| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > subdird | GIF version | ||
| Description: Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| mulm1d.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| mulnegd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| subdid.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| Ref | Expression |
|---|---|
| subdird | ⊢ (𝜑 → ((𝐴 − 𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulm1d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | mulnegd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | subdid.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | subdir 8540 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))) | |
| 5 | 1, 2, 3, 4 | syl3anc 1271 | 1 ⊢ (𝜑 → ((𝐴 − 𝐵) · 𝐶) = ((𝐴 · 𝐶) − (𝐵 · 𝐶))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 (class class class)co 6007 ℂcc 8005 · cmul 8012 − cmin 8325 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-resscn 8099 ax-1cn 8100 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-distr 8111 ax-i2m1 8112 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-sub 8327 |
| This theorem is referenced by: mulsubfacd 8573 ltmul1a 8746 lemul1a 9013 xp1d2m1eqxm1d2 9372 div4p1lem1div2 9373 lincmb01cmp 10207 iccf1o 10208 qbtwnrelemcalc 10483 modqmul1 10607 remullem 11390 resqrexlemcalc1 11533 bdtrilem 11758 mulcn2 11831 fsumparts 11989 geo2sum 12033 modprm0 12785 mul4sqlem 12924 dvmulxxbr 15384 dvrecap 15395 sin0pilem1 15463 tangtx 15520 logdivlti 15563 perfectlem2 15682 lgsquadlem1 15764 |
| Copyright terms: Public domain | W3C validator |