Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt12f GIF version

Theorem cnmpt12f 12657
 Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmptid.j (𝜑𝐽 ∈ (TopOn‘𝑋))
cnmpt11.a (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
cnmpt1t.b (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿))
cnmpt12f.f (𝜑𝐹 ∈ ((𝐾 ×t 𝐿) Cn 𝑀))
Assertion
Ref Expression
cnmpt12f (𝜑 → (𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝐽 Cn 𝑀))
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥   𝑥,𝐽   𝑥,𝑀   𝑥,𝑋   𝑥,𝐾   𝑥,𝐿
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem cnmpt12f
StepHypRef Expression
1 df-ov 5824 . . 3 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
21mpteq2i 4051 . 2 (𝑥𝑋 ↦ (𝐴𝐹𝐵)) = (𝑥𝑋 ↦ (𝐹‘⟨𝐴, 𝐵⟩))
3 cnmptid.j . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
4 cnmpt11.a . . . 4 (𝜑 → (𝑥𝑋𝐴) ∈ (𝐽 Cn 𝐾))
5 cnmpt1t.b . . . 4 (𝜑 → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐿))
63, 4, 5cnmpt1t 12656 . . 3 (𝜑 → (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩) ∈ (𝐽 Cn (𝐾 ×t 𝐿)))
7 cnmpt12f.f . . 3 (𝜑𝐹 ∈ ((𝐾 ×t 𝐿) Cn 𝑀))
83, 6, 7cnmpt11f 12655 . 2 (𝜑 → (𝑥𝑋 ↦ (𝐹‘⟨𝐴, 𝐵⟩)) ∈ (𝐽 Cn 𝑀))
92, 8eqeltrid 2244 1 (𝜑 → (𝑥𝑋 ↦ (𝐴𝐹𝐵)) ∈ (𝐽 Cn 𝑀))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∈ wcel 2128  ⟨cop 3563   ↦ cmpt 4025  ‘cfv 5169  (class class class)co 5821  TopOnctopon 12379   Cn ccn 12556   ×t ctx 12623 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495 This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4253  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-map 6592  df-topgen 12343  df-top 12367  df-topon 12380  df-bases 12412  df-cn 12559  df-tx 12624 This theorem is referenced by:  cnmpt12  12658  fsumcncntop  12927  cncfmpt2fcntop  12956
 Copyright terms: Public domain W3C validator