| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vscandxnscandx | GIF version | ||
| Description: The slot for the scalar product is not the slot for the scalar field in an extensible structure. (Contributed by AV, 18-Oct-2024.) |
| Ref | Expression |
|---|---|
| vscandxnscandx | ⊢ ( ·𝑠 ‘ndx) ≠ (Scalar‘ndx) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 5re 9145 | . . 3 ⊢ 5 ∈ ℝ | |
| 2 | 5lt6 9246 | . . 3 ⊢ 5 < 6 | |
| 3 | 1, 2 | gtneii 8198 | . 2 ⊢ 6 ≠ 5 |
| 4 | vscandx 13074 | . . 3 ⊢ ( ·𝑠 ‘ndx) = 6 | |
| 5 | scandx 13068 | . . 3 ⊢ (Scalar‘ndx) = 5 | |
| 6 | 4, 5 | neeq12i 2394 | . 2 ⊢ (( ·𝑠 ‘ndx) ≠ (Scalar‘ndx) ↔ 6 ≠ 5) |
| 7 | 3, 6 | mpbir 146 | 1 ⊢ ( ·𝑠 ‘ndx) ≠ (Scalar‘ndx) |
| Colors of variables: wff set class |
| Syntax hints: ≠ wne 2377 ‘cfv 5285 5c5 9120 6c6 9121 ndxcnx 12914 Scalarcsca 12997 ·𝑠 cvsca 12998 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-addcom 8055 ax-addass 8057 ax-i2m1 8060 ax-0lt1 8061 ax-0id 8063 ax-rnegex 8064 ax-pre-ltirr 8067 ax-pre-ltadd 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-iota 5246 df-fun 5287 df-fv 5293 df-ov 5965 df-pnf 8139 df-mnf 8140 df-ltxr 8142 df-inn 9067 df-2 9125 df-3 9126 df-4 9127 df-5 9128 df-6 9129 df-ndx 12920 df-slot 12921 df-sca 13010 df-vsca 13011 |
| This theorem is referenced by: rmodislmod 14198 srascag 14289 zlmsca 14479 |
| Copyright terms: Public domain | W3C validator |