ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ef2kpi GIF version

Theorem ef2kpi 12890
Description: If 𝐾 is an integer, then the exponential of 2𝐾πi is 1. (Contributed by Mario Carneiro, 9-May-2014.)
Assertion
Ref Expression
ef2kpi (𝐾 ∈ ℤ → (exp‘((i · (2 · π)) · 𝐾)) = 1)

Proof of Theorem ef2kpi
StepHypRef Expression
1 ax-icn 7718 . . . . 5 i ∈ ℂ
2 2cn 8794 . . . . . 6 2 ∈ ℂ
3 picn 12871 . . . . . 6 π ∈ ℂ
42, 3mulcli 7774 . . . . 5 (2 · π) ∈ ℂ
51, 4mulcli 7774 . . . 4 (i · (2 · π)) ∈ ℂ
6 zcn 9062 . . . 4 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
7 mulcom 7752 . . . 4 (((i · (2 · π)) ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((i · (2 · π)) · 𝐾) = (𝐾 · (i · (2 · π))))
85, 6, 7sylancr 410 . . 3 (𝐾 ∈ ℤ → ((i · (2 · π)) · 𝐾) = (𝐾 · (i · (2 · π))))
98fveq2d 5425 . 2 (𝐾 ∈ ℤ → (exp‘((i · (2 · π)) · 𝐾)) = (exp‘(𝐾 · (i · (2 · π)))))
10 efexp 11391 . . 3 (((i · (2 · π)) ∈ ℂ ∧ 𝐾 ∈ ℤ) → (exp‘(𝐾 · (i · (2 · π)))) = ((exp‘(i · (2 · π)))↑𝐾))
115, 10mpan 420 . 2 (𝐾 ∈ ℤ → (exp‘(𝐾 · (i · (2 · π)))) = ((exp‘(i · (2 · π)))↑𝐾))
12 ef2pi 12889 . . . 4 (exp‘(i · (2 · π))) = 1
1312oveq1i 5784 . . 3 ((exp‘(i · (2 · π)))↑𝐾) = (1↑𝐾)
14 1exp 10325 . . 3 (𝐾 ∈ ℤ → (1↑𝐾) = 1)
1513, 14syl5eq 2184 . 2 (𝐾 ∈ ℤ → ((exp‘(i · (2 · π)))↑𝐾) = 1)
169, 11, 153eqtrd 2176 1 (𝐾 ∈ ℤ → (exp‘((i · (2 · π)) · 𝐾)) = 1)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  wcel 1480  cfv 5123  (class class class)co 5774  cc 7621  1c1 7624  ici 7625   · cmul 7628  2c2 8774  cz 9057  cexp 10295  expce 11351  πcpi 11356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7714  ax-resscn 7715  ax-1cn 7716  ax-1re 7717  ax-icn 7718  ax-addcl 7719  ax-addrcl 7720  ax-mulcl 7721  ax-mulrcl 7722  ax-addcom 7723  ax-mulcom 7724  ax-addass 7725  ax-mulass 7726  ax-distr 7727  ax-i2m1 7728  ax-0lt1 7729  ax-1rid 7730  ax-0id 7731  ax-rnegex 7732  ax-precex 7733  ax-cnre 7734  ax-pre-ltirr 7735  ax-pre-ltwlin 7736  ax-pre-lttrn 7737  ax-pre-apti 7738  ax-pre-ltadd 7739  ax-pre-mulgt0 7740  ax-pre-mulext 7741  ax-arch 7742  ax-caucvg 7743  ax-pre-suploc 7744  ax-addf 7745  ax-mulf 7746
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-disj 3907  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-of 5982  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-map 6544  df-pm 6545  df-en 6635  df-dom 6636  df-fin 6637  df-sup 6871  df-inf 6872  df-pnf 7805  df-mnf 7806  df-xr 7807  df-ltxr 7808  df-le 7809  df-sub 7938  df-neg 7939  df-reap 8340  df-ap 8347  df-div 8436  df-inn 8724  df-2 8782  df-3 8783  df-4 8784  df-5 8785  df-6 8786  df-7 8787  df-8 8788  df-9 8789  df-n0 8981  df-z 9058  df-uz 9330  df-q 9415  df-rp 9445  df-xneg 9562  df-xadd 9563  df-ioo 9678  df-ioc 9679  df-ico 9680  df-icc 9681  df-fz 9794  df-fzo 9923  df-seqfrec 10222  df-exp 10296  df-fac 10475  df-bc 10497  df-ihash 10525  df-shft 10590  df-cj 10617  df-re 10618  df-im 10619  df-rsqrt 10773  df-abs 10774  df-clim 11051  df-sumdc 11126  df-ef 11357  df-sin 11359  df-cos 11360  df-pi 11362  df-rest 12125  df-topgen 12144  df-psmet 12159  df-xmet 12160  df-met 12161  df-bl 12162  df-mopn 12163  df-top 12168  df-topon 12181  df-bases 12213  df-ntr 12268  df-cn 12360  df-cnp 12361  df-tx 12425  df-cncf 12730  df-limced 12797  df-dvap 12798
This theorem is referenced by:  efper  12891
  Copyright terms: Public domain W3C validator