ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulreim GIF version

Theorem mulreim 8502
Description: Complex multiplication in terms of real and imaginary parts. (Contributed by Jim Kingdon, 23-Feb-2020.)
Assertion
Ref Expression
mulreim (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) = (((𝐴 · 𝐶) + -(𝐵 · 𝐷)) + (i · ((𝐶 · 𝐵) + (𝐷 · 𝐴)))))

Proof of Theorem mulreim
StepHypRef Expression
1 simpll 519 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐴 ∈ ℝ)
21recnd 7927 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐴 ∈ ℂ)
3 ax-icn 7848 . . . . 5 i ∈ ℂ
43a1i 9 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → i ∈ ℂ)
5 simplr 520 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐵 ∈ ℝ)
65recnd 7927 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐵 ∈ ℂ)
74, 6mulcld 7919 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (i · 𝐵) ∈ ℂ)
8 simprl 521 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐶 ∈ ℝ)
98recnd 7927 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐶 ∈ ℂ)
10 simprr 522 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐷 ∈ ℝ)
1110recnd 7927 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐷 ∈ ℂ)
124, 11mulcld 7919 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (i · 𝐷) ∈ ℂ)
132, 7, 9, 12muladdd 8314 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) = (((𝐴 · 𝐶) + ((i · 𝐷) · (i · 𝐵))) + ((𝐴 · (i · 𝐷)) + (𝐶 · (i · 𝐵)))))
144, 11, 4, 6mul4d 8053 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((i · 𝐷) · (i · 𝐵)) = ((i · i) · (𝐷 · 𝐵)))
15 ixi 8481 . . . . . . 7 (i · i) = -1
1615oveq1i 5852 . . . . . 6 ((i · i) · (𝐷 · 𝐵)) = (-1 · (𝐷 · 𝐵))
1714, 16eqtrdi 2215 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((i · 𝐷) · (i · 𝐵)) = (-1 · (𝐷 · 𝐵)))
1811, 6mulcld 7919 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐷 · 𝐵) ∈ ℂ)
1918mulm1d 8308 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (-1 · (𝐷 · 𝐵)) = -(𝐷 · 𝐵))
2011, 6mulcomd 7920 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐷 · 𝐵) = (𝐵 · 𝐷))
2120negeqd 8093 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → -(𝐷 · 𝐵) = -(𝐵 · 𝐷))
2217, 19, 213eqtrd 2202 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((i · 𝐷) · (i · 𝐵)) = -(𝐵 · 𝐷))
2322oveq2d 5858 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 · 𝐶) + ((i · 𝐷) · (i · 𝐵))) = ((𝐴 · 𝐶) + -(𝐵 · 𝐷)))
2411, 2mulcld 7919 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐷 · 𝐴) ∈ ℂ)
254, 24mulcld 7919 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (i · (𝐷 · 𝐴)) ∈ ℂ)
269, 6mulcld 7919 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐶 · 𝐵) ∈ ℂ)
274, 26mulcld 7919 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (i · (𝐶 · 𝐵)) ∈ ℂ)
2825, 27addcomd 8049 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((i · (𝐷 · 𝐴)) + (i · (𝐶 · 𝐵))) = ((i · (𝐶 · 𝐵)) + (i · (𝐷 · 𝐴))))
292, 4, 11mul12d 8050 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 · (i · 𝐷)) = (i · (𝐴 · 𝐷)))
302, 11mulcomd 7920 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 · 𝐷) = (𝐷 · 𝐴))
3130oveq2d 5858 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (i · (𝐴 · 𝐷)) = (i · (𝐷 · 𝐴)))
3229, 31eqtrd 2198 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 · (i · 𝐷)) = (i · (𝐷 · 𝐴)))
339, 4, 6mul12d 8050 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐶 · (i · 𝐵)) = (i · (𝐶 · 𝐵)))
3432, 33oveq12d 5860 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 · (i · 𝐷)) + (𝐶 · (i · 𝐵))) = ((i · (𝐷 · 𝐴)) + (i · (𝐶 · 𝐵))))
354, 26, 24adddid 7923 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (i · ((𝐶 · 𝐵) + (𝐷 · 𝐴))) = ((i · (𝐶 · 𝐵)) + (i · (𝐷 · 𝐴))))
3628, 34, 353eqtr4d 2208 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 · (i · 𝐷)) + (𝐶 · (i · 𝐵))) = (i · ((𝐶 · 𝐵) + (𝐷 · 𝐴))))
3723, 36oveq12d 5860 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (((𝐴 · 𝐶) + ((i · 𝐷) · (i · 𝐵))) + ((𝐴 · (i · 𝐷)) + (𝐶 · (i · 𝐵)))) = (((𝐴 · 𝐶) + -(𝐵 · 𝐷)) + (i · ((𝐶 · 𝐵) + (𝐷 · 𝐴)))))
3813, 37eqtrd 2198 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) = (((𝐴 · 𝐶) + -(𝐵 · 𝐷)) + (i · ((𝐶 · 𝐵) + (𝐷 · 𝐴)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  (class class class)co 5842  cc 7751  cr 7752  1c1 7754  ici 7755   + caddc 7756   · cmul 7758  -cneg 8070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514  ax-resscn 7845  ax-1cn 7846  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-sub 8071  df-neg 8072
This theorem is referenced by:  mulext1  8510
  Copyright terms: Public domain W3C validator