ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  decbin2 GIF version

Theorem decbin2 9414
Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypothesis
Ref Expression
decbin.1 𝐴 ∈ ℕ0
Assertion
Ref Expression
decbin2 ((4 · 𝐴) + 2) = (2 · ((2 · 𝐴) + 1))

Proof of Theorem decbin2
StepHypRef Expression
1 2t1e2 8965 . . 3 (2 · 1) = 2
21oveq2i 5825 . 2 ((2 · (2 · 𝐴)) + (2 · 1)) = ((2 · (2 · 𝐴)) + 2)
3 2cn 8883 . . 3 2 ∈ ℂ
4 decbin.1 . . . . 5 𝐴 ∈ ℕ0
54nn0cni 9081 . . . 4 𝐴 ∈ ℂ
63, 5mulcli 7862 . . 3 (2 · 𝐴) ∈ ℂ
7 ax-1cn 7804 . . 3 1 ∈ ℂ
83, 6, 7adddii 7867 . 2 (2 · ((2 · 𝐴) + 1)) = ((2 · (2 · 𝐴)) + (2 · 1))
94decbin0 9413 . . 3 (4 · 𝐴) = (2 · (2 · 𝐴))
109oveq1i 5824 . 2 ((4 · 𝐴) + 2) = ((2 · (2 · 𝐴)) + 2)
112, 8, 103eqtr4ri 2186 1 ((4 · 𝐴) + 2) = (2 · ((2 · 𝐴) + 1))
Colors of variables: wff set class
Syntax hints:   = wceq 1332  wcel 2125  (class class class)co 5814  1c1 7712   + caddc 7714   · cmul 7716  2c2 8863  4c4 8865  0cn0 9069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136  ax-sep 4078  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-1rid 7818  ax-rnegex 7820  ax-cnre 7822
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-v 2711  df-un 3102  df-in 3104  df-ss 3111  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-br 3962  df-iota 5128  df-fv 5171  df-ov 5817  df-inn 8813  df-2 8871  df-3 8872  df-4 8873  df-n0 9070
This theorem is referenced by:  decbin3  9415
  Copyright terms: Public domain W3C validator