| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imi | GIF version | ||
| Description: The imaginary part of i. (Contributed by Scott Fenton, 9-Jun-2006.) |
| Ref | Expression |
|---|---|
| imi | ⊢ (ℑ‘i) = 1 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-icn 8062 | . . . . . 6 ⊢ i ∈ ℂ | |
| 2 | ax-1cn 8060 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 3 | 1, 2 | mulcli 8119 | . . . . 5 ⊢ (i · 1) ∈ ℂ |
| 4 | 3 | addlidi 8257 | . . . 4 ⊢ (0 + (i · 1)) = (i · 1) |
| 5 | 4 | eqcomi 2213 | . . 3 ⊢ (i · 1) = (0 + (i · 1)) |
| 6 | 5 | fveq2i 5606 | . 2 ⊢ (ℑ‘(i · 1)) = (ℑ‘(0 + (i · 1))) |
| 7 | 1 | mulridi 8116 | . . 3 ⊢ (i · 1) = i |
| 8 | 7 | fveq2i 5606 | . 2 ⊢ (ℑ‘(i · 1)) = (ℑ‘i) |
| 9 | 0re 8114 | . . 3 ⊢ 0 ∈ ℝ | |
| 10 | 1re 8113 | . . 3 ⊢ 1 ∈ ℝ | |
| 11 | crim 11335 | . . 3 ⊢ ((0 ∈ ℝ ∧ 1 ∈ ℝ) → (ℑ‘(0 + (i · 1))) = 1) | |
| 12 | 9, 10, 11 | mp2an 426 | . 2 ⊢ (ℑ‘(0 + (i · 1))) = 1 |
| 13 | 6, 8, 12 | 3eqtr3i 2238 | 1 ⊢ (ℑ‘i) = 1 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1375 ∈ wcel 2180 ‘cfv 5294 (class class class)co 5974 ℝcr 7966 0cc0 7967 1c1 7968 ici 7969 + caddc 7970 · cmul 7972 ℑcim 11318 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-po 4364 df-iso 4365 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-2 9137 df-cj 11319 df-re 11320 df-im 11321 |
| This theorem is referenced by: cji 11379 igz 12863 |
| Copyright terms: Public domain | W3C validator |