| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > exmidsbthr | GIF version | ||
| Description: The Schroeder-Bernstein Theorem implies excluded middle. Theorem 1 of [PradicBrown2022], p. 1. (Contributed by Jim Kingdon, 11-Aug-2022.) |
| Ref | Expression |
|---|---|
| exmidsbthr | ⊢ (∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) → EXMID) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2203 | . . . . 5 ⊢ (𝑗 = 𝑖 → (𝑗 = ∅ ↔ 𝑖 = ∅)) | |
| 2 | unieq 3848 | . . . . . 6 ⊢ (𝑗 = 𝑖 → ∪ 𝑗 = ∪ 𝑖) | |
| 3 | 2 | fveq2d 5562 | . . . . 5 ⊢ (𝑗 = 𝑖 → (𝑝‘∪ 𝑗) = (𝑝‘∪ 𝑖)) |
| 4 | 1, 3 | ifbieq2d 3585 | . . . 4 ⊢ (𝑗 = 𝑖 → if(𝑗 = ∅, 1o, (𝑝‘∪ 𝑗)) = if(𝑖 = ∅, 1o, (𝑝‘∪ 𝑖))) |
| 5 | 4 | cbvmptv 4129 | . . 3 ⊢ (𝑗 ∈ ω ↦ if(𝑗 = ∅, 1o, (𝑝‘∪ 𝑗))) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝‘∪ 𝑖))) |
| 6 | 5 | mpteq2i 4120 | . 2 ⊢ (𝑝 ∈ ℕ∞ ↦ (𝑗 ∈ ω ↦ if(𝑗 = ∅, 1o, (𝑝‘∪ 𝑗)))) = (𝑝 ∈ ℕ∞ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝‘∪ 𝑖)))) |
| 7 | 6 | exmidsbthrlem 15666 | 1 ⊢ (∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) → EXMID) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 = wceq 1364 ∅c0 3450 ifcif 3561 ∪ cuni 3839 class class class wbr 4033 ↦ cmpt 4094 EXMIDwem 4227 ωcom 4626 ‘cfv 5258 1oc1o 6467 ≈ cen 6797 ≼ cdom 6798 ℕ∞xnninf 7185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-exmid 4228 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-1o 6474 df-2o 6475 df-map 6709 df-en 6800 df-dom 6801 df-dju 7104 df-inl 7113 df-inr 7114 df-case 7150 df-nninf 7186 df-omni 7201 |
| This theorem is referenced by: exmidsbth 15668 |
| Copyright terms: Public domain | W3C validator |