ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulreim GIF version

Theorem mulreim 8684
Description: Complex multiplication in terms of real and imaginary parts. (Contributed by Jim Kingdon, 23-Feb-2020.)
Assertion
Ref Expression
mulreim (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) = (((𝐴 · 𝐶) + -(𝐵 · 𝐷)) + (i · ((𝐶 · 𝐵) + (𝐷 · 𝐴)))))

Proof of Theorem mulreim
StepHypRef Expression
1 simpll 527 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐴 ∈ ℝ)
21recnd 8108 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐴 ∈ ℂ)
3 ax-icn 8027 . . . . 5 i ∈ ℂ
43a1i 9 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → i ∈ ℂ)
5 simplr 528 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐵 ∈ ℝ)
65recnd 8108 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐵 ∈ ℂ)
74, 6mulcld 8100 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (i · 𝐵) ∈ ℂ)
8 simprl 529 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐶 ∈ ℝ)
98recnd 8108 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐶 ∈ ℂ)
10 simprr 531 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐷 ∈ ℝ)
1110recnd 8108 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → 𝐷 ∈ ℂ)
124, 11mulcld 8100 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (i · 𝐷) ∈ ℂ)
132, 7, 9, 12muladdd 8495 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) = (((𝐴 · 𝐶) + ((i · 𝐷) · (i · 𝐵))) + ((𝐴 · (i · 𝐷)) + (𝐶 · (i · 𝐵)))))
144, 11, 4, 6mul4d 8234 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((i · 𝐷) · (i · 𝐵)) = ((i · i) · (𝐷 · 𝐵)))
15 ixi 8663 . . . . . . 7 (i · i) = -1
1615oveq1i 5961 . . . . . 6 ((i · i) · (𝐷 · 𝐵)) = (-1 · (𝐷 · 𝐵))
1714, 16eqtrdi 2255 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((i · 𝐷) · (i · 𝐵)) = (-1 · (𝐷 · 𝐵)))
1811, 6mulcld 8100 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐷 · 𝐵) ∈ ℂ)
1918mulm1d 8489 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (-1 · (𝐷 · 𝐵)) = -(𝐷 · 𝐵))
2011, 6mulcomd 8101 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐷 · 𝐵) = (𝐵 · 𝐷))
2120negeqd 8274 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → -(𝐷 · 𝐵) = -(𝐵 · 𝐷))
2217, 19, 213eqtrd 2243 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((i · 𝐷) · (i · 𝐵)) = -(𝐵 · 𝐷))
2322oveq2d 5967 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 · 𝐶) + ((i · 𝐷) · (i · 𝐵))) = ((𝐴 · 𝐶) + -(𝐵 · 𝐷)))
2411, 2mulcld 8100 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐷 · 𝐴) ∈ ℂ)
254, 24mulcld 8100 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (i · (𝐷 · 𝐴)) ∈ ℂ)
269, 6mulcld 8100 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐶 · 𝐵) ∈ ℂ)
274, 26mulcld 8100 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (i · (𝐶 · 𝐵)) ∈ ℂ)
2825, 27addcomd 8230 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((i · (𝐷 · 𝐴)) + (i · (𝐶 · 𝐵))) = ((i · (𝐶 · 𝐵)) + (i · (𝐷 · 𝐴))))
292, 4, 11mul12d 8231 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 · (i · 𝐷)) = (i · (𝐴 · 𝐷)))
302, 11mulcomd 8101 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 · 𝐷) = (𝐷 · 𝐴))
3130oveq2d 5967 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (i · (𝐴 · 𝐷)) = (i · (𝐷 · 𝐴)))
3229, 31eqtrd 2239 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐴 · (i · 𝐷)) = (i · (𝐷 · 𝐴)))
339, 4, 6mul12d 8231 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (𝐶 · (i · 𝐵)) = (i · (𝐶 · 𝐵)))
3432, 33oveq12d 5969 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 · (i · 𝐷)) + (𝐶 · (i · 𝐵))) = ((i · (𝐷 · 𝐴)) + (i · (𝐶 · 𝐵))))
354, 26, 24adddid 8104 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (i · ((𝐶 · 𝐵) + (𝐷 · 𝐴))) = ((i · (𝐶 · 𝐵)) + (i · (𝐷 · 𝐴))))
3628, 34, 353eqtr4d 2249 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 · (i · 𝐷)) + (𝐶 · (i · 𝐵))) = (i · ((𝐶 · 𝐵) + (𝐷 · 𝐴))))
3723, 36oveq12d 5969 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → (((𝐴 · 𝐶) + ((i · 𝐷) · (i · 𝐵))) + ((𝐴 · (i · 𝐷)) + (𝐶 · (i · 𝐵)))) = (((𝐴 · 𝐶) + -(𝐵 · 𝐷)) + (i · ((𝐶 · 𝐵) + (𝐷 · 𝐴)))))
3813, 37eqtrd 2239 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) · (𝐶 + (i · 𝐷))) = (((𝐴 · 𝐶) + -(𝐵 · 𝐷)) + (i · ((𝐶 · 𝐵) + (𝐷 · 𝐴)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  (class class class)co 5951  cc 7930  cr 7931  1c1 7933  ici 7934   + caddc 7935   · cmul 7937  -cneg 8251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-setind 4589  ax-resscn 8024  ax-1cn 8025  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-mulcom 8033  ax-addass 8034  ax-mulass 8035  ax-distr 8036  ax-i2m1 8037  ax-1rid 8039  ax-0id 8040  ax-rnegex 8041  ax-cnre 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3000  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-iota 5237  df-fun 5278  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-sub 8252  df-neg 8253
This theorem is referenced by:  mulext1  8692
  Copyright terms: Public domain W3C validator