ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eirraplem GIF version

Theorem eirraplem 12121
Description: Lemma for eirrap 12122. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Jim Kingdon, 5-Jan-2022.)
Hypotheses
Ref Expression
eirr.1 𝐹 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
eirr.2 (𝜑𝑃 ∈ ℤ)
eirr.3 (𝜑𝑄 ∈ ℕ)
Assertion
Ref Expression
eirraplem (𝜑 → e # (𝑃 / 𝑄))
Distinct variable group:   𝑄,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝑃(𝑛)   𝐹(𝑛)

Proof of Theorem eirraplem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 esum 12006 . . . . . . . . . . 11 e = Σ𝑘 ∈ ℕ0 (1 / (!‘𝑘))
2 faccl 10882 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ0 → (!‘𝑘) ∈ ℕ)
32nnrecred 9085 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (1 / (!‘𝑘)) ∈ ℝ)
4 fveq2 5578 . . . . . . . . . . . . . . 15 (𝑛 = 𝑘 → (!‘𝑛) = (!‘𝑘))
54oveq2d 5962 . . . . . . . . . . . . . 14 (𝑛 = 𝑘 → (1 / (!‘𝑛)) = (1 / (!‘𝑘)))
6 eirr.1 . . . . . . . . . . . . . 14 𝐹 = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
75, 6fvmptg 5657 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ0 ∧ (1 / (!‘𝑘)) ∈ ℝ) → (𝐹𝑘) = (1 / (!‘𝑘)))
83, 7mpdan 421 . . . . . . . . . . . 12 (𝑘 ∈ ℕ0 → (𝐹𝑘) = (1 / (!‘𝑘)))
98sumeq2i 11708 . . . . . . . . . . 11 Σ𝑘 ∈ ℕ0 (𝐹𝑘) = Σ𝑘 ∈ ℕ0 (1 / (!‘𝑘))
101, 9eqtr4i 2229 . . . . . . . . . 10 e = Σ𝑘 ∈ ℕ0 (𝐹𝑘)
11 nn0uz 9685 . . . . . . . . . . 11 0 = (ℤ‘0)
12 eqid 2205 . . . . . . . . . . 11 (ℤ‘(𝑄 + 1)) = (ℤ‘(𝑄 + 1))
13 eirr.3 . . . . . . . . . . . . 13 (𝜑𝑄 ∈ ℕ)
1413peano2nnd 9053 . . . . . . . . . . . 12 (𝜑 → (𝑄 + 1) ∈ ℕ)
1514nnnn0d 9350 . . . . . . . . . . 11 (𝜑 → (𝑄 + 1) ∈ ℕ0)
16 eqidd 2206 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (𝐹𝑘))
17 ax-1cn 8020 . . . . . . . . . . . . . 14 1 ∈ ℂ
18 nn0z 9394 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℕ0𝑛 ∈ ℤ)
19 1exp 10715 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ ℤ → (1↑𝑛) = 1)
2018, 19syl 14 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕ0 → (1↑𝑛) = 1)
2120oveq1d 5961 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕ0 → ((1↑𝑛) / (!‘𝑛)) = (1 / (!‘𝑛)))
2221mpteq2ia 4131 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ (1 / (!‘𝑛)))
236, 22eqtr4i 2229 . . . . . . . . . . . . . . 15 𝐹 = (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛)))
2423eftvalcn 12001 . . . . . . . . . . . . . 14 ((1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐹𝑘) = ((1↑𝑘) / (!‘𝑘)))
2517, 24mpan 424 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ0 → (𝐹𝑘) = ((1↑𝑘) / (!‘𝑘)))
2625adantl 277 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = ((1↑𝑘) / (!‘𝑘)))
2717a1i 9 . . . . . . . . . . . . 13 (𝜑 → 1 ∈ ℂ)
28 eftcl 11998 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((1↑𝑘) / (!‘𝑘)) ∈ ℂ)
2927, 28sylan 283 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → ((1↑𝑘) / (!‘𝑘)) ∈ ℂ)
3026, 29eqeltrd 2282 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℂ)
3123efcllem 12003 . . . . . . . . . . . 12 (1 ∈ ℂ → seq0( + , 𝐹) ∈ dom ⇝ )
3227, 31syl 14 . . . . . . . . . . 11 (𝜑 → seq0( + , 𝐹) ∈ dom ⇝ )
3311, 12, 15, 16, 30, 32isumsplit 11835 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ ℕ0 (𝐹𝑘) = (Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
3410, 33eqtrid 2250 . . . . . . . . 9 (𝜑 → e = (Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
3513nncnd 9052 . . . . . . . . . . . . 13 (𝜑𝑄 ∈ ℂ)
36 pncan 8280 . . . . . . . . . . . . 13 ((𝑄 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑄 + 1) − 1) = 𝑄)
3735, 17, 36sylancl 413 . . . . . . . . . . . 12 (𝜑 → ((𝑄 + 1) − 1) = 𝑄)
3837oveq2d 5962 . . . . . . . . . . 11 (𝜑 → (0...((𝑄 + 1) − 1)) = (0...𝑄))
3938sumeq1d 11710 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹𝑘) = Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))
4039oveq1d 5961 . . . . . . . . 9 (𝜑 → (Σ𝑘 ∈ (0...((𝑄 + 1) − 1))(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) = (Σ𝑘 ∈ (0...𝑄)(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
4134, 40eqtrd 2238 . . . . . . . 8 (𝜑 → e = (Σ𝑘 ∈ (0...𝑄)(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
4241oveq1d 5961 . . . . . . 7 (𝜑 → (e − Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) = ((Σ𝑘 ∈ (0...𝑄)(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) − Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)))
43 0zd 9386 . . . . . . . . . 10 (𝜑 → 0 ∈ ℤ)
4413nnzd 9496 . . . . . . . . . 10 (𝜑𝑄 ∈ ℤ)
4543, 44fzfigd 10578 . . . . . . . . 9 (𝜑 → (0...𝑄) ∈ Fin)
46 elfznn0 10238 . . . . . . . . . 10 (𝑘 ∈ (0...𝑄) → 𝑘 ∈ ℕ0)
4746, 30sylan2 286 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑄)) → (𝐹𝑘) ∈ ℂ)
4845, 47fsumcl 11744 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (0...𝑄)(𝐹𝑘) ∈ ℂ)
498adantl 277 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) = (1 / (!‘𝑘)))
502adantl 277 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℕ)
5150nnrpd 9818 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ ℕ0) → (!‘𝑘) ∈ ℝ+)
5251rpreccld 9831 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ ℕ0) → (1 / (!‘𝑘)) ∈ ℝ+)
5349, 52eqeltrd 2282 . . . . . . . . . . 11 ((𝜑𝑘 ∈ ℕ0) → (𝐹𝑘) ∈ ℝ+)
5411, 12, 15, 16, 53, 32isumrpcl 11838 . . . . . . . . . 10 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℝ+)
5554rpred 9820 . . . . . . . . 9 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℝ)
5655recnd 8103 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℂ)
5748, 56pncan2d 8387 . . . . . . 7 (𝜑 → ((Σ𝑘 ∈ (0...𝑄)(𝐹𝑘) + Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) − Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) = Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘))
5842, 57eqtrd 2238 . . . . . 6 (𝜑 → (e − Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) = Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘))
5958oveq2d 5962 . . . . 5 (𝜑 → ((!‘𝑄) · (e − Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))) = ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
6013nnnn0d 9350 . . . . . . . 8 (𝜑𝑄 ∈ ℕ0)
6160faccld 10883 . . . . . . 7 (𝜑 → (!‘𝑄) ∈ ℕ)
6261nncnd 9052 . . . . . 6 (𝜑 → (!‘𝑄) ∈ ℂ)
63 ere 12014 . . . . . . . 8 e ∈ ℝ
6463recni 8086 . . . . . . 7 e ∈ ℂ
6564a1i 9 . . . . . 6 (𝜑 → e ∈ ℂ)
6662, 65, 48subdid 8488 . . . . 5 (𝜑 → ((!‘𝑄) · (e − Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))) = (((!‘𝑄) · e) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))))
6759, 66eqtr3d 2240 . . . 4 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) = (((!‘𝑄) · e) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))))
6861nnrpd 9818 . . . . . . 7 (𝜑 → (!‘𝑄) ∈ ℝ+)
6968, 54rpmulcld 9837 . . . . . 6 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) ∈ ℝ+)
7069rpred 9820 . . . . 5 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) ∈ ℝ)
71 eirr.2 . . . . . . . . 9 (𝜑𝑃 ∈ ℤ)
7271zcnd 9498 . . . . . . . 8 (𝜑𝑃 ∈ ℂ)
7313nnap0d 9084 . . . . . . . 8 (𝜑𝑄 # 0)
7462, 72, 35, 73div12apd 8902 . . . . . . 7 (𝜑 → ((!‘𝑄) · (𝑃 / 𝑄)) = (𝑃 · ((!‘𝑄) / 𝑄)))
7513nnred 9051 . . . . . . . . . . 11 (𝜑𝑄 ∈ ℝ)
7675leidd 8589 . . . . . . . . . 10 (𝜑𝑄𝑄)
77 facdiv 10885 . . . . . . . . . 10 ((𝑄 ∈ ℕ0𝑄 ∈ ℕ ∧ 𝑄𝑄) → ((!‘𝑄) / 𝑄) ∈ ℕ)
7860, 13, 76, 77syl3anc 1250 . . . . . . . . 9 (𝜑 → ((!‘𝑄) / 𝑄) ∈ ℕ)
7978nnzd 9496 . . . . . . . 8 (𝜑 → ((!‘𝑄) / 𝑄) ∈ ℤ)
8071, 79zmulcld 9503 . . . . . . 7 (𝜑 → (𝑃 · ((!‘𝑄) / 𝑄)) ∈ ℤ)
8174, 80eqeltrd 2282 . . . . . 6 (𝜑 → ((!‘𝑄) · (𝑃 / 𝑄)) ∈ ℤ)
8245, 62, 47fsummulc2 11792 . . . . . . 7 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) = Σ𝑘 ∈ (0...𝑄)((!‘𝑄) · (𝐹𝑘)))
8346adantl 277 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...𝑄)) → 𝑘 ∈ ℕ0)
8483, 8syl 14 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...𝑄)) → (𝐹𝑘) = (1 / (!‘𝑘)))
8584oveq2d 5962 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹𝑘)) = ((!‘𝑄) · (1 / (!‘𝑘))))
8662adantr 276 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...𝑄)) → (!‘𝑄) ∈ ℂ)
8746, 50sylan2 286 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...𝑄)) → (!‘𝑘) ∈ ℕ)
8887nncnd 9052 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...𝑄)) → (!‘𝑘) ∈ ℂ)
8987nnap0d 9084 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (0...𝑄)) → (!‘𝑘) # 0)
9086, 88, 89divrecapd 8868 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) / (!‘𝑘)) = ((!‘𝑄) · (1 / (!‘𝑘))))
9185, 90eqtr4d 2241 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹𝑘)) = ((!‘𝑄) / (!‘𝑘)))
92 permnn 10918 . . . . . . . . . . 11 (𝑘 ∈ (0...𝑄) → ((!‘𝑄) / (!‘𝑘)) ∈ ℕ)
9392adantl 277 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) / (!‘𝑘)) ∈ ℕ)
9491, 93eqeltrd 2282 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹𝑘)) ∈ ℕ)
9594nnzd 9496 . . . . . . . 8 ((𝜑𝑘 ∈ (0...𝑄)) → ((!‘𝑄) · (𝐹𝑘)) ∈ ℤ)
9645, 95fsumzcl 11746 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (0...𝑄)((!‘𝑄) · (𝐹𝑘)) ∈ ℤ)
9782, 96eqeltrd 2282 . . . . . 6 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) ∈ ℤ)
9881, 97zsubcld 9502 . . . . 5 (𝜑 → (((!‘𝑄) · (𝑃 / 𝑄)) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))) ∈ ℤ)
9969rpgt0d 9823 . . . . 5 (𝜑 → 0 < ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
10014peano2nnd 9053 . . . . . . . . . 10 (𝜑 → ((𝑄 + 1) + 1) ∈ ℕ)
101100nnred 9051 . . . . . . . . 9 (𝜑 → ((𝑄 + 1) + 1) ∈ ℝ)
10215faccld 10883 . . . . . . . . . 10 (𝜑 → (!‘(𝑄 + 1)) ∈ ℕ)
103102, 14nnmulcld 9087 . . . . . . . . 9 (𝜑 → ((!‘(𝑄 + 1)) · (𝑄 + 1)) ∈ ℕ)
104101, 103nndivred 9088 . . . . . . . 8 (𝜑 → (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) ∈ ℝ)
10561nnrecred 9085 . . . . . . . 8 (𝜑 → (1 / (!‘𝑄)) ∈ ℝ)
106 abs1 11416 . . . . . . . . . . . . . 14 (abs‘1) = 1
107106oveq1i 5956 . . . . . . . . . . . . 13 ((abs‘1)↑𝑛) = (1↑𝑛)
108107oveq1i 5956 . . . . . . . . . . . 12 (((abs‘1)↑𝑛) / (!‘𝑛)) = ((1↑𝑛) / (!‘𝑛))
109108mpteq2i 4132 . . . . . . . . . . 11 (𝑛 ∈ ℕ0 ↦ (((abs‘1)↑𝑛) / (!‘𝑛))) = (𝑛 ∈ ℕ0 ↦ ((1↑𝑛) / (!‘𝑛)))
11023, 109eqtr4i 2229 . . . . . . . . . 10 𝐹 = (𝑛 ∈ ℕ0 ↦ (((abs‘1)↑𝑛) / (!‘𝑛)))
111 eqid 2205 . . . . . . . . . 10 (𝑛 ∈ ℕ0 ↦ ((((abs‘1)↑(𝑄 + 1)) / (!‘(𝑄 + 1))) · ((1 / ((𝑄 + 1) + 1))↑𝑛))) = (𝑛 ∈ ℕ0 ↦ ((((abs‘1)↑(𝑄 + 1)) / (!‘(𝑄 + 1))) · ((1 / ((𝑄 + 1) + 1))↑𝑛)))
112 1le1 8647 . . . . . . . . . . . 12 1 ≤ 1
113106, 112eqbrtri 4066 . . . . . . . . . . 11 (abs‘1) ≤ 1
114113a1i 9 . . . . . . . . . 10 (𝜑 → (abs‘1) ≤ 1)
11523, 110, 111, 14, 27, 114eftlub 12034 . . . . . . . . 9 (𝜑 → (abs‘Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) ≤ (((abs‘1)↑(𝑄 + 1)) · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))))
11654rprege0d 9828 . . . . . . . . . 10 (𝜑 → (Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)))
117 absid 11415 . . . . . . . . . 10 ((Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ∈ ℝ ∧ 0 ≤ Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) → (abs‘Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) = Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘))
118116, 117syl 14 . . . . . . . . 9 (𝜑 → (abs‘Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) = Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘))
119106oveq1i 5956 . . . . . . . . . . . 12 ((abs‘1)↑(𝑄 + 1)) = (1↑(𝑄 + 1))
12014nnzd 9496 . . . . . . . . . . . . 13 (𝜑 → (𝑄 + 1) ∈ ℤ)
121 1exp 10715 . . . . . . . . . . . . 13 ((𝑄 + 1) ∈ ℤ → (1↑(𝑄 + 1)) = 1)
122120, 121syl 14 . . . . . . . . . . . 12 (𝜑 → (1↑(𝑄 + 1)) = 1)
123119, 122eqtrid 2250 . . . . . . . . . . 11 (𝜑 → ((abs‘1)↑(𝑄 + 1)) = 1)
124123oveq1d 5961 . . . . . . . . . 10 (𝜑 → (((abs‘1)↑(𝑄 + 1)) · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))) = (1 · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))))
125104recnd 8103 . . . . . . . . . . 11 (𝜑 → (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) ∈ ℂ)
126125mulid2d 8093 . . . . . . . . . 10 (𝜑 → (1 · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))) = (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))))
127124, 126eqtrd 2238 . . . . . . . . 9 (𝜑 → (((abs‘1)↑(𝑄 + 1)) · (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1)))) = (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))))
128115, 118, 1273brtr3d 4076 . . . . . . . 8 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) ≤ (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))))
12914nnred 9051 . . . . . . . . . . . 12 (𝜑 → (𝑄 + 1) ∈ ℝ)
130129, 129readdcld 8104 . . . . . . . . . . 11 (𝜑 → ((𝑄 + 1) + (𝑄 + 1)) ∈ ℝ)
131129, 129remulcld 8105 . . . . . . . . . . 11 (𝜑 → ((𝑄 + 1) · (𝑄 + 1)) ∈ ℝ)
132 1red 8089 . . . . . . . . . . . 12 (𝜑 → 1 ∈ ℝ)
13313nnge1d 9081 . . . . . . . . . . . . 13 (𝜑 → 1 ≤ 𝑄)
134 1nn 9049 . . . . . . . . . . . . . 14 1 ∈ ℕ
135 nnleltp1 9434 . . . . . . . . . . . . . 14 ((1 ∈ ℕ ∧ 𝑄 ∈ ℕ) → (1 ≤ 𝑄 ↔ 1 < (𝑄 + 1)))
136134, 13, 135sylancr 414 . . . . . . . . . . . . 13 (𝜑 → (1 ≤ 𝑄 ↔ 1 < (𝑄 + 1)))
137133, 136mpbid 147 . . . . . . . . . . . 12 (𝜑 → 1 < (𝑄 + 1))
138132, 129, 129, 137ltadd2dd 8497 . . . . . . . . . . 11 (𝜑 → ((𝑄 + 1) + 1) < ((𝑄 + 1) + (𝑄 + 1)))
13914nncnd 9052 . . . . . . . . . . . . 13 (𝜑 → (𝑄 + 1) ∈ ℂ)
1401392timesd 9282 . . . . . . . . . . . 12 (𝜑 → (2 · (𝑄 + 1)) = ((𝑄 + 1) + (𝑄 + 1)))
141 df-2 9097 . . . . . . . . . . . . . 14 2 = (1 + 1)
142132, 75, 132, 133leadd1dd 8634 . . . . . . . . . . . . . 14 (𝜑 → (1 + 1) ≤ (𝑄 + 1))
143141, 142eqbrtrid 4080 . . . . . . . . . . . . 13 (𝜑 → 2 ≤ (𝑄 + 1))
144 2re 9108 . . . . . . . . . . . . . . 15 2 ∈ ℝ
145144a1i 9 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℝ)
14614nngt0d 9082 . . . . . . . . . . . . . 14 (𝜑 → 0 < (𝑄 + 1))
147 lemul1 8668 . . . . . . . . . . . . . 14 ((2 ∈ ℝ ∧ (𝑄 + 1) ∈ ℝ ∧ ((𝑄 + 1) ∈ ℝ ∧ 0 < (𝑄 + 1))) → (2 ≤ (𝑄 + 1) ↔ (2 · (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1))))
148145, 129, 129, 146, 147syl112anc 1254 . . . . . . . . . . . . 13 (𝜑 → (2 ≤ (𝑄 + 1) ↔ (2 · (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1))))
149143, 148mpbid 147 . . . . . . . . . . . 12 (𝜑 → (2 · (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1)))
150140, 149eqbrtrrd 4069 . . . . . . . . . . 11 (𝜑 → ((𝑄 + 1) + (𝑄 + 1)) ≤ ((𝑄 + 1) · (𝑄 + 1)))
151101, 130, 131, 138, 150ltletrd 8498 . . . . . . . . . 10 (𝜑 → ((𝑄 + 1) + 1) < ((𝑄 + 1) · (𝑄 + 1)))
152 facp1 10877 . . . . . . . . . . . . . . 15 (𝑄 ∈ ℕ0 → (!‘(𝑄 + 1)) = ((!‘𝑄) · (𝑄 + 1)))
15360, 152syl 14 . . . . . . . . . . . . . 14 (𝜑 → (!‘(𝑄 + 1)) = ((!‘𝑄) · (𝑄 + 1)))
154153oveq1d 5961 . . . . . . . . . . . . 13 (𝜑 → ((!‘(𝑄 + 1)) / (!‘𝑄)) = (((!‘𝑄) · (𝑄 + 1)) / (!‘𝑄)))
155102nncnd 9052 . . . . . . . . . . . . . 14 (𝜑 → (!‘(𝑄 + 1)) ∈ ℂ)
15661nnap0d 9084 . . . . . . . . . . . . . 14 (𝜑 → (!‘𝑄) # 0)
157155, 62, 156divrecapd 8868 . . . . . . . . . . . . 13 (𝜑 → ((!‘(𝑄 + 1)) / (!‘𝑄)) = ((!‘(𝑄 + 1)) · (1 / (!‘𝑄))))
158139, 62, 156divcanap3d 8870 . . . . . . . . . . . . 13 (𝜑 → (((!‘𝑄) · (𝑄 + 1)) / (!‘𝑄)) = (𝑄 + 1))
159154, 157, 1583eqtr3rd 2247 . . . . . . . . . . . 12 (𝜑 → (𝑄 + 1) = ((!‘(𝑄 + 1)) · (1 / (!‘𝑄))))
160159oveq1d 5961 . . . . . . . . . . 11 (𝜑 → ((𝑄 + 1) · (𝑄 + 1)) = (((!‘(𝑄 + 1)) · (1 / (!‘𝑄))) · (𝑄 + 1)))
161105recnd 8103 . . . . . . . . . . . 12 (𝜑 → (1 / (!‘𝑄)) ∈ ℂ)
162155, 161, 139mul32d 8227 . . . . . . . . . . 11 (𝜑 → (((!‘(𝑄 + 1)) · (1 / (!‘𝑄))) · (𝑄 + 1)) = (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄))))
163160, 162eqtrd 2238 . . . . . . . . . 10 (𝜑 → ((𝑄 + 1) · (𝑄 + 1)) = (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄))))
164151, 163breqtrd 4071 . . . . . . . . 9 (𝜑 → ((𝑄 + 1) + 1) < (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄))))
165103nnred 9051 . . . . . . . . . 10 (𝜑 → ((!‘(𝑄 + 1)) · (𝑄 + 1)) ∈ ℝ)
166103nngt0d 9082 . . . . . . . . . 10 (𝜑 → 0 < ((!‘(𝑄 + 1)) · (𝑄 + 1)))
167 ltdivmul 8951 . . . . . . . . . 10 ((((𝑄 + 1) + 1) ∈ ℝ ∧ (1 / (!‘𝑄)) ∈ ℝ ∧ (((!‘(𝑄 + 1)) · (𝑄 + 1)) ∈ ℝ ∧ 0 < ((!‘(𝑄 + 1)) · (𝑄 + 1)))) → ((((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) < (1 / (!‘𝑄)) ↔ ((𝑄 + 1) + 1) < (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄)))))
168101, 105, 165, 166, 167syl112anc 1254 . . . . . . . . 9 (𝜑 → ((((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) < (1 / (!‘𝑄)) ↔ ((𝑄 + 1) + 1) < (((!‘(𝑄 + 1)) · (𝑄 + 1)) · (1 / (!‘𝑄)))))
169164, 168mpbird 167 . . . . . . . 8 (𝜑 → (((𝑄 + 1) + 1) / ((!‘(𝑄 + 1)) · (𝑄 + 1))) < (1 / (!‘𝑄)))
17055, 104, 105, 128, 169lelttrd 8199 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) < (1 / (!‘𝑄)))
17155, 132, 68ltmuldiv2d 9869 . . . . . . 7 (𝜑 → (((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) < 1 ↔ Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘) < (1 / (!‘𝑄))))
172170, 171mpbird 167 . . . . . 6 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) < 1)
173 0p1e1 9152 . . . . . 6 (0 + 1) = 1
174172, 173breqtrrdi 4087 . . . . 5 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) < (0 + 1))
17543, 70, 98, 99, 174btwnapz 9505 . . . 4 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (ℤ‘(𝑄 + 1))(𝐹𝑘)) # (((!‘𝑄) · (𝑃 / 𝑄)) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))))
17667, 175eqbrtrrd 4069 . . 3 (𝜑 → (((!‘𝑄) · e) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))) # (((!‘𝑄) · (𝑃 / 𝑄)) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))))
17762, 65mulcld 8095 . . . 4 (𝜑 → ((!‘𝑄) · e) ∈ ℂ)
17881zcnd 9498 . . . 4 (𝜑 → ((!‘𝑄) · (𝑃 / 𝑄)) ∈ ℂ)
17962, 48mulcld 8095 . . . 4 (𝜑 → ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) ∈ ℂ)
180 apsub1 8717 . . . 4 ((((!‘𝑄) · e) ∈ ℂ ∧ ((!‘𝑄) · (𝑃 / 𝑄)) ∈ ℂ ∧ ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)) ∈ ℂ) → (((!‘𝑄) · e) # ((!‘𝑄) · (𝑃 / 𝑄)) ↔ (((!‘𝑄) · e) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))) # (((!‘𝑄) · (𝑃 / 𝑄)) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)))))
181177, 178, 179, 180syl3anc 1250 . . 3 (𝜑 → (((!‘𝑄) · e) # ((!‘𝑄) · (𝑃 / 𝑄)) ↔ (((!‘𝑄) · e) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘))) # (((!‘𝑄) · (𝑃 / 𝑄)) − ((!‘𝑄) · Σ𝑘 ∈ (0...𝑄)(𝐹𝑘)))))
182176, 181mpbird 167 . 2 (𝜑 → ((!‘𝑄) · e) # ((!‘𝑄) · (𝑃 / 𝑄)))
183 znq 9747 . . . . 5 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ) → (𝑃 / 𝑄) ∈ ℚ)
18471, 13, 183syl2anc 411 . . . 4 (𝜑 → (𝑃 / 𝑄) ∈ ℚ)
185 qcn 9757 . . . 4 ((𝑃 / 𝑄) ∈ ℚ → (𝑃 / 𝑄) ∈ ℂ)
186184, 185syl 14 . . 3 (𝜑 → (𝑃 / 𝑄) ∈ ℂ)
187 apmul2 8864 . . 3 ((e ∈ ℂ ∧ (𝑃 / 𝑄) ∈ ℂ ∧ ((!‘𝑄) ∈ ℂ ∧ (!‘𝑄) # 0)) → (e # (𝑃 / 𝑄) ↔ ((!‘𝑄) · e) # ((!‘𝑄) · (𝑃 / 𝑄))))
18865, 186, 62, 156, 187syl112anc 1254 . 2 (𝜑 → (e # (𝑃 / 𝑄) ↔ ((!‘𝑄) · e) # ((!‘𝑄) · (𝑃 / 𝑄))))
189182, 188mpbird 167 1 (𝜑 → e # (𝑃 / 𝑄))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2176   class class class wbr 4045  cmpt 4106  dom cdm 4676  cfv 5272  (class class class)co 5946  cc 7925  cr 7926  0cc0 7927  1c1 7928   + caddc 7930   · cmul 7932   < clt 8109  cle 8110  cmin 8245   # cap 8656   / cdiv 8747  cn 9038  2c2 9089  0cn0 9297  cz 9374  cuz 9650  cq 9742  +crp 9777  ...cfz 10132  seqcseq 10594  cexp 10685  !cfa 10872  abscabs 11341  cli 11622  Σcsu 11697  eceu 11987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-isom 5281  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-irdg 6458  df-frec 6479  df-1o 6504  df-oadd 6508  df-er 6622  df-en 6830  df-dom 6831  df-fin 6832  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-ico 10018  df-fz 10133  df-fzo 10267  df-seqfrec 10595  df-exp 10686  df-fac 10873  df-bc 10895  df-ihash 10923  df-shft 11159  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-clim 11623  df-sumdc 11698  df-ef 11992  df-e 11993
This theorem is referenced by:  eirrap  12122
  Copyright terms: Public domain W3C validator