ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  imi GIF version

Theorem imi 10902
Description: The imaginary part of i. (Contributed by Scott Fenton, 9-Jun-2006.)
Assertion
Ref Expression
imi (ℑ‘i) = 1

Proof of Theorem imi
StepHypRef Expression
1 ax-icn 7903 . . . . . 6 i ∈ ℂ
2 ax-1cn 7901 . . . . . 6 1 ∈ ℂ
31, 2mulcli 7959 . . . . 5 (i · 1) ∈ ℂ
43addid2i 8096 . . . 4 (0 + (i · 1)) = (i · 1)
54eqcomi 2181 . . 3 (i · 1) = (0 + (i · 1))
65fveq2i 5517 . 2 (ℑ‘(i · 1)) = (ℑ‘(0 + (i · 1)))
71mulid1i 7956 . . 3 (i · 1) = i
87fveq2i 5517 . 2 (ℑ‘(i · 1)) = (ℑ‘i)
9 0re 7954 . . 3 0 ∈ ℝ
10 1re 7953 . . 3 1 ∈ ℝ
11 crim 10860 . . 3 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → (ℑ‘(0 + (i · 1))) = 1)
129, 10, 11mp2an 426 . 2 (ℑ‘(0 + (i · 1))) = 1
136, 8, 123eqtr3i 2206 1 (ℑ‘i) = 1
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wcel 2148  cfv 5215  (class class class)co 5872  cr 7807  0cc0 7808  1c1 7809  ici 7810   + caddc 7811   · cmul 7813  cim 10843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-cnex 7899  ax-resscn 7900  ax-1cn 7901  ax-1re 7902  ax-icn 7903  ax-addcl 7904  ax-addrcl 7905  ax-mulcl 7906  ax-mulrcl 7907  ax-addcom 7908  ax-mulcom 7909  ax-addass 7910  ax-mulass 7911  ax-distr 7912  ax-i2m1 7913  ax-0lt1 7914  ax-1rid 7915  ax-0id 7916  ax-rnegex 7917  ax-precex 7918  ax-cnre 7919  ax-pre-ltirr 7920  ax-pre-ltwlin 7921  ax-pre-lttrn 7922  ax-pre-apti 7923  ax-pre-ltadd 7924  ax-pre-mulgt0 7925  ax-pre-mulext 7926
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4003  df-opab 4064  df-mpt 4065  df-id 4292  df-po 4295  df-iso 4296  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-res 4637  df-ima 4638  df-iota 5177  df-fun 5217  df-fn 5218  df-f 5219  df-fv 5223  df-riota 5828  df-ov 5875  df-oprab 5876  df-mpo 5877  df-pnf 7990  df-mnf 7991  df-xr 7992  df-ltxr 7993  df-le 7994  df-sub 8126  df-neg 8127  df-reap 8528  df-ap 8535  df-div 8626  df-2 8974  df-cj 10844  df-re 10845  df-im 10846
This theorem is referenced by:  cji  10904  igz  12364
  Copyright terms: Public domain W3C validator