ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eirraplem GIF version

Theorem eirraplem 11519
Description: Lemma for eirrap 11520. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 5-Jan-2022.)
Hypotheses
Ref Expression
eirr.1 𝐹 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
eirr.2 (𝜑𝑃 ∈ ℤ)
eirr.3 (𝜑𝑄 ∈ ℕ)
Assertion
Ref Expression
eirraplem (𝜑 → e # (𝑃 / 𝑄))
Distinct variable group:   𝑄,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝑃(𝑛)   𝐹(𝑛)

Proof of Theorem eirraplem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 esum 11405 . . . . . . . . . . 11 e = Σ𝑘 ∈ ℕ0 (1 / (!‘𝑘))
2 faccl 10513 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
32nnrecred 8791 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (1 / (!‘𝑘)) ∈ ℝ)
4 fveq2 5429 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘))
54oveq2d 5798 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (1 / (!‘𝑛)) = (1 / (!‘𝑘)))
6 eirr.1 . . . . . . . . . . . . . 14 𝐹 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
75, 6fvmptg 5505 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0 ∧ (1 / (!‘𝑘)) ∈ ℝ) → (𝐹𝑘) = (1 / (!‘𝑘)))
83, 7mpdan 418 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (𝐹𝑘) = (1 / (!‘𝑘)))
98sumeq2i 11165 . . . . . . . . . . 11 Σ𝑘 ∈ ℕ0 (𝐹𝑘) = Σ𝑘 ∈ ℕ0 (1 / (!‘𝑘))
101, 9eqtr4i 2164 . . . . . . . . . 10 e = Σ𝑘 ∈ ℕ0 (𝐹𝑘)
11 nn0uz 9384 . . . . . . . . . . 11 0 = (ℤ‘0)
12 eqid 2140 . . . . . . . . . . 11 (ℤ‘(𝑄 + 1)) = (ℤ‘(𝑄 + 1))
13 eirr.3 . . . . . . . . . . . . 13 (𝜑𝑄 ∈ ℕ)
1413peano2nnd 8759 . . . . . . . . . . . 12 (𝜑 → (𝑄 + 1) ∈ ℕ)
1514nnnn0d 9054 . . . . . . . . . . 11 (𝜑 → (𝑄 + 1) ∈ ℕ0)
16 eqidd 2141 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (𝐹𝑘))
17 ax-1cn 7737 . . . . . . . . . . . . . 14 1 ∈ ℂ
18 nn0z 9098 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
19 1exp 10353 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
2018, 19syl 14 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0 → (1↑𝑛) = 1)
2120oveq1d 5797 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0 → ((1↑𝑛) / (!‘𝑛)) = (1 / (!‘𝑛)))
2221mpteq2ia 4022 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
236, 22eqtr4i 2164 . . . . . . . . . . . . . . 15 𝐹 = (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛)))
2423eftvalcn 11400 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) = ((1↑𝑘) / (!‘𝑘)))
2517, 24mpan 421 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (𝐹𝑘) = ((1↑𝑘) / (!‘𝑘)))
2625adantl 275 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = ((1↑𝑘) / (!‘𝑘)))
2717a1i 9 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℂ)
28 eftcl 11397 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((1↑𝑘) / (!‘𝑘)) ∈ ℂ)
2927, 28sylan 281 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → ((1↑𝑘) / (!‘𝑘)) ∈ ℂ)
3026, 29eqeltrd 2217 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
3123efcllem 11402 . . . . . . . . . . . 12 (1 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ )
3227, 31syl 14 . . . . . . . . . . 11 (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )
3311, 12, 15, 16, 30, 32isumsplit 11292 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ ℕ0 (𝐹𝑘) = (Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
3410, 33syl5eq 2185 . . . . . . . . 9 (𝜑 → e = (Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
3513nncnd 8758 . . . . . . . . . . . . 13 (𝜑𝑄 ∈ ℂ)
36 pncan 7992 . . . . . . . . . . . . 13 ((𝑄 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑄 + 1) − 1) = 𝑄)
3735, 17, 36sylancl 410 . . . . . . . . . . . 12 (𝜑 → ((𝑄 + 1) − 1) = 𝑄)
3837oveq2d 5798 . . . . . . . . . . 11 (𝜑 → (0...((𝑄 + 1) − 1)) = (0...𝑄))
3938sumeq1d 11167 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹𝑘) = Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))
4039oveq1d 5797 . . . . . . . . 9 (𝜑 → (Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) = (Σ𝑘 ∈ (0...𝑄)(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
4134, 40eqtrd 2173 . . . . . . . 8 (𝜑 → e = (Σ𝑘 ∈ (0...𝑄)(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
4241oveq1d 5797 . . . . . . 7 (𝜑 → (e − Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) = ((Σ𝑘 ∈ (0...𝑄)(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) − Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)))
43 0zd 9090 . . . . . . . . . 10 (𝜑 → 0 ∈ ℤ)
4413nnzd 9196 . . . . . . . . . 10 (𝜑𝑄 ∈ ℤ)
4543, 44fzfigd 10235 . . . . . . . . 9 (𝜑 → (0...𝑄) ∈ Fin)
46 elfznn0 9925 . . . . . . . . . 10 (𝑘 ∈ (0...𝑄) → 𝑘 ∈ ℕ0)
4746, 30sylan2 284 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑄)) → (𝐹𝑘) ∈ ℂ)
4845, 47fsumcl 11201 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (0...𝑄)(𝐹𝑘) ∈ ℂ)
498adantl 275 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (1 / (!‘𝑘)))
502adantl 275 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
5150nnrpd 9511 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ+)
5251rpreccld 9524 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (1 / (!‘𝑘)) ∈ ℝ+)
5349, 52eqeltrd 2217 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℝ+)
5411, 12, 15, 16, 53, 32isumrpcl 11295 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℝ+)
5554rpred 9513 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℝ)
5655recnd 7818 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℂ)
5748, 56pncan2d 8099 . . . . . . 7 (𝜑 → ((Σ𝑘 ∈ (0...𝑄)(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) − Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) = Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘))
5842, 57eqtrd 2173 . . . . . 6 (𝜑 → (e − Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) = Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘))
5958oveq2d 5798 . . . . 5 (𝜑 → ((!‘𝑄) · (e − Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))) = ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
6013nnnn0d 9054 . . . . . . . 8 (𝜑𝑄 ∈ ℕ0)
6160faccld 10514 . . . . . . 7 (𝜑 → (!‘𝑄) ∈ ℕ)
6261nncnd 8758 . . . . . 6 (𝜑 → (!‘𝑄) ∈ ℂ)
63 ere 11413 . . . . . . . 8 e ∈ ℝ
6463recni 7802 . . . . . . 7 e ∈ ℂ
6564a1i 9 . . . . . 6 (𝜑 → e ∈ ℂ)
6662, 65, 48subdid 8200 . . . . 5 (𝜑 → ((!‘𝑄) · (e − Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))) = (((!‘𝑄) · e) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))))
6759, 66eqtr3d 2175 . . . 4 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) = (((!‘𝑄) · e) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))))
6861nnrpd 9511 . . . . . . 7 (𝜑 → (!‘𝑄) ∈ ℝ+)
6968, 54rpmulcld 9530 . . . . . 6 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) ∈ ℝ+)
7069rpred 9513 . . . . 5 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) ∈ ℝ)
71 eirr.2 . . . . . . . . 9 (𝜑𝑃 ∈ ℤ)
7271zcnd 9198 . . . . . . . 8 (𝜑𝑃 ∈ ℂ)
7313nnap0d 8790 . . . . . . . 8 (𝜑𝑄 # 0)
7462, 72, 35, 73div12apd 8611 . . . . . . 7 (𝜑 → ((!‘𝑄) · (𝑃 / 𝑄)) = (𝑃 · ((!‘𝑄) / 𝑄)))
7513nnred 8757 . . . . . . . . . . 11 (𝜑𝑄 ∈ ℝ)
7675leidd 8300 . . . . . . . . . 10 (𝜑𝑄𝑄)
77 facdiv 10516 . . . . . . . . . 10 ((𝑄 ∈ ℕ0𝑄 ∈ ℕ ∧ 𝑄𝑄) → ((!‘𝑄) / 𝑄) ∈ ℕ)
7860, 13, 76, 77syl3anc 1217 . . . . . . . . 9 (𝜑 → ((!‘𝑄) / 𝑄) ∈ ℕ)
7978nnzd 9196 . . . . . . . 8 (𝜑 → ((!‘𝑄) / 𝑄) ∈ ℤ)
8071, 79zmulcld 9203 . . . . . . 7 (𝜑 → (𝑃 · ((!‘𝑄) / 𝑄)) ∈ ℤ)
8174, 80eqeltrd 2217 . . . . . 6 (𝜑 → ((!‘𝑄) · (𝑃 / 𝑄)) ∈ ℤ)
8245, 62, 47fsummulc2 11249 . . . . . . 7 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) = Σ𝑘 ∈ (0...𝑄)((!‘𝑄) · (𝐹𝑘)))
8346adantl 275 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...𝑄)) → 𝑘 ∈ ℕ0)
8483, 8syl 14 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...𝑄)) → (𝐹𝑘) = (1 / (!‘𝑘)))
8584oveq2d 5798 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹𝑘)) = ((!‘𝑄) · (1 / (!‘𝑘))))
8662adantr 274 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...𝑄)) → (!‘𝑄) ∈ ℂ)
8746, 50sylan2 284 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...𝑄)) → (!‘𝑘) ∈ ℕ)
8887nncnd 8758 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...𝑄)) → (!‘𝑘) ∈ ℂ)
8987nnap0d 8790 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...𝑄)) → (!‘𝑘) # 0)
9086, 88, 89divrecapd 8577 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) / (!‘𝑘)) = ((!‘𝑄) · (1 / (!‘𝑘))))
9185, 90eqtr4d 2176 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹𝑘)) = ((!‘𝑄) / (!‘𝑘)))
92 permnn 10549 . . . . . . . . . . 11 (𝑘 ∈ (0...𝑄) → ((!‘𝑄) / (!‘𝑘)) ∈ ℕ)
9392adantl 275 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) / (!‘𝑘)) ∈ ℕ)
9491, 93eqeltrd 2217 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹𝑘)) ∈ ℕ)
9594nnzd 9196 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹𝑘)) ∈ ℤ)
9645, 95fsumzcl 11203 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (0...𝑄)((!‘𝑄) · (𝐹𝑘)) ∈ ℤ)
9782, 96eqeltrd 2217 . . . . . 6 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) ∈ ℤ)
9881, 97zsubcld 9202 . . . . 5 (𝜑 → (((!‘𝑄) · (𝑃 / 𝑄)) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))) ∈ ℤ)
9969rpgt0d 9516 . . . . 5 (𝜑 → 0 < ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
10014peano2nnd 8759 . . . . . . . . . 10 (𝜑 → ((𝑄 + 1) + 1) ∈ ℕ)
101100nnred 8757 . . . . . . . . 9 (𝜑 → ((𝑄 + 1) + 1) ∈ ℝ)
10215faccld 10514 . . . . . . . . . 10 (𝜑 → (!‘(𝑄 + 1)) ∈ ℕ)
103102, 14nnmulcld 8793 . . . . . . . . 9 (𝜑 → ((!‘(𝑄 + 1)) · (𝑄 + 1)) ∈ ℕ)
104101, 103nndivred 8794 . . . . . . . 8 (𝜑 → (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) ∈ ℝ)
10561nnrecred 8791 . . . . . . . 8 (𝜑 → (1 / (!‘𝑄)) ∈ ℝ)
106 abs1 10876 . . . . . . . . . . . . . 14 (abs‘1) = 1
107106oveq1i 5792 . . . . . . . . . . . . 13 ((abs‘1)↑𝑛) = (1↑𝑛)
108107oveq1i 5792 . . . . . . . . . . . 12 (((abs‘1)↑𝑛) / (!‘𝑛)) = ((1↑𝑛) / (!‘𝑛))
109108mpteq2i 4023 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 ↦ (((abs‘1)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛)))
11023, 109eqtr4i 2164 . . . . . . . . . 10 𝐹 = (𝑛 ∈ ℕ0 ↦ (((abs‘1)↑𝑛) / (!‘𝑛)))
111 eqid 2140 . . . . . . . . . 10 (𝑛 ∈ ℕ0 ↦ ((((abs‘1)↑(𝑄 + 1)) / (!‘(𝑄 + 1))) · ((1 / ((𝑄 + 1) + 1))↑𝑛))) = (𝑛 ∈ ℕ0 ↦ ((((abs‘1)↑(𝑄 + 1)) / (!‘(𝑄 + 1))) · ((1 / ((𝑄 + 1) + 1))↑𝑛)))
112 1le1 8358 . . . . . . . . . . . 12 1 ≤ 1
113106, 112eqbrtri 3957 . . . . . . . . . . 11 (abs‘1) ≤ 1
114113a1i 9 . . . . . . . . . 10 (𝜑 → (abs‘1) ≤ 1)
11523, 110, 111, 14, 27, 114eftlub 11433 . . . . . . . . 9 (𝜑 → (abs‘Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) ≤ (((abs‘1)↑(𝑄 + 1)) · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))))
11654rprege0d 9521 . . . . . . . . . 10 (𝜑 → (Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
117 absid 10875 . . . . . . . . . 10 ((Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) → (abs‘Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) = Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘))
118116, 117syl 14 . . . . . . . . 9 (𝜑 → (abs‘Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) = Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘))
119106oveq1i 5792 . . . . . . . . . . . 12 ((abs‘1)↑(𝑄 + 1)) = (1↑(𝑄 + 1))
12014nnzd 9196 . . . . . . . . . . . . 13 (𝜑 → (𝑄 + 1) ∈ ℤ)
121 1exp 10353 . . . . . . . . . . . . 13 ((𝑄 + 1) ∈ ℤ → (1↑(𝑄 + 1)) = 1)
122120, 121syl 14 . . . . . . . . . . . 12 (𝜑 → (1↑(𝑄 + 1)) = 1)
123119, 122syl5eq 2185 . . . . . . . . . . 11 (𝜑 → ((abs‘1)↑(𝑄 + 1)) = 1)
124123oveq1d 5797 . . . . . . . . . 10 (𝜑 → (((abs‘1)↑(𝑄 + 1)) · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))) = (1 · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))))
125104recnd 7818 . . . . . . . . . . 11 (𝜑 → (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) ∈ ℂ)
126125mulid2d 7808 . . . . . . . . . 10 (𝜑 → (1 · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))) = (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))))
127124, 126eqtrd 2173 . . . . . . . . 9 (𝜑 → (((abs‘1)↑(𝑄 + 1)) · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))) = (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))))
128115, 118, 1273brtr3d 3967 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ≤ (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))))
12914nnred 8757 . . . . . . . . . . . 12 (𝜑 → (𝑄 + 1) ∈ ℝ)
130129, 129readdcld 7819 . . . . . . . . . . 11 (𝜑 → ((𝑄 + 1) + (𝑄 + 1)) ∈ ℝ)
131129, 129remulcld 7820 . . . . . . . . . . 11 (𝜑 → ((𝑄 + 1) · (𝑄 + 1)) ∈ ℝ)
132 1red 7805 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ)
13313nnge1d 8787 . . . . . . . . . . . . 13 (𝜑 → 1 ≤ 𝑄)
134 1nn 8755 . . . . . . . . . . . . . 14 1 ∈ ℕ
135 nnleltp1 9137 . . . . . . . . . . . . . 14 ((1 ∈ ℕ ∧ 𝑄 ∈ ℕ) → (1 ≤ 𝑄 ↔ 1 < (𝑄 + 1)))
136134, 13, 135sylancr 411 . . . . . . . . . . . . 13 (𝜑 → (1 ≤ 𝑄 ↔ 1 < (𝑄 + 1)))
137133, 136mpbid 146 . . . . . . . . . . . 12 (𝜑 → 1 < (𝑄 + 1))
138132, 129, 129, 137ltadd2dd 8208 . . . . . . . . . . 11 (𝜑 → ((𝑄 + 1) + 1) < ((𝑄 + 1) + (𝑄 + 1)))
13914nncnd 8758 . . . . . . . . . . . . 13 (𝜑 → (𝑄 + 1) ∈ ℂ)
1401392timesd 8986 . . . . . . . . . . . 12 (𝜑 → (2 · (𝑄 + 1)) = ((𝑄 + 1) + (𝑄 + 1)))
141 df-2 8803 . . . . . . . . . . . . . 14 2 = (1 + 1)
142132, 75, 132, 133leadd1dd 8345 . . . . . . . . . . . . . 14 (𝜑 → (1 + 1) ≤ (𝑄 + 1))
143141, 142eqbrtrid 3971 . . . . . . . . . . . . 13 (𝜑 → 2 ≤ (𝑄 + 1))
144 2re 8814 . . . . . . . . . . . . . . 15 2 ∈ ℝ
145144a1i 9 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℝ)
14614nngt0d 8788 . . . . . . . . . . . . . 14 (𝜑 → 0 < (𝑄 + 1))
147 lemul1 8379 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ (𝑄 + 1) ∈ ℝ ∧ ((𝑄 + 1) ∈ ℝ ∧ 0 < (𝑄 + 1))) → (2 ≤ (𝑄 + 1) ↔ (2 · (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1))))
148145, 129, 129, 146, 147syl112anc 1221 . . . . . . . . . . . . 13 (𝜑 → (2 ≤ (𝑄 + 1) ↔ (2 · (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1))))
149143, 148mpbid 146 . . . . . . . . . . . 12 (𝜑 → (2 · (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1)))
150140, 149eqbrtrrd 3960 . . . . . . . . . . 11 (𝜑 → ((𝑄 + 1) + (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1)))
151101, 130, 131, 138, 150ltletrd 8209 . . . . . . . . . 10 (𝜑 → ((𝑄 + 1) + 1) < ((𝑄 + 1) · (𝑄 + 1)))
152 facp1 10508 . . . . . . . . . . . . . . 15 (𝑄 ∈ ℕ0 → (!‘(𝑄 + 1)) = ((!‘𝑄) · (𝑄 + 1)))
15360, 152syl 14 . . . . . . . . . . . . . 14 (𝜑 → (!‘(𝑄 + 1)) = ((!‘𝑄) · (𝑄 + 1)))
154153oveq1d 5797 . . . . . . . . . . . . 13 (𝜑 → ((!‘(𝑄 + 1)) / (!‘𝑄)) = (((!‘𝑄) · (𝑄 + 1)) / (!‘𝑄)))
155102nncnd 8758 . . . . . . . . . . . . . 14 (𝜑 → (!‘(𝑄 + 1)) ∈ ℂ)
15661nnap0d 8790 . . . . . . . . . . . . . 14 (𝜑 → (!‘𝑄) # 0)
157155, 62, 156divrecapd 8577 . . . . . . . . . . . . 13 (𝜑 → ((!‘(𝑄 + 1)) / (!‘𝑄)) = ((!‘(𝑄 + 1)) · (1 / (!‘𝑄))))
158139, 62, 156divcanap3d 8579 . . . . . . . . . . . . 13 (𝜑 → (((!‘𝑄) · (𝑄 + 1)) / (!‘𝑄)) = (𝑄 + 1))
159154, 157, 1583eqtr3rd 2182 . . . . . . . . . . . 12 (𝜑 → (𝑄 + 1) = ((!‘(𝑄 + 1)) · (1 / (!‘𝑄))))
160159oveq1d 5797 . . . . . . . . . . 11 (𝜑 → ((𝑄 + 1) · (𝑄 + 1)) = (((!‘(𝑄 + 1)) · (1 / (!‘𝑄))) · (𝑄 + 1)))
161105recnd 7818 . . . . . . . . . . . 12 (𝜑 → (1 / (!‘𝑄)) ∈ ℂ)
162155, 161, 139mul32d 7939 . . . . . . . . . . 11 (𝜑 → (((!‘(𝑄 + 1)) · (1 / (!‘𝑄))) · (𝑄 + 1)) = (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄))))
163160, 162eqtrd 2173 . . . . . . . . . 10 (𝜑 → ((𝑄 + 1) · (𝑄 + 1)) = (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄))))
164151, 163breqtrd 3962 . . . . . . . . 9 (𝜑 → ((𝑄 + 1) + 1) < (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄))))
165103nnred 8757 . . . . . . . . . 10 (𝜑 → ((!‘(𝑄 + 1)) · (𝑄 + 1)) ∈ ℝ)
166103nngt0d 8788 . . . . . . . . . 10 (𝜑 → 0 < ((!‘(𝑄 + 1)) · (𝑄 + 1)))
167 ltdivmul 8658 . . . . . . . . . 10 ((((𝑄 + 1) + 1) ∈ ℝ ∧ (1 / (!‘𝑄)) ∈ ℝ ∧ (((!‘(𝑄 + 1)) · (𝑄 + 1)) ∈ ℝ ∧ 0 < ((!‘(𝑄 + 1)) · (𝑄 + 1)))) → ((((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) < (1 / (!‘𝑄)) ↔ ((𝑄 + 1) + 1) < (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄)))))
168101, 105, 165, 166, 167syl112anc 1221 . . . . . . . . 9 (𝜑 → ((((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) < (1 / (!‘𝑄)) ↔ ((𝑄 + 1) + 1) < (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄)))))
169164, 168mpbird 166 . . . . . . . 8 (𝜑 → (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) < (1 / (!‘𝑄)))
17055, 104, 105, 128, 169lelttrd 7911 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) < (1 / (!‘𝑄)))
17155, 132, 68ltmuldiv2d 9562 . . . . . . 7 (𝜑 → (((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) < 1 ↔ Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) < (1 / (!‘𝑄))))
172170, 171mpbird 166 . . . . . 6 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) < 1)
173 0p1e1 8858 . . . . . 6 (0 + 1) = 1
174172, 173breqtrrdi 3978 . . . . 5 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) < (0 + 1))
17543, 70, 98, 99, 174btwnapz 9205 . . . 4 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) # (((!‘𝑄) · (𝑃 / 𝑄)) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))))
17667, 175eqbrtrrd 3960 . . 3 (𝜑 → (((!‘𝑄) · e) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))) # (((!‘𝑄) · (𝑃 / 𝑄)) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))))
17762, 65mulcld 7810 . . . 4 (𝜑 → ((!‘𝑄) · e) ∈ ℂ)
17881zcnd 9198 . . . 4 (𝜑 → ((!‘𝑄) · (𝑃 / 𝑄)) ∈ ℂ)
17962, 48mulcld 7810 . . . 4 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) ∈ ℂ)
180 apsub1 8428 . . . 4 ((((!‘𝑄) · e) ∈ ℂ ∧ ((!‘𝑄) · (𝑃 / 𝑄)) ∈ ℂ ∧ ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) ∈ ℂ) → (((!‘𝑄) · e) # ((!‘𝑄) · (𝑃 / 𝑄)) ↔ (((!‘𝑄) · e) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))) # (((!‘𝑄) · (𝑃 / 𝑄)) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)))))
181177, 178, 179, 180syl3anc 1217 . . 3 (𝜑 → (((!‘𝑄) · e) # ((!‘𝑄) · (𝑃 / 𝑄)) ↔ (((!‘𝑄) · e) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))) # (((!‘𝑄) · (𝑃 / 𝑄)) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)))))
182176, 181mpbird 166 . 2 (𝜑 → ((!‘𝑄) · e) # ((!‘𝑄) · (𝑃 / 𝑄)))
183 znq 9443 . . . . 5 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ) → (𝑃 / 𝑄) ∈ ℚ)
18471, 13, 183syl2anc 409 . . . 4 (𝜑 → (𝑃 / 𝑄) ∈ ℚ)
185 qcn 9453 . . . 4 ((𝑃 / 𝑄) ∈ ℚ → (𝑃 / 𝑄) ∈ ℂ)
186184, 185syl 14 . . 3 (𝜑 → (𝑃 / 𝑄) ∈ ℂ)
187 apmul2 8573 . . 3 ((e ∈ ℂ ∧ (𝑃 / 𝑄) ∈ ℂ ∧ ((!‘𝑄) ∈ ℂ ∧ (!‘𝑄) # 0)) → (e # (𝑃 / 𝑄) ↔ ((!‘𝑄) · e) # ((!‘𝑄) · (𝑃 / 𝑄))))
18865, 186, 62, 156, 187syl112anc 1221 . 2 (𝜑 → (e # (𝑃 / 𝑄) ↔ ((!‘𝑄) · e) # ((!‘𝑄) · (𝑃 / 𝑄))))
189182, 188mpbird 166 1 (𝜑 → e # (𝑃 / 𝑄))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 1481   class class class wbr 3937  cmpt 3997  dom cdm 4547  cfv 5131  (class class class)co 5782  cc 7642  cr 7643  0cc0 7644  1c1 7645   + caddc 7647   · cmul 7649   < clt 7824  cle 7825  cmin 7957   # cap 8367   / cdiv 8456  cn 8744  2c2 8795  0cn0 9001  cz 9078  cuz 9350  cq 9438  +crp 9470  ...cfz 9821  seqcseq 10249  cexp 10323  !cfa 10503  abscabs 10801  cli 11079  Σcsu 11154  eceu 11386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-mulrcl 7743  ax-addcom 7744  ax-mulcom 7745  ax-addass 7746  ax-mulass 7747  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-1rid 7751  ax-0id 7752  ax-rnegex 7753  ax-precex 7754  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-apti 7759  ax-pre-ltadd 7760  ax-pre-mulgt0 7761  ax-pre-mulext 7762  ax-arch 7763  ax-caucvg 7764
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-ilim 4299  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-isom 5140  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-frec 6296  df-1o 6321  df-oadd 6325  df-er 6437  df-en 6643  df-dom 6644  df-fin 6645  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-reap 8361  df-ap 8368  df-div 8457  df-inn 8745  df-2 8803  df-3 8804  df-4 8805  df-n0 9002  df-z 9079  df-uz 9351  df-q 9439  df-rp 9471  df-ico 9707  df-fz 9822  df-fzo 9951  df-seqfrec 10250  df-exp 10324  df-fac 10504  df-bc 10526  df-ihash 10554  df-shft 10619  df-cj 10646  df-re 10647  df-im 10648  df-rsqrt 10802  df-abs 10803  df-clim 11080  df-sumdc 11155  df-ef 11391  df-e 11392
This theorem is referenced by:  eirrap  11520
  Copyright terms: Public domain W3C validator