![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > exmidsbthr | GIF version |
Description: The Schroeder-Bernstein Theorem implies excluded middle. Theorem 1 of [PradicBrown2022], p. 1. (Contributed by Jim Kingdon, 11-Aug-2022.) |
Ref | Expression |
---|---|
exmidsbthr | ⊢ (∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) → EXMID) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2200 | . . . . 5 ⊢ (𝑗 = 𝑖 → (𝑗 = ∅ ↔ 𝑖 = ∅)) | |
2 | unieq 3845 | . . . . . 6 ⊢ (𝑗 = 𝑖 → ∪ 𝑗 = ∪ 𝑖) | |
3 | 2 | fveq2d 5559 | . . . . 5 ⊢ (𝑗 = 𝑖 → (𝑝‘∪ 𝑗) = (𝑝‘∪ 𝑖)) |
4 | 1, 3 | ifbieq2d 3582 | . . . 4 ⊢ (𝑗 = 𝑖 → if(𝑗 = ∅, 1o, (𝑝‘∪ 𝑗)) = if(𝑖 = ∅, 1o, (𝑝‘∪ 𝑖))) |
5 | 4 | cbvmptv 4126 | . . 3 ⊢ (𝑗 ∈ ω ↦ if(𝑗 = ∅, 1o, (𝑝‘∪ 𝑗))) = (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝‘∪ 𝑖))) |
6 | 5 | mpteq2i 4117 | . 2 ⊢ (𝑝 ∈ ℕ∞ ↦ (𝑗 ∈ ω ↦ if(𝑗 = ∅, 1o, (𝑝‘∪ 𝑗)))) = (𝑝 ∈ ℕ∞ ↦ (𝑖 ∈ ω ↦ if(𝑖 = ∅, 1o, (𝑝‘∪ 𝑖)))) |
7 | 6 | exmidsbthrlem 15582 | 1 ⊢ (∀𝑥∀𝑦((𝑥 ≼ 𝑦 ∧ 𝑦 ≼ 𝑥) → 𝑥 ≈ 𝑦) → EXMID) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 = wceq 1364 ∅c0 3447 ifcif 3558 ∪ cuni 3836 class class class wbr 4030 ↦ cmpt 4091 EXMIDwem 4224 ωcom 4623 ‘cfv 5255 1oc1o 6464 ≈ cen 6794 ≼ cdom 6795 ℕ∞xnninf 7180 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-if 3559 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-exmid 4225 df-id 4325 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-1o 6471 df-2o 6472 df-map 6706 df-en 6797 df-dom 6798 df-dju 7099 df-inl 7108 df-inr 7109 df-case 7145 df-nninf 7181 df-omni 7196 |
This theorem is referenced by: exmidsbth 15584 |
Copyright terms: Public domain | W3C validator |