![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > setsmsbasg | GIF version |
Description: The base set of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
setsms.x | ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) |
setsms.d | ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
setsms.k | ⊢ (𝜑 → 𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)) |
setsmsbasg.m | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
setsmsbasg.d | ⊢ (𝜑 → (MetOpen‘𝐷) ∈ 𝑊) |
Ref | Expression |
---|---|
setsmsbasg | ⊢ (𝜑 → 𝑋 = (Base‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsmsbasg.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
2 | setsmsbasg.d | . . 3 ⊢ (𝜑 → (MetOpen‘𝐷) ∈ 𝑊) | |
3 | baseslid 12532 | . . . 4 ⊢ (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ) | |
4 | 1re 7969 | . . . . . 6 ⊢ 1 ∈ ℝ | |
5 | 1lt9 9136 | . . . . . 6 ⊢ 1 < 9 | |
6 | 4, 5 | ltneii 8067 | . . . . 5 ⊢ 1 ≠ 9 |
7 | basendx 12530 | . . . . . 6 ⊢ (Base‘ndx) = 1 | |
8 | tsetndx 12658 | . . . . . 6 ⊢ (TopSet‘ndx) = 9 | |
9 | 7, 8 | neeq12i 2374 | . . . . 5 ⊢ ((Base‘ndx) ≠ (TopSet‘ndx) ↔ 1 ≠ 9) |
10 | 6, 9 | mpbir 146 | . . . 4 ⊢ (Base‘ndx) ≠ (TopSet‘ndx) |
11 | 9nn 9100 | . . . . 5 ⊢ 9 ∈ ℕ | |
12 | 8, 11 | eqeltri 2260 | . . . 4 ⊢ (TopSet‘ndx) ∈ ℕ |
13 | 3, 10, 12 | setsslnid 12527 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ (MetOpen‘𝐷) ∈ 𝑊) → (Base‘𝑀) = (Base‘(𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))) |
14 | 1, 2, 13 | syl2anc 411 | . 2 ⊢ (𝜑 → (Base‘𝑀) = (Base‘(𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))) |
15 | setsms.x | . 2 ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) | |
16 | setsms.k | . . 3 ⊢ (𝜑 → 𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)) | |
17 | 16 | fveq2d 5531 | . 2 ⊢ (𝜑 → (Base‘𝐾) = (Base‘(𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))) |
18 | 14, 15, 17 | 3eqtr4d 2230 | 1 ⊢ (𝜑 → 𝑋 = (Base‘𝐾)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1363 ∈ wcel 2158 ≠ wne 2357 ⟨cop 3607 × cxp 4636 ↾ cres 4640 ‘cfv 5228 (class class class)co 5888 1c1 7825 ℕcn 8932 9c9 8990 ndxcnx 12472 sSet csts 12473 Basecbs 12475 TopSetcts 12556 distcds 12559 MetOpencmopn 13702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-cnex 7915 ax-resscn 7916 ax-1cn 7917 ax-1re 7918 ax-icn 7919 ax-addcl 7920 ax-addrcl 7921 ax-mulcl 7922 ax-addcom 7924 ax-addass 7926 ax-i2m1 7929 ax-0lt1 7930 ax-0id 7932 ax-rnegex 7933 ax-pre-ltirr 7936 ax-pre-lttrn 7938 ax-pre-ltadd 7940 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-rab 2474 df-v 2751 df-sbc 2975 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-br 4016 df-opab 4077 df-mpt 4078 df-id 4305 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-iota 5190 df-fun 5230 df-fv 5236 df-ov 5891 df-oprab 5892 df-mpo 5893 df-pnf 8007 df-mnf 8008 df-ltxr 8010 df-inn 8933 df-2 8991 df-3 8992 df-4 8993 df-5 8994 df-6 8995 df-7 8996 df-8 8997 df-9 8998 df-ndx 12478 df-slot 12479 df-base 12481 df-sets 12482 df-tset 12569 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |