ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setsmsbasg GIF version

Theorem setsmsbasg 12658
Description: The base set of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.)
Hypotheses
Ref Expression
setsms.x (𝜑𝑋 = (Base‘𝑀))
setsms.d (𝜑𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋)))
setsms.k (𝜑𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
setsmsbasg.m (𝜑𝑀𝑉)
setsmsbasg.d (𝜑 → (MetOpen‘𝐷) ∈ 𝑊)
Assertion
Ref Expression
setsmsbasg (𝜑𝑋 = (Base‘𝐾))

Proof of Theorem setsmsbasg
StepHypRef Expression
1 setsmsbasg.m . . 3 (𝜑𝑀𝑉)
2 setsmsbasg.d . . 3 (𝜑 → (MetOpen‘𝐷) ∈ 𝑊)
3 baseslid 12025 . . . 4 (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ)
4 1re 7772 . . . . . 6 1 ∈ ℝ
5 1lt9 8931 . . . . . 6 1 < 9
64, 5ltneii 7867 . . . . 5 1 ≠ 9
7 basendx 12023 . . . . . 6 (Base‘ndx) = 1
8 tsetndx 12117 . . . . . 6 (TopSet‘ndx) = 9
97, 8neeq12i 2325 . . . . 5 ((Base‘ndx) ≠ (TopSet‘ndx) ↔ 1 ≠ 9)
106, 9mpbir 145 . . . 4 (Base‘ndx) ≠ (TopSet‘ndx)
11 9nn 8895 . . . . 5 9 ∈ ℕ
128, 11eqeltri 2212 . . . 4 (TopSet‘ndx) ∈ ℕ
133, 10, 12setsslnid 12020 . . 3 ((𝑀𝑉 ∧ (MetOpen‘𝐷) ∈ 𝑊) → (Base‘𝑀) = (Base‘(𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)))
141, 2, 13syl2anc 408 . 2 (𝜑 → (Base‘𝑀) = (Base‘(𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)))
15 setsms.x . 2 (𝜑𝑋 = (Base‘𝑀))
16 setsms.k . . 3 (𝜑𝐾 = (𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩))
1716fveq2d 5425 . 2 (𝜑 → (Base‘𝐾) = (Base‘(𝑀 sSet ⟨(TopSet‘ndx), (MetOpen‘𝐷)⟩)))
1814, 15, 173eqtr4d 2182 1 (𝜑𝑋 = (Base‘𝐾))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  wcel 1480  wne 2308  cop 3530   × cxp 4537  cres 4541  cfv 5123  (class class class)co 5774  1c1 7628  cn 8727  9c9 8785  ndxcnx 11966   sSet csts 11967  Basecbs 11969  TopSetcts 12037  distcds 12040  MetOpencmopn 12164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7718  ax-resscn 7719  ax-1cn 7720  ax-1re 7721  ax-icn 7722  ax-addcl 7723  ax-addrcl 7724  ax-mulcl 7725  ax-addcom 7727  ax-addass 7729  ax-i2m1 7732  ax-0lt1 7733  ax-0id 7735  ax-rnegex 7736  ax-pre-ltirr 7739  ax-pre-lttrn 7741  ax-pre-ltadd 7743
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-iota 5088  df-fun 5125  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7809  df-mnf 7810  df-ltxr 7812  df-inn 8728  df-2 8786  df-3 8787  df-4 8788  df-5 8789  df-6 8790  df-7 8791  df-8 8792  df-9 8793  df-ndx 11972  df-slot 11973  df-base 11975  df-sets 11976  df-tset 12050
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator