ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decbin2 GIF version

Theorem decbin2 9542
Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypothesis
Ref Expression
decbin.1 𝐴 ∈ ℕ0
Assertion
Ref Expression
decbin2 ((4 · 𝐴) + 2) = (2 · ((2 · 𝐴) + 1))

Proof of Theorem decbin2
StepHypRef Expression
1 2t1e2 9090 . . 3 (2 · 1) = 2
21oveq2i 5902 . 2 ((2 · (2 · 𝐴)) + (2 · 1)) = ((2 · (2 · 𝐴)) + 2)
3 2cn 9008 . . 3 2 ∈ ℂ
4 decbin.1 . . . . 5 𝐴 ∈ ℕ0
54nn0cni 9206 . . . 4 𝐴 ∈ ℂ
63, 5mulcli 7980 . . 3 (2 · 𝐴) ∈ ℂ
7 ax-1cn 7922 . . 3 1 ∈ ℂ
83, 6, 7adddii 7985 . 2 (2 · ((2 · 𝐴) + 1)) = ((2 · (2 · 𝐴)) + (2 · 1))
94decbin0 9541 . . 3 (4 · 𝐴) = (2 · (2 · 𝐴))
109oveq1i 5901 . 2 ((4 · 𝐴) + 2) = ((2 · (2 · 𝐴)) + 2)
112, 8, 103eqtr4ri 2221 1 ((4 · 𝐴) + 2) = (2 · ((2 · 𝐴) + 1))
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2160  (class class class)co 5891  1c1 7830   + caddc 7832   · cmul 7834  2c2 8988  4c4 8990  0cn0 9194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171  ax-sep 4136  ax-cnex 7920  ax-resscn 7921  ax-1cn 7922  ax-1re 7923  ax-icn 7924  ax-addcl 7925  ax-addrcl 7926  ax-mulcl 7927  ax-mulcom 7930  ax-addass 7931  ax-mulass 7932  ax-distr 7933  ax-1rid 7936  ax-rnegex 7938  ax-cnre 7940
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-iota 5193  df-fv 5239  df-ov 5894  df-inn 8938  df-2 8996  df-3 8997  df-4 8998  df-n0 9195
This theorem is referenced by:  decbin3  9543
  Copyright terms: Public domain W3C validator