![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > exmidsbthr | GIF version |
Description: The Schroeder-Bernstein Theorem implies excluded middle. Theorem 1 of [PradicBrown2022], p. 1. (Contributed by Jim Kingdon, 11-Aug-2022.) |
Ref | Expression |
---|---|
exmidsbthr | ⊢ (∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) → EXMID) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2095 | . . . . 5 ⊢ (𝑗 = 𝑖 → (𝑗 = ∅ ↔ 𝑖 = ∅)) | |
2 | unieq 3668 | . . . . . 6 ⊢ (𝑗 = 𝑖 → ∪ 𝑗 = ∪ 𝑖) | |
3 | 2 | fveq2d 5322 | . . . . 5 ⊢ (𝑗 = 𝑖 → (𝑝‘∪ 𝑗) = (𝑝‘∪ 𝑖)) |
4 | 1, 3 | ifbieq2d 3419 | . . . 4 ⊢ (𝑗 = 𝑖 → if(𝑗 = ∅, 1o, (𝑝‘∪ 𝑗)) = if(𝑖 = ∅, 1o, (𝑝‘∪ 𝑖))) |
5 | 4 | cbvmptv 3940 | . . 3 ⊢ (𝑗 ∈ ω ↦ if(𝑗 = ∅, 1o, (𝑝‘∪ 𝑗))) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝‘∪ 𝑖))) |
6 | 5 | mpteq2i 3931 | . 2 ⊢ (𝑝 ∈ ℕ∞ ↦ (𝑗 ∈ ω ↦ if(𝑗 = ∅, 1o, (𝑝‘∪ 𝑗)))) = (𝑝 ∈ ℕ∞ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝‘∪ 𝑖)))) |
7 | 6 | exmidsbthrlem 12184 | 1 ⊢ (∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) → EXMID) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wal 1288 = wceq 1290 ∅c0 3287 ifcif 3397 ∪ cuni 3659 class class class wbr 3851 ↦ cmpt 3905 EXMIDwem 4035 ωcom 4418 ‘cfv 5028 1oc1o 6188 ≈ cen 6509 ≼ cdom 6510 ℕ∞xnninf 6850 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-coll 3960 ax-sep 3963 ax-nul 3971 ax-pow 4015 ax-pr 4045 ax-un 4269 ax-setind 4366 ax-iinf 4416 |
This theorem depends on definitions: df-bi 116 df-dc 782 df-3or 926 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-ral 2365 df-rex 2366 df-reu 2367 df-rab 2369 df-v 2622 df-sbc 2842 df-csb 2935 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-nul 3288 df-if 3398 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-int 3695 df-iun 3738 df-br 3852 df-opab 3906 df-mpt 3907 df-tr 3943 df-exmid 4036 df-id 4129 df-iord 4202 df-on 4204 df-suc 4207 df-iom 4419 df-xp 4458 df-rel 4459 df-cnv 4460 df-co 4461 df-dm 4462 df-rn 4463 df-res 4464 df-ima 4465 df-iota 4993 df-fun 5030 df-fn 5031 df-f 5032 df-f1 5033 df-fo 5034 df-f1o 5035 df-fv 5036 df-ov 5669 df-oprab 5670 df-mpt2 5671 df-1st 5925 df-2nd 5926 df-1o 6195 df-2o 6196 df-map 6421 df-en 6512 df-dom 6513 df-dju 6785 df-inl 6793 df-inr 6794 df-case 6829 df-omni 6851 df-nninf 6852 |
This theorem is referenced by: exmidsbth 12186 |
Copyright terms: Public domain | W3C validator |