| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tsetndxnmulrndx | GIF version | ||
| Description: The slot for the topology is not the slot for the ring multiplication operation in an extensible structure. (Contributed by AV, 31-Oct-2024.) |
| Ref | Expression |
|---|---|
| tsetndxnmulrndx | ⊢ (TopSet‘ndx) ≠ (.r‘ndx) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3re 9180 | . . 3 ⊢ 3 ∈ ℝ | |
| 2 | 3lt9 9309 | . . 3 ⊢ 3 < 9 | |
| 3 | 1, 2 | gtneii 8238 | . 2 ⊢ 9 ≠ 3 |
| 4 | tsetndx 13214 | . . 3 ⊢ (TopSet‘ndx) = 9 | |
| 5 | mulrndx 13158 | . . 3 ⊢ (.r‘ndx) = 3 | |
| 6 | 4, 5 | neeq12i 2417 | . 2 ⊢ ((TopSet‘ndx) ≠ (.r‘ndx) ↔ 9 ≠ 3) |
| 7 | 3, 6 | mpbir 146 | 1 ⊢ (TopSet‘ndx) ≠ (.r‘ndx) |
| Colors of variables: wff set class |
| Syntax hints: ≠ wne 2400 ‘cfv 5317 3c3 9158 9c9 9164 ndxcnx 13024 .rcmulr 13106 TopSetcts 13111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-pre-ltirr 8107 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fv 5325 df-ov 6003 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-inn 9107 df-2 9165 df-3 9166 df-4 9167 df-5 9168 df-6 9169 df-7 9170 df-8 9171 df-9 9172 df-ndx 13030 df-slot 13031 df-mulr 13119 df-tset 13124 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |