ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eirraplem GIF version

Theorem eirraplem 11920
Description: Lemma for eirrap 11921. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 5-Jan-2022.)
Hypotheses
Ref Expression
eirr.1 𝐹 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
eirr.2 (𝜑𝑃 ∈ ℤ)
eirr.3 (𝜑𝑄 ∈ ℕ)
Assertion
Ref Expression
eirraplem (𝜑 → e # (𝑃 / 𝑄))
Distinct variable group:   𝑄,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝑃(𝑛)   𝐹(𝑛)

Proof of Theorem eirraplem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 esum 11805 . . . . . . . . . . 11 e = Σ𝑘 ∈ ℕ0 (1 / (!‘𝑘))
2 faccl 10806 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
32nnrecred 9029 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (1 / (!‘𝑘)) ∈ ℝ)
4 fveq2 5554 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘))
54oveq2d 5934 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (1 / (!‘𝑛)) = (1 / (!‘𝑘)))
6 eirr.1 . . . . . . . . . . . . . 14 𝐹 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
75, 6fvmptg 5633 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0 ∧ (1 / (!‘𝑘)) ∈ ℝ) → (𝐹𝑘) = (1 / (!‘𝑘)))
83, 7mpdan 421 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (𝐹𝑘) = (1 / (!‘𝑘)))
98sumeq2i 11507 . . . . . . . . . . 11 Σ𝑘 ∈ ℕ0 (𝐹𝑘) = Σ𝑘 ∈ ℕ0 (1 / (!‘𝑘))
101, 9eqtr4i 2217 . . . . . . . . . 10 e = Σ𝑘 ∈ ℕ0 (𝐹𝑘)
11 nn0uz 9627 . . . . . . . . . . 11 0 = (ℤ‘0)
12 eqid 2193 . . . . . . . . . . 11 (ℤ‘(𝑄 + 1)) = (ℤ‘(𝑄 + 1))
13 eirr.3 . . . . . . . . . . . . 13 (𝜑𝑄 ∈ ℕ)
1413peano2nnd 8997 . . . . . . . . . . . 12 (𝜑 → (𝑄 + 1) ∈ ℕ)
1514nnnn0d 9293 . . . . . . . . . . 11 (𝜑 → (𝑄 + 1) ∈ ℕ0)
16 eqidd 2194 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (𝐹𝑘))
17 ax-1cn 7965 . . . . . . . . . . . . . 14 1 ∈ ℂ
18 nn0z 9337 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
19 1exp 10639 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
2018, 19syl 14 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0 → (1↑𝑛) = 1)
2120oveq1d 5933 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0 → ((1↑𝑛) / (!‘𝑛)) = (1 / (!‘𝑛)))
2221mpteq2ia 4115 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
236, 22eqtr4i 2217 . . . . . . . . . . . . . . 15 𝐹 = (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛)))
2423eftvalcn 11800 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) = ((1↑𝑘) / (!‘𝑘)))
2517, 24mpan 424 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (𝐹𝑘) = ((1↑𝑘) / (!‘𝑘)))
2625adantl 277 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = ((1↑𝑘) / (!‘𝑘)))
2717a1i 9 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℂ)
28 eftcl 11797 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((1↑𝑘) / (!‘𝑘)) ∈ ℂ)
2927, 28sylan 283 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → ((1↑𝑘) / (!‘𝑘)) ∈ ℂ)
3026, 29eqeltrd 2270 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
3123efcllem 11802 . . . . . . . . . . . 12 (1 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ )
3227, 31syl 14 . . . . . . . . . . 11 (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )
3311, 12, 15, 16, 30, 32isumsplit 11634 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ ℕ0 (𝐹𝑘) = (Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
3410, 33eqtrid 2238 . . . . . . . . 9 (𝜑 → e = (Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
3513nncnd 8996 . . . . . . . . . . . . 13 (𝜑𝑄 ∈ ℂ)
36 pncan 8225 . . . . . . . . . . . . 13 ((𝑄 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑄 + 1) − 1) = 𝑄)
3735, 17, 36sylancl 413 . . . . . . . . . . . 12 (𝜑 → ((𝑄 + 1) − 1) = 𝑄)
3837oveq2d 5934 . . . . . . . . . . 11 (𝜑 → (0...((𝑄 + 1) − 1)) = (0...𝑄))
3938sumeq1d 11509 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹𝑘) = Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))
4039oveq1d 5933 . . . . . . . . 9 (𝜑 → (Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) = (Σ𝑘 ∈ (0...𝑄)(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
4134, 40eqtrd 2226 . . . . . . . 8 (𝜑 → e = (Σ𝑘 ∈ (0...𝑄)(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
4241oveq1d 5933 . . . . . . 7 (𝜑 → (e − Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) = ((Σ𝑘 ∈ (0...𝑄)(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) − Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)))
43 0zd 9329 . . . . . . . . . 10 (𝜑 → 0 ∈ ℤ)
4413nnzd 9438 . . . . . . . . . 10 (𝜑𝑄 ∈ ℤ)
4543, 44fzfigd 10502 . . . . . . . . 9 (𝜑 → (0...𝑄) ∈ Fin)
46 elfznn0 10180 . . . . . . . . . 10 (𝑘 ∈ (0...𝑄) → 𝑘 ∈ ℕ0)
4746, 30sylan2 286 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑄)) → (𝐹𝑘) ∈ ℂ)
4845, 47fsumcl 11543 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (0...𝑄)(𝐹𝑘) ∈ ℂ)
498adantl 277 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (1 / (!‘𝑘)))
502adantl 277 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
5150nnrpd 9760 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ+)
5251rpreccld 9773 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (1 / (!‘𝑘)) ∈ ℝ+)
5349, 52eqeltrd 2270 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℝ+)
5411, 12, 15, 16, 53, 32isumrpcl 11637 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℝ+)
5554rpred 9762 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℝ)
5655recnd 8048 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℂ)
5748, 56pncan2d 8332 . . . . . . 7 (𝜑 → ((Σ𝑘 ∈ (0...𝑄)(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) − Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) = Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘))
5842, 57eqtrd 2226 . . . . . 6 (𝜑 → (e − Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) = Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘))
5958oveq2d 5934 . . . . 5 (𝜑 → ((!‘𝑄) · (e − Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))) = ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
6013nnnn0d 9293 . . . . . . . 8 (𝜑𝑄 ∈ ℕ0)
6160faccld 10807 . . . . . . 7 (𝜑 → (!‘𝑄) ∈ ℕ)
6261nncnd 8996 . . . . . 6 (𝜑 → (!‘𝑄) ∈ ℂ)
63 ere 11813 . . . . . . . 8 e ∈ ℝ
6463recni 8031 . . . . . . 7 e ∈ ℂ
6564a1i 9 . . . . . 6 (𝜑 → e ∈ ℂ)
6662, 65, 48subdid 8433 . . . . 5 (𝜑 → ((!‘𝑄) · (e − Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))) = (((!‘𝑄) · e) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))))
6759, 66eqtr3d 2228 . . . 4 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) = (((!‘𝑄) · e) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))))
6861nnrpd 9760 . . . . . . 7 (𝜑 → (!‘𝑄) ∈ ℝ+)
6968, 54rpmulcld 9779 . . . . . 6 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) ∈ ℝ+)
7069rpred 9762 . . . . 5 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) ∈ ℝ)
71 eirr.2 . . . . . . . . 9 (𝜑𝑃 ∈ ℤ)
7271zcnd 9440 . . . . . . . 8 (𝜑𝑃 ∈ ℂ)
7313nnap0d 9028 . . . . . . . 8 (𝜑𝑄 # 0)
7462, 72, 35, 73div12apd 8846 . . . . . . 7 (𝜑 → ((!‘𝑄) · (𝑃 / 𝑄)) = (𝑃 · ((!‘𝑄) / 𝑄)))
7513nnred 8995 . . . . . . . . . . 11 (𝜑𝑄 ∈ ℝ)
7675leidd 8533 . . . . . . . . . 10 (𝜑𝑄𝑄)
77 facdiv 10809 . . . . . . . . . 10 ((𝑄 ∈ ℕ0𝑄 ∈ ℕ ∧ 𝑄𝑄) → ((!‘𝑄) / 𝑄) ∈ ℕ)
7860, 13, 76, 77syl3anc 1249 . . . . . . . . 9 (𝜑 → ((!‘𝑄) / 𝑄) ∈ ℕ)
7978nnzd 9438 . . . . . . . 8 (𝜑 → ((!‘𝑄) / 𝑄) ∈ ℤ)
8071, 79zmulcld 9445 . . . . . . 7 (𝜑 → (𝑃 · ((!‘𝑄) / 𝑄)) ∈ ℤ)
8174, 80eqeltrd 2270 . . . . . 6 (𝜑 → ((!‘𝑄) · (𝑃 / 𝑄)) ∈ ℤ)
8245, 62, 47fsummulc2 11591 . . . . . . 7 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) = Σ𝑘 ∈ (0...𝑄)((!‘𝑄) · (𝐹𝑘)))
8346adantl 277 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...𝑄)) → 𝑘 ∈ ℕ0)
8483, 8syl 14 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...𝑄)) → (𝐹𝑘) = (1 / (!‘𝑘)))
8584oveq2d 5934 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹𝑘)) = ((!‘𝑄) · (1 / (!‘𝑘))))
8662adantr 276 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...𝑄)) → (!‘𝑄) ∈ ℂ)
8746, 50sylan2 286 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...𝑄)) → (!‘𝑘) ∈ ℕ)
8887nncnd 8996 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...𝑄)) → (!‘𝑘) ∈ ℂ)
8987nnap0d 9028 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...𝑄)) → (!‘𝑘) # 0)
9086, 88, 89divrecapd 8812 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) / (!‘𝑘)) = ((!‘𝑄) · (1 / (!‘𝑘))))
9185, 90eqtr4d 2229 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹𝑘)) = ((!‘𝑄) / (!‘𝑘)))
92 permnn 10842 . . . . . . . . . . 11 (𝑘 ∈ (0...𝑄) → ((!‘𝑄) / (!‘𝑘)) ∈ ℕ)
9392adantl 277 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) / (!‘𝑘)) ∈ ℕ)
9491, 93eqeltrd 2270 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹𝑘)) ∈ ℕ)
9594nnzd 9438 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹𝑘)) ∈ ℤ)
9645, 95fsumzcl 11545 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (0...𝑄)((!‘𝑄) · (𝐹𝑘)) ∈ ℤ)
9782, 96eqeltrd 2270 . . . . . 6 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) ∈ ℤ)
9881, 97zsubcld 9444 . . . . 5 (𝜑 → (((!‘𝑄) · (𝑃 / 𝑄)) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))) ∈ ℤ)
9969rpgt0d 9765 . . . . 5 (𝜑 → 0 < ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
10014peano2nnd 8997 . . . . . . . . . 10 (𝜑 → ((𝑄 + 1) + 1) ∈ ℕ)
101100nnred 8995 . . . . . . . . 9 (𝜑 → ((𝑄 + 1) + 1) ∈ ℝ)
10215faccld 10807 . . . . . . . . . 10 (𝜑 → (!‘(𝑄 + 1)) ∈ ℕ)
103102, 14nnmulcld 9031 . . . . . . . . 9 (𝜑 → ((!‘(𝑄 + 1)) · (𝑄 + 1)) ∈ ℕ)
104101, 103nndivred 9032 . . . . . . . 8 (𝜑 → (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) ∈ ℝ)
10561nnrecred 9029 . . . . . . . 8 (𝜑 → (1 / (!‘𝑄)) ∈ ℝ)
106 abs1 11216 . . . . . . . . . . . . . 14 (abs‘1) = 1
107106oveq1i 5928 . . . . . . . . . . . . 13 ((abs‘1)↑𝑛) = (1↑𝑛)
108107oveq1i 5928 . . . . . . . . . . . 12 (((abs‘1)↑𝑛) / (!‘𝑛)) = ((1↑𝑛) / (!‘𝑛))
109108mpteq2i 4116 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 ↦ (((abs‘1)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛)))
11023, 109eqtr4i 2217 . . . . . . . . . 10 𝐹 = (𝑛 ∈ ℕ0 ↦ (((abs‘1)↑𝑛) / (!‘𝑛)))
111 eqid 2193 . . . . . . . . . 10 (𝑛 ∈ ℕ0 ↦ ((((abs‘1)↑(𝑄 + 1)) / (!‘(𝑄 + 1))) · ((1 / ((𝑄 + 1) + 1))↑𝑛))) = (𝑛 ∈ ℕ0 ↦ ((((abs‘1)↑(𝑄 + 1)) / (!‘(𝑄 + 1))) · ((1 / ((𝑄 + 1) + 1))↑𝑛)))
112 1le1 8591 . . . . . . . . . . . 12 1 ≤ 1
113106, 112eqbrtri 4050 . . . . . . . . . . 11 (abs‘1) ≤ 1
114113a1i 9 . . . . . . . . . 10 (𝜑 → (abs‘1) ≤ 1)
11523, 110, 111, 14, 27, 114eftlub 11833 . . . . . . . . 9 (𝜑 → (abs‘Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) ≤ (((abs‘1)↑(𝑄 + 1)) · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))))
11654rprege0d 9770 . . . . . . . . . 10 (𝜑 → (Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
117 absid 11215 . . . . . . . . . 10 ((Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) → (abs‘Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) = Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘))
118116, 117syl 14 . . . . . . . . 9 (𝜑 → (abs‘Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) = Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘))
119106oveq1i 5928 . . . . . . . . . . . 12 ((abs‘1)↑(𝑄 + 1)) = (1↑(𝑄 + 1))
12014nnzd 9438 . . . . . . . . . . . . 13 (𝜑 → (𝑄 + 1) ∈ ℤ)
121 1exp 10639 . . . . . . . . . . . . 13 ((𝑄 + 1) ∈ ℤ → (1↑(𝑄 + 1)) = 1)
122120, 121syl 14 . . . . . . . . . . . 12 (𝜑 → (1↑(𝑄 + 1)) = 1)
123119, 122eqtrid 2238 . . . . . . . . . . 11 (𝜑 → ((abs‘1)↑(𝑄 + 1)) = 1)
124123oveq1d 5933 . . . . . . . . . 10 (𝜑 → (((abs‘1)↑(𝑄 + 1)) · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))) = (1 · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))))
125104recnd 8048 . . . . . . . . . . 11 (𝜑 → (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) ∈ ℂ)
126125mulid2d 8038 . . . . . . . . . 10 (𝜑 → (1 · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))) = (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))))
127124, 126eqtrd 2226 . . . . . . . . 9 (𝜑 → (((abs‘1)↑(𝑄 + 1)) · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))) = (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))))
128115, 118, 1273brtr3d 4060 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ≤ (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))))
12914nnred 8995 . . . . . . . . . . . 12 (𝜑 → (𝑄 + 1) ∈ ℝ)
130129, 129readdcld 8049 . . . . . . . . . . 11 (𝜑 → ((𝑄 + 1) + (𝑄 + 1)) ∈ ℝ)
131129, 129remulcld 8050 . . . . . . . . . . 11 (𝜑 → ((𝑄 + 1) · (𝑄 + 1)) ∈ ℝ)
132 1red 8034 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ)
13313nnge1d 9025 . . . . . . . . . . . . 13 (𝜑 → 1 ≤ 𝑄)
134 1nn 8993 . . . . . . . . . . . . . 14 1 ∈ ℕ
135 nnleltp1 9376 . . . . . . . . . . . . . 14 ((1 ∈ ℕ ∧ 𝑄 ∈ ℕ) → (1 ≤ 𝑄 ↔ 1 < (𝑄 + 1)))
136134, 13, 135sylancr 414 . . . . . . . . . . . . 13 (𝜑 → (1 ≤ 𝑄 ↔ 1 < (𝑄 + 1)))
137133, 136mpbid 147 . . . . . . . . . . . 12 (𝜑 → 1 < (𝑄 + 1))
138132, 129, 129, 137ltadd2dd 8441 . . . . . . . . . . 11 (𝜑 → ((𝑄 + 1) + 1) < ((𝑄 + 1) + (𝑄 + 1)))
13914nncnd 8996 . . . . . . . . . . . . 13 (𝜑 → (𝑄 + 1) ∈ ℂ)
1401392timesd 9225 . . . . . . . . . . . 12 (𝜑 → (2 · (𝑄 + 1)) = ((𝑄 + 1) + (𝑄 + 1)))
141 df-2 9041 . . . . . . . . . . . . . 14 2 = (1 + 1)
142132, 75, 132, 133leadd1dd 8578 . . . . . . . . . . . . . 14 (𝜑 → (1 + 1) ≤ (𝑄 + 1))
143141, 142eqbrtrid 4064 . . . . . . . . . . . . 13 (𝜑 → 2 ≤ (𝑄 + 1))
144 2re 9052 . . . . . . . . . . . . . . 15 2 ∈ ℝ
145144a1i 9 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℝ)
14614nngt0d 9026 . . . . . . . . . . . . . 14 (𝜑 → 0 < (𝑄 + 1))
147 lemul1 8612 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ (𝑄 + 1) ∈ ℝ ∧ ((𝑄 + 1) ∈ ℝ ∧ 0 < (𝑄 + 1))) → (2 ≤ (𝑄 + 1) ↔ (2 · (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1))))
148145, 129, 129, 146, 147syl112anc 1253 . . . . . . . . . . . . 13 (𝜑 → (2 ≤ (𝑄 + 1) ↔ (2 · (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1))))
149143, 148mpbid 147 . . . . . . . . . . . 12 (𝜑 → (2 · (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1)))
150140, 149eqbrtrrd 4053 . . . . . . . . . . 11 (𝜑 → ((𝑄 + 1) + (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1)))
151101, 130, 131, 138, 150ltletrd 8442 . . . . . . . . . 10 (𝜑 → ((𝑄 + 1) + 1) < ((𝑄 + 1) · (𝑄 + 1)))
152 facp1 10801 . . . . . . . . . . . . . . 15 (𝑄 ∈ ℕ0 → (!‘(𝑄 + 1)) = ((!‘𝑄) · (𝑄 + 1)))
15360, 152syl 14 . . . . . . . . . . . . . 14 (𝜑 → (!‘(𝑄 + 1)) = ((!‘𝑄) · (𝑄 + 1)))
154153oveq1d 5933 . . . . . . . . . . . . 13 (𝜑 → ((!‘(𝑄 + 1)) / (!‘𝑄)) = (((!‘𝑄) · (𝑄 + 1)) / (!‘𝑄)))
155102nncnd 8996 . . . . . . . . . . . . . 14 (𝜑 → (!‘(𝑄 + 1)) ∈ ℂ)
15661nnap0d 9028 . . . . . . . . . . . . . 14 (𝜑 → (!‘𝑄) # 0)
157155, 62, 156divrecapd 8812 . . . . . . . . . . . . 13 (𝜑 → ((!‘(𝑄 + 1)) / (!‘𝑄)) = ((!‘(𝑄 + 1)) · (1 / (!‘𝑄))))
158139, 62, 156divcanap3d 8814 . . . . . . . . . . . . 13 (𝜑 → (((!‘𝑄) · (𝑄 + 1)) / (!‘𝑄)) = (𝑄 + 1))
159154, 157, 1583eqtr3rd 2235 . . . . . . . . . . . 12 (𝜑 → (𝑄 + 1) = ((!‘(𝑄 + 1)) · (1 / (!‘𝑄))))
160159oveq1d 5933 . . . . . . . . . . 11 (𝜑 → ((𝑄 + 1) · (𝑄 + 1)) = (((!‘(𝑄 + 1)) · (1 / (!‘𝑄))) · (𝑄 + 1)))
161105recnd 8048 . . . . . . . . . . . 12 (𝜑 → (1 / (!‘𝑄)) ∈ ℂ)
162155, 161, 139mul32d 8172 . . . . . . . . . . 11 (𝜑 → (((!‘(𝑄 + 1)) · (1 / (!‘𝑄))) · (𝑄 + 1)) = (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄))))
163160, 162eqtrd 2226 . . . . . . . . . 10 (𝜑 → ((𝑄 + 1) · (𝑄 + 1)) = (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄))))
164151, 163breqtrd 4055 . . . . . . . . 9 (𝜑 → ((𝑄 + 1) + 1) < (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄))))
165103nnred 8995 . . . . . . . . . 10 (𝜑 → ((!‘(𝑄 + 1)) · (𝑄 + 1)) ∈ ℝ)
166103nngt0d 9026 . . . . . . . . . 10 (𝜑 → 0 < ((!‘(𝑄 + 1)) · (𝑄 + 1)))
167 ltdivmul 8895 . . . . . . . . . 10 ((((𝑄 + 1) + 1) ∈ ℝ ∧ (1 / (!‘𝑄)) ∈ ℝ ∧ (((!‘(𝑄 + 1)) · (𝑄 + 1)) ∈ ℝ ∧ 0 < ((!‘(𝑄 + 1)) · (𝑄 + 1)))) → ((((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) < (1 / (!‘𝑄)) ↔ ((𝑄 + 1) + 1) < (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄)))))
168101, 105, 165, 166, 167syl112anc 1253 . . . . . . . . 9 (𝜑 → ((((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) < (1 / (!‘𝑄)) ↔ ((𝑄 + 1) + 1) < (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄)))))
169164, 168mpbird 167 . . . . . . . 8 (𝜑 → (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) < (1 / (!‘𝑄)))
17055, 104, 105, 128, 169lelttrd 8144 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) < (1 / (!‘𝑄)))
17155, 132, 68ltmuldiv2d 9811 . . . . . . 7 (𝜑 → (((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) < 1 ↔ Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) < (1 / (!‘𝑄))))
172170, 171mpbird 167 . . . . . 6 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) < 1)
173 0p1e1 9096 . . . . . 6 (0 + 1) = 1
174172, 173breqtrrdi 4071 . . . . 5 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) < (0 + 1))
17543, 70, 98, 99, 174btwnapz 9447 . . . 4 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) # (((!‘𝑄) · (𝑃 / 𝑄)) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))))
17667, 175eqbrtrrd 4053 . . 3 (𝜑 → (((!‘𝑄) · e) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))) # (((!‘𝑄) · (𝑃 / 𝑄)) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))))
17762, 65mulcld 8040 . . . 4 (𝜑 → ((!‘𝑄) · e) ∈ ℂ)
17881zcnd 9440 . . . 4 (𝜑 → ((!‘𝑄) · (𝑃 / 𝑄)) ∈ ℂ)
17962, 48mulcld 8040 . . . 4 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) ∈ ℂ)
180 apsub1 8661 . . . 4 ((((!‘𝑄) · e) ∈ ℂ ∧ ((!‘𝑄) · (𝑃 / 𝑄)) ∈ ℂ ∧ ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) ∈ ℂ) → (((!‘𝑄) · e) # ((!‘𝑄) · (𝑃 / 𝑄)) ↔ (((!‘𝑄) · e) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))) # (((!‘𝑄) · (𝑃 / 𝑄)) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)))))
181177, 178, 179, 180syl3anc 1249 . . 3 (𝜑 → (((!‘𝑄) · e) # ((!‘𝑄) · (𝑃 / 𝑄)) ↔ (((!‘𝑄) · e) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))) # (((!‘𝑄) · (𝑃 / 𝑄)) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)))))
182176, 181mpbird 167 . 2 (𝜑 → ((!‘𝑄) · e) # ((!‘𝑄) · (𝑃 / 𝑄)))
183 znq 9689 . . . . 5 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ) → (𝑃 / 𝑄) ∈ ℚ)
18471, 13, 183syl2anc 411 . . . 4 (𝜑 → (𝑃 / 𝑄) ∈ ℚ)
185 qcn 9699 . . . 4 ((𝑃 / 𝑄) ∈ ℚ → (𝑃 / 𝑄) ∈ ℂ)
186184, 185syl 14 . . 3 (𝜑 → (𝑃 / 𝑄) ∈ ℂ)
187 apmul2 8808 . . 3 ((e ∈ ℂ ∧ (𝑃 / 𝑄) ∈ ℂ ∧ ((!‘𝑄) ∈ ℂ ∧ (!‘𝑄) # 0)) → (e # (𝑃 / 𝑄) ↔ ((!‘𝑄) · e) # ((!‘𝑄) · (𝑃 / 𝑄))))
18865, 186, 62, 156, 187syl112anc 1253 . 2 (𝜑 → (e # (𝑃 / 𝑄) ↔ ((!‘𝑄) · e) # ((!‘𝑄) · (𝑃 / 𝑄))))
189182, 188mpbird 167 1 (𝜑 → e # (𝑃 / 𝑄))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164   class class class wbr 4029  cmpt 4090  dom cdm 4659  cfv 5254  (class class class)co 5918  cc 7870  cr 7871  0cc0 7872  1c1 7873   + caddc 7875   · cmul 7877   < clt 8054  cle 8055  cmin 8190   # cap 8600   / cdiv 8691  cn 8982  2c2 9033  0cn0 9240  cz 9317  cuz 9592  cq 9684  +crp 9719  ...cfz 10074  seqcseq 10518  cexp 10609  !cfa 10796  abscabs 11141  cli 11421  Σcsu 11496  eceu 11786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-ico 9960  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-fac 10797  df-bc 10819  df-ihash 10847  df-shft 10959  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497  df-ef 11791  df-e 11792
This theorem is referenced by:  eirrap  11921
  Copyright terms: Public domain W3C validator