ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eirraplem GIF version

Theorem eirraplem 11959
Description: Lemma for eirrap 11960. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 5-Jan-2022.)
Hypotheses
Ref Expression
eirr.1 𝐹 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
eirr.2 (𝜑𝑃 ∈ ℤ)
eirr.3 (𝜑𝑄 ∈ ℕ)
Assertion
Ref Expression
eirraplem (𝜑 → e # (𝑃 / 𝑄))
Distinct variable group:   𝑄,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝑃(𝑛)   𝐹(𝑛)

Proof of Theorem eirraplem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 esum 11844 . . . . . . . . . . 11 e = Σ𝑘 ∈ ℕ0 (1 / (!‘𝑘))
2 faccl 10844 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
32nnrecred 9054 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (1 / (!‘𝑘)) ∈ ℝ)
4 fveq2 5561 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘))
54oveq2d 5941 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (1 / (!‘𝑛)) = (1 / (!‘𝑘)))
6 eirr.1 . . . . . . . . . . . . . 14 𝐹 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
75, 6fvmptg 5640 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0 ∧ (1 / (!‘𝑘)) ∈ ℝ) → (𝐹𝑘) = (1 / (!‘𝑘)))
83, 7mpdan 421 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (𝐹𝑘) = (1 / (!‘𝑘)))
98sumeq2i 11546 . . . . . . . . . . 11 Σ𝑘 ∈ ℕ0 (𝐹𝑘) = Σ𝑘 ∈ ℕ0 (1 / (!‘𝑘))
101, 9eqtr4i 2220 . . . . . . . . . 10 e = Σ𝑘 ∈ ℕ0 (𝐹𝑘)
11 nn0uz 9653 . . . . . . . . . . 11 0 = (ℤ‘0)
12 eqid 2196 . . . . . . . . . . 11 (ℤ‘(𝑄 + 1)) = (ℤ‘(𝑄 + 1))
13 eirr.3 . . . . . . . . . . . . 13 (𝜑𝑄 ∈ ℕ)
1413peano2nnd 9022 . . . . . . . . . . . 12 (𝜑 → (𝑄 + 1) ∈ ℕ)
1514nnnn0d 9319 . . . . . . . . . . 11 (𝜑 → (𝑄 + 1) ∈ ℕ0)
16 eqidd 2197 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (𝐹𝑘))
17 ax-1cn 7989 . . . . . . . . . . . . . 14 1 ∈ ℂ
18 nn0z 9363 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
19 1exp 10677 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
2018, 19syl 14 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0 → (1↑𝑛) = 1)
2120oveq1d 5940 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0 → ((1↑𝑛) / (!‘𝑛)) = (1 / (!‘𝑛)))
2221mpteq2ia 4120 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
236, 22eqtr4i 2220 . . . . . . . . . . . . . . 15 𝐹 = (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛)))
2423eftvalcn 11839 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) = ((1↑𝑘) / (!‘𝑘)))
2517, 24mpan 424 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (𝐹𝑘) = ((1↑𝑘) / (!‘𝑘)))
2625adantl 277 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = ((1↑𝑘) / (!‘𝑘)))
2717a1i 9 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℂ)
28 eftcl 11836 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((1↑𝑘) / (!‘𝑘)) ∈ ℂ)
2927, 28sylan 283 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → ((1↑𝑘) / (!‘𝑘)) ∈ ℂ)
3026, 29eqeltrd 2273 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
3123efcllem 11841 . . . . . . . . . . . 12 (1 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ )
3227, 31syl 14 . . . . . . . . . . 11 (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )
3311, 12, 15, 16, 30, 32isumsplit 11673 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ ℕ0 (𝐹𝑘) = (Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
3410, 33eqtrid 2241 . . . . . . . . 9 (𝜑 → e = (Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
3513nncnd 9021 . . . . . . . . . . . . 13 (𝜑𝑄 ∈ ℂ)
36 pncan 8249 . . . . . . . . . . . . 13 ((𝑄 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑄 + 1) − 1) = 𝑄)
3735, 17, 36sylancl 413 . . . . . . . . . . . 12 (𝜑 → ((𝑄 + 1) − 1) = 𝑄)
3837oveq2d 5941 . . . . . . . . . . 11 (𝜑 → (0...((𝑄 + 1) − 1)) = (0...𝑄))
3938sumeq1d 11548 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹𝑘) = Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))
4039oveq1d 5940 . . . . . . . . 9 (𝜑 → (Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) = (Σ𝑘 ∈ (0...𝑄)(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
4134, 40eqtrd 2229 . . . . . . . 8 (𝜑 → e = (Σ𝑘 ∈ (0...𝑄)(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
4241oveq1d 5940 . . . . . . 7 (𝜑 → (e − Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) = ((Σ𝑘 ∈ (0...𝑄)(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) − Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)))
43 0zd 9355 . . . . . . . . . 10 (𝜑 → 0 ∈ ℤ)
4413nnzd 9464 . . . . . . . . . 10 (𝜑𝑄 ∈ ℤ)
4543, 44fzfigd 10540 . . . . . . . . 9 (𝜑 → (0...𝑄) ∈ Fin)
46 elfznn0 10206 . . . . . . . . . 10 (𝑘 ∈ (0...𝑄) → 𝑘 ∈ ℕ0)
4746, 30sylan2 286 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑄)) → (𝐹𝑘) ∈ ℂ)
4845, 47fsumcl 11582 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (0...𝑄)(𝐹𝑘) ∈ ℂ)
498adantl 277 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (1 / (!‘𝑘)))
502adantl 277 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
5150nnrpd 9786 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ+)
5251rpreccld 9799 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (1 / (!‘𝑘)) ∈ ℝ+)
5349, 52eqeltrd 2273 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℝ+)
5411, 12, 15, 16, 53, 32isumrpcl 11676 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℝ+)
5554rpred 9788 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℝ)
5655recnd 8072 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℂ)
5748, 56pncan2d 8356 . . . . . . 7 (𝜑 → ((Σ𝑘 ∈ (0...𝑄)(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) − Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) = Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘))
5842, 57eqtrd 2229 . . . . . 6 (𝜑 → (e − Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) = Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘))
5958oveq2d 5941 . . . . 5 (𝜑 → ((!‘𝑄) · (e − Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))) = ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
6013nnnn0d 9319 . . . . . . . 8 (𝜑𝑄 ∈ ℕ0)
6160faccld 10845 . . . . . . 7 (𝜑 → (!‘𝑄) ∈ ℕ)
6261nncnd 9021 . . . . . 6 (𝜑 → (!‘𝑄) ∈ ℂ)
63 ere 11852 . . . . . . . 8 e ∈ ℝ
6463recni 8055 . . . . . . 7 e ∈ ℂ
6564a1i 9 . . . . . 6 (𝜑 → e ∈ ℂ)
6662, 65, 48subdid 8457 . . . . 5 (𝜑 → ((!‘𝑄) · (e − Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))) = (((!‘𝑄) · e) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))))
6759, 66eqtr3d 2231 . . . 4 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) = (((!‘𝑄) · e) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))))
6861nnrpd 9786 . . . . . . 7 (𝜑 → (!‘𝑄) ∈ ℝ+)
6968, 54rpmulcld 9805 . . . . . 6 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) ∈ ℝ+)
7069rpred 9788 . . . . 5 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) ∈ ℝ)
71 eirr.2 . . . . . . . . 9 (𝜑𝑃 ∈ ℤ)
7271zcnd 9466 . . . . . . . 8 (𝜑𝑃 ∈ ℂ)
7313nnap0d 9053 . . . . . . . 8 (𝜑𝑄 # 0)
7462, 72, 35, 73div12apd 8871 . . . . . . 7 (𝜑 → ((!‘𝑄) · (𝑃 / 𝑄)) = (𝑃 · ((!‘𝑄) / 𝑄)))
7513nnred 9020 . . . . . . . . . . 11 (𝜑𝑄 ∈ ℝ)
7675leidd 8558 . . . . . . . . . 10 (𝜑𝑄𝑄)
77 facdiv 10847 . . . . . . . . . 10 ((𝑄 ∈ ℕ0𝑄 ∈ ℕ ∧ 𝑄𝑄) → ((!‘𝑄) / 𝑄) ∈ ℕ)
7860, 13, 76, 77syl3anc 1249 . . . . . . . . 9 (𝜑 → ((!‘𝑄) / 𝑄) ∈ ℕ)
7978nnzd 9464 . . . . . . . 8 (𝜑 → ((!‘𝑄) / 𝑄) ∈ ℤ)
8071, 79zmulcld 9471 . . . . . . 7 (𝜑 → (𝑃 · ((!‘𝑄) / 𝑄)) ∈ ℤ)
8174, 80eqeltrd 2273 . . . . . 6 (𝜑 → ((!‘𝑄) · (𝑃 / 𝑄)) ∈ ℤ)
8245, 62, 47fsummulc2 11630 . . . . . . 7 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) = Σ𝑘 ∈ (0...𝑄)((!‘𝑄) · (𝐹𝑘)))
8346adantl 277 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...𝑄)) → 𝑘 ∈ ℕ0)
8483, 8syl 14 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...𝑄)) → (𝐹𝑘) = (1 / (!‘𝑘)))
8584oveq2d 5941 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹𝑘)) = ((!‘𝑄) · (1 / (!‘𝑘))))
8662adantr 276 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...𝑄)) → (!‘𝑄) ∈ ℂ)
8746, 50sylan2 286 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...𝑄)) → (!‘𝑘) ∈ ℕ)
8887nncnd 9021 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...𝑄)) → (!‘𝑘) ∈ ℂ)
8987nnap0d 9053 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...𝑄)) → (!‘𝑘) # 0)
9086, 88, 89divrecapd 8837 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) / (!‘𝑘)) = ((!‘𝑄) · (1 / (!‘𝑘))))
9185, 90eqtr4d 2232 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹𝑘)) = ((!‘𝑄) / (!‘𝑘)))
92 permnn 10880 . . . . . . . . . . 11 (𝑘 ∈ (0...𝑄) → ((!‘𝑄) / (!‘𝑘)) ∈ ℕ)
9392adantl 277 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) / (!‘𝑘)) ∈ ℕ)
9491, 93eqeltrd 2273 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹𝑘)) ∈ ℕ)
9594nnzd 9464 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹𝑘)) ∈ ℤ)
9645, 95fsumzcl 11584 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (0...𝑄)((!‘𝑄) · (𝐹𝑘)) ∈ ℤ)
9782, 96eqeltrd 2273 . . . . . 6 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) ∈ ℤ)
9881, 97zsubcld 9470 . . . . 5 (𝜑 → (((!‘𝑄) · (𝑃 / 𝑄)) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))) ∈ ℤ)
9969rpgt0d 9791 . . . . 5 (𝜑 → 0 < ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
10014peano2nnd 9022 . . . . . . . . . 10 (𝜑 → ((𝑄 + 1) + 1) ∈ ℕ)
101100nnred 9020 . . . . . . . . 9 (𝜑 → ((𝑄 + 1) + 1) ∈ ℝ)
10215faccld 10845 . . . . . . . . . 10 (𝜑 → (!‘(𝑄 + 1)) ∈ ℕ)
103102, 14nnmulcld 9056 . . . . . . . . 9 (𝜑 → ((!‘(𝑄 + 1)) · (𝑄 + 1)) ∈ ℕ)
104101, 103nndivred 9057 . . . . . . . 8 (𝜑 → (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) ∈ ℝ)
10561nnrecred 9054 . . . . . . . 8 (𝜑 → (1 / (!‘𝑄)) ∈ ℝ)
106 abs1 11254 . . . . . . . . . . . . . 14 (abs‘1) = 1
107106oveq1i 5935 . . . . . . . . . . . . 13 ((abs‘1)↑𝑛) = (1↑𝑛)
108107oveq1i 5935 . . . . . . . . . . . 12 (((abs‘1)↑𝑛) / (!‘𝑛)) = ((1↑𝑛) / (!‘𝑛))
109108mpteq2i 4121 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 ↦ (((abs‘1)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛)))
11023, 109eqtr4i 2220 . . . . . . . . . 10 𝐹 = (𝑛 ∈ ℕ0 ↦ (((abs‘1)↑𝑛) / (!‘𝑛)))
111 eqid 2196 . . . . . . . . . 10 (𝑛 ∈ ℕ0 ↦ ((((abs‘1)↑(𝑄 + 1)) / (!‘(𝑄 + 1))) · ((1 / ((𝑄 + 1) + 1))↑𝑛))) = (𝑛 ∈ ℕ0 ↦ ((((abs‘1)↑(𝑄 + 1)) / (!‘(𝑄 + 1))) · ((1 / ((𝑄 + 1) + 1))↑𝑛)))
112 1le1 8616 . . . . . . . . . . . 12 1 ≤ 1
113106, 112eqbrtri 4055 . . . . . . . . . . 11 (abs‘1) ≤ 1
114113a1i 9 . . . . . . . . . 10 (𝜑 → (abs‘1) ≤ 1)
11523, 110, 111, 14, 27, 114eftlub 11872 . . . . . . . . 9 (𝜑 → (abs‘Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) ≤ (((abs‘1)↑(𝑄 + 1)) · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))))
11654rprege0d 9796 . . . . . . . . . 10 (𝜑 → (Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
117 absid 11253 . . . . . . . . . 10 ((Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) → (abs‘Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) = Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘))
118116, 117syl 14 . . . . . . . . 9 (𝜑 → (abs‘Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) = Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘))
119106oveq1i 5935 . . . . . . . . . . . 12 ((abs‘1)↑(𝑄 + 1)) = (1↑(𝑄 + 1))
12014nnzd 9464 . . . . . . . . . . . . 13 (𝜑 → (𝑄 + 1) ∈ ℤ)
121 1exp 10677 . . . . . . . . . . . . 13 ((𝑄 + 1) ∈ ℤ → (1↑(𝑄 + 1)) = 1)
122120, 121syl 14 . . . . . . . . . . . 12 (𝜑 → (1↑(𝑄 + 1)) = 1)
123119, 122eqtrid 2241 . . . . . . . . . . 11 (𝜑 → ((abs‘1)↑(𝑄 + 1)) = 1)
124123oveq1d 5940 . . . . . . . . . 10 (𝜑 → (((abs‘1)↑(𝑄 + 1)) · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))) = (1 · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))))
125104recnd 8072 . . . . . . . . . . 11 (𝜑 → (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) ∈ ℂ)
126125mulid2d 8062 . . . . . . . . . 10 (𝜑 → (1 · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))) = (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))))
127124, 126eqtrd 2229 . . . . . . . . 9 (𝜑 → (((abs‘1)↑(𝑄 + 1)) · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))) = (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))))
128115, 118, 1273brtr3d 4065 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ≤ (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))))
12914nnred 9020 . . . . . . . . . . . 12 (𝜑 → (𝑄 + 1) ∈ ℝ)
130129, 129readdcld 8073 . . . . . . . . . . 11 (𝜑 → ((𝑄 + 1) + (𝑄 + 1)) ∈ ℝ)
131129, 129remulcld 8074 . . . . . . . . . . 11 (𝜑 → ((𝑄 + 1) · (𝑄 + 1)) ∈ ℝ)
132 1red 8058 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ)
13313nnge1d 9050 . . . . . . . . . . . . 13 (𝜑 → 1 ≤ 𝑄)
134 1nn 9018 . . . . . . . . . . . . . 14 1 ∈ ℕ
135 nnleltp1 9402 . . . . . . . . . . . . . 14 ((1 ∈ ℕ ∧ 𝑄 ∈ ℕ) → (1 ≤ 𝑄 ↔ 1 < (𝑄 + 1)))
136134, 13, 135sylancr 414 . . . . . . . . . . . . 13 (𝜑 → (1 ≤ 𝑄 ↔ 1 < (𝑄 + 1)))
137133, 136mpbid 147 . . . . . . . . . . . 12 (𝜑 → 1 < (𝑄 + 1))
138132, 129, 129, 137ltadd2dd 8466 . . . . . . . . . . 11 (𝜑 → ((𝑄 + 1) + 1) < ((𝑄 + 1) + (𝑄 + 1)))
13914nncnd 9021 . . . . . . . . . . . . 13 (𝜑 → (𝑄 + 1) ∈ ℂ)
1401392timesd 9251 . . . . . . . . . . . 12 (𝜑 → (2 · (𝑄 + 1)) = ((𝑄 + 1) + (𝑄 + 1)))
141 df-2 9066 . . . . . . . . . . . . . 14 2 = (1 + 1)
142132, 75, 132, 133leadd1dd 8603 . . . . . . . . . . . . . 14 (𝜑 → (1 + 1) ≤ (𝑄 + 1))
143141, 142eqbrtrid 4069 . . . . . . . . . . . . 13 (𝜑 → 2 ≤ (𝑄 + 1))
144 2re 9077 . . . . . . . . . . . . . . 15 2 ∈ ℝ
145144a1i 9 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℝ)
14614nngt0d 9051 . . . . . . . . . . . . . 14 (𝜑 → 0 < (𝑄 + 1))
147 lemul1 8637 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ (𝑄 + 1) ∈ ℝ ∧ ((𝑄 + 1) ∈ ℝ ∧ 0 < (𝑄 + 1))) → (2 ≤ (𝑄 + 1) ↔ (2 · (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1))))
148145, 129, 129, 146, 147syl112anc 1253 . . . . . . . . . . . . 13 (𝜑 → (2 ≤ (𝑄 + 1) ↔ (2 · (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1))))
149143, 148mpbid 147 . . . . . . . . . . . 12 (𝜑 → (2 · (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1)))
150140, 149eqbrtrrd 4058 . . . . . . . . . . 11 (𝜑 → ((𝑄 + 1) + (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1)))
151101, 130, 131, 138, 150ltletrd 8467 . . . . . . . . . 10 (𝜑 → ((𝑄 + 1) + 1) < ((𝑄 + 1) · (𝑄 + 1)))
152 facp1 10839 . . . . . . . . . . . . . . 15 (𝑄 ∈ ℕ0 → (!‘(𝑄 + 1)) = ((!‘𝑄) · (𝑄 + 1)))
15360, 152syl 14 . . . . . . . . . . . . . 14 (𝜑 → (!‘(𝑄 + 1)) = ((!‘𝑄) · (𝑄 + 1)))
154153oveq1d 5940 . . . . . . . . . . . . 13 (𝜑 → ((!‘(𝑄 + 1)) / (!‘𝑄)) = (((!‘𝑄) · (𝑄 + 1)) / (!‘𝑄)))
155102nncnd 9021 . . . . . . . . . . . . . 14 (𝜑 → (!‘(𝑄 + 1)) ∈ ℂ)
15661nnap0d 9053 . . . . . . . . . . . . . 14 (𝜑 → (!‘𝑄) # 0)
157155, 62, 156divrecapd 8837 . . . . . . . . . . . . 13 (𝜑 → ((!‘(𝑄 + 1)) / (!‘𝑄)) = ((!‘(𝑄 + 1)) · (1 / (!‘𝑄))))
158139, 62, 156divcanap3d 8839 . . . . . . . . . . . . 13 (𝜑 → (((!‘𝑄) · (𝑄 + 1)) / (!‘𝑄)) = (𝑄 + 1))
159154, 157, 1583eqtr3rd 2238 . . . . . . . . . . . 12 (𝜑 → (𝑄 + 1) = ((!‘(𝑄 + 1)) · (1 / (!‘𝑄))))
160159oveq1d 5940 . . . . . . . . . . 11 (𝜑 → ((𝑄 + 1) · (𝑄 + 1)) = (((!‘(𝑄 + 1)) · (1 / (!‘𝑄))) · (𝑄 + 1)))
161105recnd 8072 . . . . . . . . . . . 12 (𝜑 → (1 / (!‘𝑄)) ∈ ℂ)
162155, 161, 139mul32d 8196 . . . . . . . . . . 11 (𝜑 → (((!‘(𝑄 + 1)) · (1 / (!‘𝑄))) · (𝑄 + 1)) = (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄))))
163160, 162eqtrd 2229 . . . . . . . . . 10 (𝜑 → ((𝑄 + 1) · (𝑄 + 1)) = (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄))))
164151, 163breqtrd 4060 . . . . . . . . 9 (𝜑 → ((𝑄 + 1) + 1) < (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄))))
165103nnred 9020 . . . . . . . . . 10 (𝜑 → ((!‘(𝑄 + 1)) · (𝑄 + 1)) ∈ ℝ)
166103nngt0d 9051 . . . . . . . . . 10 (𝜑 → 0 < ((!‘(𝑄 + 1)) · (𝑄 + 1)))
167 ltdivmul 8920 . . . . . . . . . 10 ((((𝑄 + 1) + 1) ∈ ℝ ∧ (1 / (!‘𝑄)) ∈ ℝ ∧ (((!‘(𝑄 + 1)) · (𝑄 + 1)) ∈ ℝ ∧ 0 < ((!‘(𝑄 + 1)) · (𝑄 + 1)))) → ((((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) < (1 / (!‘𝑄)) ↔ ((𝑄 + 1) + 1) < (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄)))))
168101, 105, 165, 166, 167syl112anc 1253 . . . . . . . . 9 (𝜑 → ((((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) < (1 / (!‘𝑄)) ↔ ((𝑄 + 1) + 1) < (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄)))))
169164, 168mpbird 167 . . . . . . . 8 (𝜑 → (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) < (1 / (!‘𝑄)))
17055, 104, 105, 128, 169lelttrd 8168 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) < (1 / (!‘𝑄)))
17155, 132, 68ltmuldiv2d 9837 . . . . . . 7 (𝜑 → (((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) < 1 ↔ Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) < (1 / (!‘𝑄))))
172170, 171mpbird 167 . . . . . 6 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) < 1)
173 0p1e1 9121 . . . . . 6 (0 + 1) = 1
174172, 173breqtrrdi 4076 . . . . 5 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) < (0 + 1))
17543, 70, 98, 99, 174btwnapz 9473 . . . 4 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) # (((!‘𝑄) · (𝑃 / 𝑄)) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))))
17667, 175eqbrtrrd 4058 . . 3 (𝜑 → (((!‘𝑄) · e) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))) # (((!‘𝑄) · (𝑃 / 𝑄)) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))))
17762, 65mulcld 8064 . . . 4 (𝜑 → ((!‘𝑄) · e) ∈ ℂ)
17881zcnd 9466 . . . 4 (𝜑 → ((!‘𝑄) · (𝑃 / 𝑄)) ∈ ℂ)
17962, 48mulcld 8064 . . . 4 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) ∈ ℂ)
180 apsub1 8686 . . . 4 ((((!‘𝑄) · e) ∈ ℂ ∧ ((!‘𝑄) · (𝑃 / 𝑄)) ∈ ℂ ∧ ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) ∈ ℂ) → (((!‘𝑄) · e) # ((!‘𝑄) · (𝑃 / 𝑄)) ↔ (((!‘𝑄) · e) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))) # (((!‘𝑄) · (𝑃 / 𝑄)) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)))))
181177, 178, 179, 180syl3anc 1249 . . 3 (𝜑 → (((!‘𝑄) · e) # ((!‘𝑄) · (𝑃 / 𝑄)) ↔ (((!‘𝑄) · e) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))) # (((!‘𝑄) · (𝑃 / 𝑄)) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)))))
182176, 181mpbird 167 . 2 (𝜑 → ((!‘𝑄) · e) # ((!‘𝑄) · (𝑃 / 𝑄)))
183 znq 9715 . . . . 5 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ) → (𝑃 / 𝑄) ∈ ℚ)
18471, 13, 183syl2anc 411 . . . 4 (𝜑 → (𝑃 / 𝑄) ∈ ℚ)
185 qcn 9725 . . . 4 ((𝑃 / 𝑄) ∈ ℚ → (𝑃 / 𝑄) ∈ ℂ)
186184, 185syl 14 . . 3 (𝜑 → (𝑃 / 𝑄) ∈ ℂ)
187 apmul2 8833 . . 3 ((e ∈ ℂ ∧ (𝑃 / 𝑄) ∈ ℂ ∧ ((!‘𝑄) ∈ ℂ ∧ (!‘𝑄) # 0)) → (e # (𝑃 / 𝑄) ↔ ((!‘𝑄) · e) # ((!‘𝑄) · (𝑃 / 𝑄))))
18865, 186, 62, 156, 187syl112anc 1253 . 2 (𝜑 → (e # (𝑃 / 𝑄) ↔ ((!‘𝑄) · e) # ((!‘𝑄) · (𝑃 / 𝑄))))
189182, 188mpbird 167 1 (𝜑 → e # (𝑃 / 𝑄))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167   class class class wbr 4034  cmpt 4095  dom cdm 4664  cfv 5259  (class class class)co 5925  cc 7894  cr 7895  0cc0 7896  1c1 7897   + caddc 7899   · cmul 7901   < clt 8078  cle 8079  cmin 8214   # cap 8625   / cdiv 8716  cn 9007  2c2 9058  0cn0 9266  cz 9343  cuz 9618  cq 9710  +crp 9745  ...cfz 10100  seqcseq 10556  cexp 10647  !cfa 10834  abscabs 11179  cli 11460  Σcsu 11535  eceu 11825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-isom 5268  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-irdg 6437  df-frec 6458  df-1o 6483  df-oadd 6487  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-ico 9986  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648  df-fac 10835  df-bc 10857  df-ihash 10885  df-shft 10997  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-clim 11461  df-sumdc 11536  df-ef 11830  df-e 11831
This theorem is referenced by:  eirrap  11960
  Copyright terms: Public domain W3C validator