| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > decbin2 | GIF version | ||
| Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| decbin.1 | ⊢ 𝐴 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| decbin2 | ⊢ ((4 · 𝐴) + 2) = (2 · ((2 · 𝐴) + 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2t1e2 9197 | . . 3 ⊢ (2 · 1) = 2 | |
| 2 | 1 | oveq2i 5962 | . 2 ⊢ ((2 · (2 · 𝐴)) + (2 · 1)) = ((2 · (2 · 𝐴)) + 2) |
| 3 | 2cn 9114 | . . 3 ⊢ 2 ∈ ℂ | |
| 4 | decbin.1 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
| 5 | 4 | nn0cni 9314 | . . . 4 ⊢ 𝐴 ∈ ℂ |
| 6 | 3, 5 | mulcli 8084 | . . 3 ⊢ (2 · 𝐴) ∈ ℂ |
| 7 | ax-1cn 8025 | . . 3 ⊢ 1 ∈ ℂ | |
| 8 | 3, 6, 7 | adddii 8089 | . 2 ⊢ (2 · ((2 · 𝐴) + 1)) = ((2 · (2 · 𝐴)) + (2 · 1)) |
| 9 | 4 | decbin0 9650 | . . 3 ⊢ (4 · 𝐴) = (2 · (2 · 𝐴)) |
| 10 | 9 | oveq1i 5961 | . 2 ⊢ ((4 · 𝐴) + 2) = ((2 · (2 · 𝐴)) + 2) |
| 11 | 2, 8, 10 | 3eqtr4ri 2238 | 1 ⊢ ((4 · 𝐴) + 2) = (2 · ((2 · 𝐴) + 1)) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 (class class class)co 5951 1c1 7933 + caddc 7935 · cmul 7937 2c2 9094 4c4 9096 ℕ0cn0 9302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-sep 4166 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-1rid 8039 ax-rnegex 8041 ax-cnre 8043 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-iota 5237 df-fv 5284 df-ov 5954 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-n0 9303 |
| This theorem is referenced by: decbin3 9652 |
| Copyright terms: Public domain | W3C validator |