 〈𝑤, 𝑣〉 ∧ ∃𝑢∃𝑓(𝑦 = 〈𝑢, 𝑓〉 ∧ 𝑧 = 𝑅))) | |
9 | 7, 8 | bitri 184 | . . . . . 6 ⊢ (∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) ↔ (𝑥 = 〈𝑤, 𝑣〉 ∧ ∃𝑢∃𝑓(𝑦 = 〈𝑢, 𝑓〉 ∧ 𝑧 = 𝑅))) |
10 | 9 | 2exbii 1617 | . . . . 5 ⊢ (∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) ↔ ∃𝑤∃𝑣(𝑥 = 〈𝑤, 𝑣〉 ∧ ∃𝑢∃𝑓(𝑦 = 〈𝑢, 𝑓〉 ∧ 𝑧 = 𝑅))) |
11 | 10 | mobii 2075 | . . . 4 ⊢ (∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) ↔ ∃*𝑧∃𝑤∃𝑣(𝑥 = 〈𝑤, 𝑣〉 ∧ ∃𝑢∃𝑓(𝑦 = 〈𝑢, 𝑓〉 ∧ 𝑧 = 𝑅))) |
12 | 5, 11 | mpbir 146 | . . 3 ⊢ ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅) |
13 | 12 | a1i 9 | . 2 ⊢ ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) → ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅)) |
14 | oprabex3.2 | . 2 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 𝑅))} | |
15 | 2, 2, 13, 14 | oprabex 6147 | 1 ⊢ 𝐹 ∈ V |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∃wex 1503 ∃*wmo 2039 ∈ wcel 2160 Vcvv 2752 〈cop 3610 × cxp 4639 {coprab 5892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-res 4653 df-ima 4654 df-iota 5193 df-fun 5233 df-fn 5234 df-f 5235 df-f1 5236 df-fo 5237 df-f1o 5238 df-fv 5239 df-oprab 5895 |
This theorem is referenced by: addvalex 7861 |
Copyright terms: Public domain | W3C validator |