Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > slotsdifdsndx | GIF version |
Description: The index of the slot for the distance is not the index of other slots. (Contributed by AV, 11-Nov-2024.) |
Ref | Expression |
---|---|
slotsdifdsndx | ⊢ ((*𝑟‘ndx) ≠ (dist‘ndx) ∧ (le‘ndx) ≠ (dist‘ndx)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 4re 8964 | . . . 4 ⊢ 4 ∈ ℝ | |
2 | 1nn 8898 | . . . . 5 ⊢ 1 ∈ ℕ | |
3 | 2nn0 9161 | . . . . 5 ⊢ 2 ∈ ℕ0 | |
4 | 4nn0 9163 | . . . . 5 ⊢ 4 ∈ ℕ0 | |
5 | 4lt10 9487 | . . . . 5 ⊢ 4 < ;10 | |
6 | 2, 3, 4, 5 | declti 9389 | . . . 4 ⊢ 4 < ;12 |
7 | 1, 6 | ltneii 8025 | . . 3 ⊢ 4 ≠ ;12 |
8 | starvndx 12546 | . . . 4 ⊢ (*𝑟‘ndx) = 4 | |
9 | dsndx 12595 | . . . 4 ⊢ (dist‘ndx) = ;12 | |
10 | 8, 9 | neeq12i 2360 | . . 3 ⊢ ((*𝑟‘ndx) ≠ (dist‘ndx) ↔ 4 ≠ ;12) |
11 | 7, 10 | mpbir 147 | . 2 ⊢ (*𝑟‘ndx) ≠ (dist‘ndx) |
12 | 10re 9370 | . . . 4 ⊢ ;10 ∈ ℝ | |
13 | 1nn0 9160 | . . . . 5 ⊢ 1 ∈ ℕ0 | |
14 | 0nn0 9159 | . . . . 5 ⊢ 0 ∈ ℕ0 | |
15 | 2nn 9048 | . . . . 5 ⊢ 2 ∈ ℕ | |
16 | 2pos 8978 | . . . . 5 ⊢ 0 < 2 | |
17 | 13, 14, 15, 16 | declt 9379 | . . . 4 ⊢ ;10 < ;12 |
18 | 12, 17 | ltneii 8025 | . . 3 ⊢ ;10 ≠ ;12 |
19 | plendx 12592 | . . . 4 ⊢ (le‘ndx) = ;10 | |
20 | 19, 9 | neeq12i 2360 | . . 3 ⊢ ((le‘ndx) ≠ (dist‘ndx) ↔ ;10 ≠ ;12) |
21 | 18, 20 | mpbir 147 | . 2 ⊢ (le‘ndx) ≠ (dist‘ndx) |
22 | 11, 21 | pm3.2i 272 | 1 ⊢ ((*𝑟‘ndx) ≠ (dist‘ndx) ∧ (le‘ndx) ≠ (dist‘ndx)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ≠ wne 2343 ‘cfv 5205 0cc0 7783 1c1 7784 2c2 8938 4c4 8940 ;cdc 9352 ndxcnx 12422 *𝑟cstv 12491 lecple 12496 distcds 12498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 612 ax-in2 613 ax-io 707 ax-5 1443 ax-7 1444 ax-gen 1445 ax-ie1 1489 ax-ie2 1490 ax-8 1500 ax-10 1501 ax-11 1502 ax-i12 1503 ax-bndl 1505 ax-4 1506 ax-17 1522 ax-i9 1526 ax-ial 1530 ax-i5r 1531 ax-13 2146 ax-14 2147 ax-ext 2155 ax-sep 4113 ax-pow 4166 ax-pr 4200 ax-un 4424 ax-setind 4527 ax-cnex 7874 ax-resscn 7875 ax-1cn 7876 ax-1re 7877 ax-icn 7878 ax-addcl 7879 ax-addrcl 7880 ax-mulcl 7881 ax-mulrcl 7882 ax-addcom 7883 ax-mulcom 7884 ax-addass 7885 ax-mulass 7886 ax-distr 7887 ax-i2m1 7888 ax-0lt1 7889 ax-1rid 7890 ax-0id 7891 ax-rnegex 7892 ax-precex 7893 ax-cnre 7894 ax-pre-ltirr 7895 ax-pre-ltwlin 7896 ax-pre-lttrn 7897 ax-pre-ltadd 7899 ax-pre-mulgt0 7900 |
This theorem depends on definitions: df-bi 117 df-3or 977 df-3an 978 df-tru 1354 df-fal 1357 df-nf 1457 df-sb 1759 df-eu 2025 df-mo 2026 df-clab 2160 df-cleq 2166 df-clel 2169 df-nfc 2304 df-ne 2344 df-nel 2439 df-ral 2456 df-rex 2457 df-reu 2458 df-rab 2460 df-v 2735 df-sbc 2959 df-dif 3126 df-un 3128 df-in 3130 df-ss 3137 df-pw 3571 df-sn 3592 df-pr 3593 df-op 3595 df-uni 3803 df-int 3838 df-br 3996 df-opab 4057 df-mpt 4058 df-id 4284 df-xp 4623 df-rel 4624 df-cnv 4625 df-co 4626 df-dm 4627 df-rn 4628 df-res 4629 df-iota 5167 df-fun 5207 df-fv 5213 df-riota 5818 df-ov 5865 df-oprab 5866 df-mpo 5867 df-pnf 7965 df-mnf 7966 df-xr 7967 df-ltxr 7968 df-le 7969 df-sub 8101 df-neg 8102 df-inn 8888 df-2 8946 df-3 8947 df-4 8948 df-5 8949 df-6 8950 df-7 8951 df-8 8952 df-9 8953 df-n0 9145 df-z 9222 df-dec 9353 df-ndx 12428 df-slot 12429 df-starv 12504 df-ple 12509 df-ds 12511 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |