Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > decbin2 | GIF version |
Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
decbin.1 | ⊢ 𝐴 ∈ ℕ0 |
Ref | Expression |
---|---|
decbin2 | ⊢ ((4 · 𝐴) + 2) = (2 · ((2 · 𝐴) + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2t1e2 9031 | . . 3 ⊢ (2 · 1) = 2 | |
2 | 1 | oveq2i 5864 | . 2 ⊢ ((2 · (2 · 𝐴)) + (2 · 1)) = ((2 · (2 · 𝐴)) + 2) |
3 | 2cn 8949 | . . 3 ⊢ 2 ∈ ℂ | |
4 | decbin.1 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
5 | 4 | nn0cni 9147 | . . . 4 ⊢ 𝐴 ∈ ℂ |
6 | 3, 5 | mulcli 7925 | . . 3 ⊢ (2 · 𝐴) ∈ ℂ |
7 | ax-1cn 7867 | . . 3 ⊢ 1 ∈ ℂ | |
8 | 3, 6, 7 | adddii 7930 | . 2 ⊢ (2 · ((2 · 𝐴) + 1)) = ((2 · (2 · 𝐴)) + (2 · 1)) |
9 | 4 | decbin0 9482 | . . 3 ⊢ (4 · 𝐴) = (2 · (2 · 𝐴)) |
10 | 9 | oveq1i 5863 | . 2 ⊢ ((4 · 𝐴) + 2) = ((2 · (2 · 𝐴)) + 2) |
11 | 2, 8, 10 | 3eqtr4ri 2202 | 1 ⊢ ((4 · 𝐴) + 2) = (2 · ((2 · 𝐴) + 1)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∈ wcel 2141 (class class class)co 5853 1c1 7775 + caddc 7777 · cmul 7779 2c2 8929 4c4 8931 ℕ0cn0 9135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-1rid 7881 ax-rnegex 7883 ax-cnre 7885 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 |
This theorem is referenced by: decbin3 9484 |
Copyright terms: Public domain | W3C validator |