ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsmsbasg GIF version

Theorem setsmsbasg 15118
Description: The base set of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
setsms.x (𝜑𝑋 = (Base‘𝑀))
setsms.d (𝜑𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
setsms.k (𝜑𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
setsmsbasg.m (𝜑𝑀𝑉)
setsmsbasg.d (𝜑 → (MetOpen‘𝐷) ∈ 𝑊)
Assertion
Ref Expression
setsmsbasg (𝜑𝑋 = (Base‘𝐾))

Proof of Theorem setsmsbasg
StepHypRef Expression
1 setsmsbasg.m . . 3 (𝜑𝑀𝑉)
2 setsmsbasg.d . . 3 (𝜑 → (MetOpen‘𝐷) ∈ 𝑊)
3 baseslid 13056 . . . 4 (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ)
4 1re 8113 . . . . . 6 1 ∈ ℝ
5 1lt9 9283 . . . . . 6 1 < 9
64, 5ltneii 8211 . . . . 5 1 ≠ 9
7 basendx 13053 . . . . . 6 (Base‘ndx) = 1
8 tsetndx 13185 . . . . . 6 (TopSet‘ndx) = 9
97, 8neeq12i 2397 . . . . 5 ((Base‘ndx) ≠ (TopSet‘ndx) ↔ 1 ≠ 9)
106, 9mpbir 146 . . . 4 (Base‘ndx) ≠ (TopSet‘ndx)
11 9nn 9247 . . . . 5 9 ∈ ℕ
128, 11eqeltri 2282 . . . 4 (TopSet‘ndx) ∈ ℕ
133, 10, 12setsslnid 13050 . . 3 ((𝑀𝑉 ∧ (MetOpen‘𝐷) ∈ 𝑊) → (Base‘𝑀) = (Base‘(𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)))
141, 2, 13syl2anc 411 . 2 (𝜑 → (Base‘𝑀) = (Base‘(𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)))
15 setsms.x . 2 (𝜑𝑋 = (Base‘𝑀))
16 setsms.k . . 3 (𝜑𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
1716fveq2d 5607 . 2 (𝜑 → (Base‘𝐾) = (Base‘(𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)))
1814, 15, 173eqtr4d 2252 1 (𝜑𝑋 = (Base‘𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375  wcel 2180  wne 2380  cop 3649   × cxp 4694  cres 4698  cfv 5294  (class class class)co 5974  1c1 7968  cn 9078  9c9 9136  ndxcnx 12995   sSet csts 12996  Basecbs 12998  TopSetcts 13082  distcds 13085  MetOpencmopn 14470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-addcom 8067  ax-addass 8069  ax-i2m1 8072  ax-0lt1 8073  ax-0id 8075  ax-rnegex 8076  ax-pre-ltirr 8079  ax-pre-lttrn 8081  ax-pre-ltadd 8083
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-rab 2497  df-v 2781  df-sbc 3009  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-iota 5254  df-fun 5296  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-pnf 8151  df-mnf 8152  df-ltxr 8154  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-tset 13095
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator