ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsmsbasg GIF version

Theorem setsmsbasg 14995
Description: The base set of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
setsms.x (𝜑𝑋 = (Base‘𝑀))
setsms.d (𝜑𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
setsms.k (𝜑𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
setsmsbasg.m (𝜑𝑀𝑉)
setsmsbasg.d (𝜑 → (MetOpen‘𝐷) ∈ 𝑊)
Assertion
Ref Expression
setsmsbasg (𝜑𝑋 = (Base‘𝐾))

Proof of Theorem setsmsbasg
StepHypRef Expression
1 setsmsbasg.m . . 3 (𝜑𝑀𝑉)
2 setsmsbasg.d . . 3 (𝜑 → (MetOpen‘𝐷) ∈ 𝑊)
3 baseslid 12933 . . . 4 (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ)
4 1re 8078 . . . . . 6 1 ∈ ℝ
5 1lt9 9248 . . . . . 6 1 < 9
64, 5ltneii 8176 . . . . 5 1 ≠ 9
7 basendx 12931 . . . . . 6 (Base‘ndx) = 1
8 tsetndx 13062 . . . . . 6 (TopSet‘ndx) = 9
97, 8neeq12i 2394 . . . . 5 ((Base‘ndx) ≠ (TopSet‘ndx) ↔ 1 ≠ 9)
106, 9mpbir 146 . . . 4 (Base‘ndx) ≠ (TopSet‘ndx)
11 9nn 9212 . . . . 5 9 ∈ ℕ
128, 11eqeltri 2279 . . . 4 (TopSet‘ndx) ∈ ℕ
133, 10, 12setsslnid 12928 . . 3 ((𝑀𝑉 ∧ (MetOpen‘𝐷) ∈ 𝑊) → (Base‘𝑀) = (Base‘(𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)))
141, 2, 13syl2anc 411 . 2 (𝜑 → (Base‘𝑀) = (Base‘(𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)))
15 setsms.x . 2 (𝜑𝑋 = (Base‘𝑀))
16 setsms.k . . 3 (𝜑𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
1716fveq2d 5587 . 2 (𝜑 → (Base‘𝐾) = (Base‘(𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)))
1814, 15, 173eqtr4d 2249 1 (𝜑𝑋 = (Base‘𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  wne 2377  cop 3637   × cxp 4677  cres 4681  cfv 5276  (class class class)co 5951  1c1 7933  cn 9043  9c9 9101  ndxcnx 12873   sSet csts 12874  Basecbs 12876  TopSetcts 12959  distcds 12962  MetOpencmopn 14347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-pre-ltirr 8044  ax-pre-lttrn 8046  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3000  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-iota 5237  df-fun 5278  df-fv 5284  df-ov 5954  df-oprab 5955  df-mpo 5956  df-pnf 8116  df-mnf 8117  df-ltxr 8119  df-inn 9044  df-2 9102  df-3 9103  df-4 9104  df-5 9105  df-6 9106  df-7 9107  df-8 9108  df-9 9109  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-tset 12972
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator