![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnmpt12f | GIF version |
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmptid.j | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
cnmpt11.a | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) |
cnmpt1t.b | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐿)) |
cnmpt12f.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐾 ×t 𝐿) Cn 𝑀)) |
Ref | Expression |
---|---|
cnmpt12f | ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝐽 Cn 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ov 5899 | . . 3 ⊢ (𝐴𝐹𝐵) = (𝐹‘〈𝐴, 𝐵〉) | |
2 | 1 | mpteq2i 4105 | . 2 ⊢ (𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)) = (𝑥 ∈ 𝑋 ↦ (𝐹‘〈𝐴, 𝐵〉)) |
3 | cnmptid.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
4 | cnmpt11.a | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐴) ∈ (𝐽 Cn 𝐾)) | |
5 | cnmpt1t.b | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 𝐵) ∈ (𝐽 Cn 𝐿)) | |
6 | 3, 4, 5 | cnmpt1t 14245 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 〈𝐴, 𝐵〉) ∈ (𝐽 Cn (𝐾 ×t 𝐿))) |
7 | cnmpt12f.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ ((𝐾 ×t 𝐿) Cn 𝑀)) | |
8 | 3, 6, 7 | cnmpt11f 14244 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐹‘〈𝐴, 𝐵〉)) ∈ (𝐽 Cn 𝑀)) |
9 | 2, 8 | eqeltrid 2276 | 1 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝐽 Cn 𝑀)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2160 〈cop 3610 ↦ cmpt 4079 ‘cfv 5235 (class class class)co 5896 TopOnctopon 13970 Cn ccn 14145 ×t ctx 14212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-ov 5899 df-oprab 5900 df-mpo 5901 df-1st 6165 df-2nd 6166 df-map 6676 df-topgen 12765 df-top 13958 df-topon 13971 df-bases 14003 df-cn 14148 df-tx 14213 |
This theorem is referenced by: cnmpt12 14247 fsumcncntop 14516 cncfmpt2fcntop 14545 |
Copyright terms: Public domain | W3C validator |