| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nummac | GIF version | ||
| Description: Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| numma.1 | ⊢ 𝑇 ∈ ℕ0 |
| numma.2 | ⊢ 𝐴 ∈ ℕ0 |
| numma.3 | ⊢ 𝐵 ∈ ℕ0 |
| numma.4 | ⊢ 𝐶 ∈ ℕ0 |
| numma.5 | ⊢ 𝐷 ∈ ℕ0 |
| numma.6 | ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) |
| numma.7 | ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) |
| nummac.8 | ⊢ 𝑃 ∈ ℕ0 |
| nummac.9 | ⊢ 𝐹 ∈ ℕ0 |
| nummac.10 | ⊢ 𝐺 ∈ ℕ0 |
| nummac.11 | ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸 |
| nummac.12 | ⊢ ((𝐵 · 𝑃) + 𝐷) = ((𝑇 · 𝐺) + 𝐹) |
| Ref | Expression |
|---|---|
| nummac | ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numma.1 | . . . . 5 ⊢ 𝑇 ∈ ℕ0 | |
| 2 | 1 | nn0cni 9306 | . . . 4 ⊢ 𝑇 ∈ ℂ |
| 3 | numma.2 | . . . . . . . . 9 ⊢ 𝐴 ∈ ℕ0 | |
| 4 | 3 | nn0cni 9306 | . . . . . . . 8 ⊢ 𝐴 ∈ ℂ |
| 5 | nummac.8 | . . . . . . . . 9 ⊢ 𝑃 ∈ ℕ0 | |
| 6 | 5 | nn0cni 9306 | . . . . . . . 8 ⊢ 𝑃 ∈ ℂ |
| 7 | 4, 6 | mulcli 8076 | . . . . . . 7 ⊢ (𝐴 · 𝑃) ∈ ℂ |
| 8 | numma.4 | . . . . . . . 8 ⊢ 𝐶 ∈ ℕ0 | |
| 9 | 8 | nn0cni 9306 | . . . . . . 7 ⊢ 𝐶 ∈ ℂ |
| 10 | nummac.10 | . . . . . . . 8 ⊢ 𝐺 ∈ ℕ0 | |
| 11 | 10 | nn0cni 9306 | . . . . . . 7 ⊢ 𝐺 ∈ ℂ |
| 12 | 7, 9, 11 | addassi 8079 | . . . . . 6 ⊢ (((𝐴 · 𝑃) + 𝐶) + 𝐺) = ((𝐴 · 𝑃) + (𝐶 + 𝐺)) |
| 13 | nummac.11 | . . . . . 6 ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸 | |
| 14 | 12, 13 | eqtri 2225 | . . . . 5 ⊢ (((𝐴 · 𝑃) + 𝐶) + 𝐺) = 𝐸 |
| 15 | 7, 9 | addcli 8075 | . . . . . 6 ⊢ ((𝐴 · 𝑃) + 𝐶) ∈ ℂ |
| 16 | 15, 11 | addcli 8075 | . . . . 5 ⊢ (((𝐴 · 𝑃) + 𝐶) + 𝐺) ∈ ℂ |
| 17 | 14, 16 | eqeltrri 2278 | . . . 4 ⊢ 𝐸 ∈ ℂ |
| 18 | 2, 17, 11 | subdii 8478 | . . 3 ⊢ (𝑇 · (𝐸 − 𝐺)) = ((𝑇 · 𝐸) − (𝑇 · 𝐺)) |
| 19 | 18 | oveq1i 5953 | . 2 ⊢ ((𝑇 · (𝐸 − 𝐺)) + ((𝑇 · 𝐺) + 𝐹)) = (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + ((𝑇 · 𝐺) + 𝐹)) |
| 20 | numma.3 | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
| 21 | numma.5 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
| 22 | numma.6 | . . 3 ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) | |
| 23 | numma.7 | . . 3 ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) | |
| 24 | 17, 11, 15 | subadd2i 8359 | . . . . 5 ⊢ ((𝐸 − 𝐺) = ((𝐴 · 𝑃) + 𝐶) ↔ (((𝐴 · 𝑃) + 𝐶) + 𝐺) = 𝐸) |
| 25 | 14, 24 | mpbir 146 | . . . 4 ⊢ (𝐸 − 𝐺) = ((𝐴 · 𝑃) + 𝐶) |
| 26 | 25 | eqcomi 2208 | . . 3 ⊢ ((𝐴 · 𝑃) + 𝐶) = (𝐸 − 𝐺) |
| 27 | nummac.12 | . . 3 ⊢ ((𝐵 · 𝑃) + 𝐷) = ((𝑇 · 𝐺) + 𝐹) | |
| 28 | 1, 3, 20, 8, 21, 22, 23, 5, 26, 27 | numma 9546 | . 2 ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · (𝐸 − 𝐺)) + ((𝑇 · 𝐺) + 𝐹)) |
| 29 | 2, 17 | mulcli 8076 | . . . . 5 ⊢ (𝑇 · 𝐸) ∈ ℂ |
| 30 | 2, 11 | mulcli 8076 | . . . . 5 ⊢ (𝑇 · 𝐺) ∈ ℂ |
| 31 | npcan 8280 | . . . . 5 ⊢ (((𝑇 · 𝐸) ∈ ℂ ∧ (𝑇 · 𝐺) ∈ ℂ) → (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + (𝑇 · 𝐺)) = (𝑇 · 𝐸)) | |
| 32 | 29, 30, 31 | mp2an 426 | . . . 4 ⊢ (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + (𝑇 · 𝐺)) = (𝑇 · 𝐸) |
| 33 | 32 | oveq1i 5953 | . . 3 ⊢ ((((𝑇 · 𝐸) − (𝑇 · 𝐺)) + (𝑇 · 𝐺)) + 𝐹) = ((𝑇 · 𝐸) + 𝐹) |
| 34 | 29, 30 | subcli 8347 | . . . 4 ⊢ ((𝑇 · 𝐸) − (𝑇 · 𝐺)) ∈ ℂ |
| 35 | nummac.9 | . . . . 5 ⊢ 𝐹 ∈ ℕ0 | |
| 36 | 35 | nn0cni 9306 | . . . 4 ⊢ 𝐹 ∈ ℂ |
| 37 | 34, 30, 36 | addassi 8079 | . . 3 ⊢ ((((𝑇 · 𝐸) − (𝑇 · 𝐺)) + (𝑇 · 𝐺)) + 𝐹) = (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + ((𝑇 · 𝐺) + 𝐹)) |
| 38 | 33, 37 | eqtr3i 2227 | . 2 ⊢ ((𝑇 · 𝐸) + 𝐹) = (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + ((𝑇 · 𝐺) + 𝐹)) |
| 39 | 19, 28, 38 | 3eqtr4i 2235 | 1 ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ∈ wcel 2175 (class class class)co 5943 ℂcc 7922 + caddc 7927 · cmul 7929 − cmin 8242 ℕ0cn0 9294 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-sub 8244 df-inn 9036 df-n0 9295 |
| This theorem is referenced by: numma2c 9548 numaddc 9550 nummul1c 9551 decmac 9554 |
| Copyright terms: Public domain | W3C validator |