ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decbin2 GIF version

Theorem decbin2 9726
Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypothesis
Ref Expression
decbin.1 𝐴 ∈ ℕ0
Assertion
Ref Expression
decbin2 ((4 · 𝐴) + 2) = (2 · ((2 · 𝐴) + 1))

Proof of Theorem decbin2
StepHypRef Expression
1 2t1e2 9272 . . 3 (2 · 1) = 2
21oveq2i 6018 . 2 ((2 · (2 · 𝐴)) + (2 · 1)) = ((2 · (2 · 𝐴)) + 2)
3 2cn 9189 . . 3 2 ∈ ℂ
4 decbin.1 . . . . 5 𝐴 ∈ ℕ0
54nn0cni 9389 . . . 4 𝐴 ∈ ℂ
63, 5mulcli 8159 . . 3 (2 · 𝐴) ∈ ℂ
7 ax-1cn 8100 . . 3 1 ∈ ℂ
83, 6, 7adddii 8164 . 2 (2 · ((2 · 𝐴) + 1)) = ((2 · (2 · 𝐴)) + (2 · 1))
94decbin0 9725 . . 3 (4 · 𝐴) = (2 · (2 · 𝐴))
109oveq1i 6017 . 2 ((4 · 𝐴) + 2) = ((2 · (2 · 𝐴)) + 2)
112, 8, 103eqtr4ri 2261 1 ((4 · 𝐴) + 2) = (2 · ((2 · 𝐴) + 1))
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wcel 2200  (class class class)co 6007  1c1 8008   + caddc 8010   · cmul 8012  2c2 9169  4c4 9171  0cn0 9377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-sep 4202  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-1rid 8114  ax-rnegex 8116  ax-cnre 8118
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-iota 5278  df-fv 5326  df-ov 6010  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-n0 9378
This theorem is referenced by:  decbin3  9727
  Copyright terms: Public domain W3C validator