![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > decbin2 | GIF version |
Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
decbin.1 | ⊢ 𝐴 ∈ ℕ0 |
Ref | Expression |
---|---|
decbin2 | ⊢ ((4 · 𝐴) + 2) = (2 · ((2 · 𝐴) + 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2t1e2 9090 | . . 3 ⊢ (2 · 1) = 2 | |
2 | 1 | oveq2i 5902 | . 2 ⊢ ((2 · (2 · 𝐴)) + (2 · 1)) = ((2 · (2 · 𝐴)) + 2) |
3 | 2cn 9008 | . . 3 ⊢ 2 ∈ ℂ | |
4 | decbin.1 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
5 | 4 | nn0cni 9206 | . . . 4 ⊢ 𝐴 ∈ ℂ |
6 | 3, 5 | mulcli 7980 | . . 3 ⊢ (2 · 𝐴) ∈ ℂ |
7 | ax-1cn 7922 | . . 3 ⊢ 1 ∈ ℂ | |
8 | 3, 6, 7 | adddii 7985 | . 2 ⊢ (2 · ((2 · 𝐴) + 1)) = ((2 · (2 · 𝐴)) + (2 · 1)) |
9 | 4 | decbin0 9541 | . . 3 ⊢ (4 · 𝐴) = (2 · (2 · 𝐴)) |
10 | 9 | oveq1i 5901 | . 2 ⊢ ((4 · 𝐴) + 2) = ((2 · (2 · 𝐴)) + 2) |
11 | 2, 8, 10 | 3eqtr4ri 2221 | 1 ⊢ ((4 · 𝐴) + 2) = (2 · ((2 · 𝐴) + 1)) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ∈ wcel 2160 (class class class)co 5891 1c1 7830 + caddc 7832 · cmul 7834 2c2 8988 4c4 8990 ℕ0cn0 9194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 ax-sep 4136 ax-cnex 7920 ax-resscn 7921 ax-1cn 7922 ax-1re 7923 ax-icn 7924 ax-addcl 7925 ax-addrcl 7926 ax-mulcl 7927 ax-mulcom 7930 ax-addass 7931 ax-mulass 7932 ax-distr 7933 ax-1rid 7936 ax-rnegex 7938 ax-cnre 7940 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-un 3148 df-in 3150 df-ss 3157 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-iota 5193 df-fv 5239 df-ov 5894 df-inn 8938 df-2 8996 df-3 8997 df-4 8998 df-n0 9195 |
This theorem is referenced by: decbin3 9543 |
Copyright terms: Public domain | W3C validator |