![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ef2kpi | GIF version |
Description: If 𝐾 is an integer, then the exponential of 2𝐾πi is 1. (Contributed by Mario Carneiro, 9-May-2014.) |
Ref | Expression |
---|---|
ef2kpi | ⊢ (𝐾 ∈ ℤ → (exp‘((i · (2 · π)) · 𝐾)) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-icn 7920 | . . . . 5 ⊢ i ∈ ℂ | |
2 | 2cn 9004 | . . . . . 6 ⊢ 2 ∈ ℂ | |
3 | picn 14504 | . . . . . 6 ⊢ π ∈ ℂ | |
4 | 2, 3 | mulcli 7976 | . . . . 5 ⊢ (2 · π) ∈ ℂ |
5 | 1, 4 | mulcli 7976 | . . . 4 ⊢ (i · (2 · π)) ∈ ℂ |
6 | zcn 9272 | . . . 4 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℂ) | |
7 | mulcom 7954 | . . . 4 ⊢ (((i · (2 · π)) ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((i · (2 · π)) · 𝐾) = (𝐾 · (i · (2 · π)))) | |
8 | 5, 6, 7 | sylancr 414 | . . 3 ⊢ (𝐾 ∈ ℤ → ((i · (2 · π)) · 𝐾) = (𝐾 · (i · (2 · π)))) |
9 | 8 | fveq2d 5531 | . 2 ⊢ (𝐾 ∈ ℤ → (exp‘((i · (2 · π)) · 𝐾)) = (exp‘(𝐾 · (i · (2 · π))))) |
10 | efexp 11704 | . . 3 ⊢ (((i · (2 · π)) ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(𝐾 · (i · (2 · π)))) = ((exp‘(i · (2 · π)))↑𝐾)) | |
11 | 5, 10 | mpan 424 | . 2 ⊢ (𝐾 ∈ ℤ → (exp‘(𝐾 · (i · (2 · π)))) = ((exp‘(i · (2 · π)))↑𝐾)) |
12 | ef2pi 14522 | . . . 4 ⊢ (exp‘(i · (2 · π))) = 1 | |
13 | 12 | oveq1i 5898 | . . 3 ⊢ ((exp‘(i · (2 · π)))↑𝐾) = (1↑𝐾) |
14 | 1exp 10563 | . . 3 ⊢ (𝐾 ∈ ℤ → (1↑𝐾) = 1) | |
15 | 13, 14 | eqtrid 2232 | . 2 ⊢ (𝐾 ∈ ℤ → ((exp‘(i · (2 · π)))↑𝐾) = 1) |
16 | 9, 11, 15 | 3eqtrd 2224 | 1 ⊢ (𝐾 ∈ ℤ → (exp‘((i · (2 · π)) · 𝐾)) = 1) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1363 ∈ wcel 2158 ‘cfv 5228 (class class class)co 5888 ℂcc 7823 1c1 7826 ici 7827 · cmul 7830 2c2 8984 ℤcz 9267 ↑cexp 10533 expce 11664 πcpi 11669 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-mulrcl 7924 ax-addcom 7925 ax-mulcom 7926 ax-addass 7927 ax-mulass 7928 ax-distr 7929 ax-i2m1 7930 ax-0lt1 7931 ax-1rid 7932 ax-0id 7933 ax-rnegex 7934 ax-precex 7935 ax-cnre 7936 ax-pre-ltirr 7937 ax-pre-ltwlin 7938 ax-pre-lttrn 7939 ax-pre-apti 7940 ax-pre-ltadd 7941 ax-pre-mulgt0 7942 ax-pre-mulext 7943 ax-arch 7944 ax-caucvg 7945 ax-pre-suploc 7946 ax-addf 7947 ax-mulf 7948 |
This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-if 3547 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-disj 3993 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-id 4305 df-po 4308 df-iso 4309 df-iord 4378 df-on 4380 df-ilim 4381 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-isom 5237 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-of 6097 df-1st 6155 df-2nd 6156 df-recs 6320 df-irdg 6385 df-frec 6406 df-1o 6431 df-oadd 6435 df-er 6549 df-map 6664 df-pm 6665 df-en 6755 df-dom 6756 df-fin 6757 df-sup 6997 df-inf 6998 df-pnf 8008 df-mnf 8009 df-xr 8010 df-ltxr 8011 df-le 8012 df-sub 8144 df-neg 8145 df-reap 8546 df-ap 8553 df-div 8644 df-inn 8934 df-2 8992 df-3 8993 df-4 8994 df-5 8995 df-6 8996 df-7 8997 df-8 8998 df-9 8999 df-n0 9191 df-z 9268 df-uz 9543 df-q 9634 df-rp 9668 df-xneg 9786 df-xadd 9787 df-ioo 9906 df-ioc 9907 df-ico 9908 df-icc 9909 df-fz 10023 df-fzo 10157 df-seqfrec 10460 df-exp 10534 df-fac 10720 df-bc 10742 df-ihash 10770 df-shft 10838 df-cj 10865 df-re 10866 df-im 10867 df-rsqrt 11021 df-abs 11022 df-clim 11301 df-sumdc 11376 df-ef 11670 df-sin 11672 df-cos 11673 df-pi 11675 df-rest 12708 df-topgen 12727 df-psmet 13729 df-xmet 13730 df-met 13731 df-bl 13732 df-mopn 13733 df-top 13794 df-topon 13807 df-bases 13839 df-ntr 13892 df-cn 13984 df-cnp 13985 df-tx 14049 df-cncf 14354 df-limced 14421 df-dvap 14422 |
This theorem is referenced by: efper 14524 |
Copyright terms: Public domain | W3C validator |