Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  exmidsbthr GIF version

Theorem exmidsbthr 16322
Description: The Schroeder-Bernstein Theorem implies excluded middle. Theorem 1 of [PradicBrown2022], p. 1. (Contributed by Jim Kingdon, 11-Aug-2022.)
Assertion
Ref Expression
exmidsbthr (∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → EXMID)
Distinct variable group:   𝑥,𝑦

Proof of Theorem exmidsbthr
Dummy variables 𝑖 𝑗 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2236 . . . . 5 (𝑗 = 𝑖 → (𝑗 = ∅ ↔ 𝑖 = ∅))
2 unieq 3896 . . . . . 6 (𝑗 = 𝑖 𝑗 = 𝑖)
32fveq2d 5627 . . . . 5 (𝑗 = 𝑖 → (𝑝 𝑗) = (𝑝 𝑖))
41, 3ifbieq2d 3627 . . . 4 (𝑗 = 𝑖 → if(𝑗 = ∅, 1o, (𝑝 𝑗)) = if(𝑖 = ∅, 1o, (𝑝 𝑖)))
54cbvmptv 4179 . . 3 (𝑗 ∈ ω ↦ if(𝑗 = ∅, 1o, (𝑝 𝑗))) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖)))
65mpteq2i 4170 . 2 (𝑝 ∈ ℕ ↦ (𝑗 ∈ ω ↦ if(𝑗 = ∅, 1o, (𝑝 𝑗)))) = (𝑝 ∈ ℕ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝 𝑖))))
76exmidsbthrlem 16321 1 (∀𝑥𝑦((𝑥𝑦𝑦𝑥) → 𝑥𝑦) → EXMID)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1393   = wceq 1395  c0 3491  ifcif 3602   cuni 3887   class class class wbr 4082  cmpt 4144  EXMIDwem 4277  ωcom 4679  cfv 5314  1oc1o 6545  cen 6875  cdom 6876  xnninf 7274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-exmid 4278  df-id 4381  df-iord 4454  df-on 4456  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-1o 6552  df-2o 6553  df-map 6787  df-en 6878  df-dom 6879  df-dju 7193  df-inl 7202  df-inr 7203  df-case 7239  df-nninf 7275  df-omni 7290
This theorem is referenced by:  exmidsbth  16323
  Copyright terms: Public domain W3C validator