![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > decbin2 | GIF version |
Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
decbin.1 | ⊢ 𝐴 ∈ ℕ0 |
Ref | Expression |
---|---|
decbin2 | ⊢ ((4 · 𝐴) + 2) = (2 · ((2 · 𝐴) + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2t1e2 8567 | . . 3 ⊢ (2 · 1) = 2 | |
2 | 1 | oveq2i 5663 | . 2 ⊢ ((2 · (2 · 𝐴)) + (2 · 1)) = ((2 · (2 · 𝐴)) + 2) |
3 | 2cn 8491 | . . 3 ⊢ 2 ∈ ℂ | |
4 | decbin.1 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
5 | 4 | nn0cni 8683 | . . . 4 ⊢ 𝐴 ∈ ℂ |
6 | 3, 5 | mulcli 7491 | . . 3 ⊢ (2 · 𝐴) ∈ ℂ |
7 | ax-1cn 7436 | . . 3 ⊢ 1 ∈ ℂ | |
8 | 3, 6, 7 | adddii 7496 | . 2 ⊢ (2 · ((2 · 𝐴) + 1)) = ((2 · (2 · 𝐴)) + (2 · 1)) |
9 | 4 | decbin0 9014 | . . 3 ⊢ (4 · 𝐴) = (2 · (2 · 𝐴)) |
10 | 9 | oveq1i 5662 | . 2 ⊢ ((4 · 𝐴) + 2) = ((2 · (2 · 𝐴)) + 2) |
11 | 2, 8, 10 | 3eqtr4ri 2119 | 1 ⊢ ((4 · 𝐴) + 2) = (2 · ((2 · 𝐴) + 1)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1289 ∈ wcel 1438 (class class class)co 5652 1c1 7349 + caddc 7351 · cmul 7353 2c2 8471 4c4 8473 ℕ0cn0 8671 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-cnex 7434 ax-resscn 7435 ax-1cn 7436 ax-1re 7437 ax-icn 7438 ax-addcl 7439 ax-addrcl 7440 ax-mulcl 7441 ax-mulcom 7444 ax-addass 7445 ax-mulass 7446 ax-distr 7447 ax-1rid 7450 ax-rnegex 7452 ax-cnre 7454 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-un 3003 df-in 3005 df-ss 3012 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-int 3689 df-br 3846 df-iota 4980 df-fv 5023 df-ov 5655 df-inn 8421 df-2 8479 df-3 8480 df-4 8481 df-n0 8672 |
This theorem is referenced by: decbin3 9016 |
Copyright terms: Public domain | W3C validator |