| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > setsmsbasg | GIF version | ||
| Description: The base set of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| Ref | Expression |
|---|---|
| setsms.x | ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) |
| setsms.d | ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
| setsms.k | ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) |
| setsmsbasg.m | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
| setsmsbasg.d | ⊢ (𝜑 → (MetOpen‘𝐷) ∈ 𝑊) |
| Ref | Expression |
|---|---|
| setsmsbasg | ⊢ (𝜑 → 𝑋 = (Base‘𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsmsbasg.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
| 2 | setsmsbasg.d | . . 3 ⊢ (𝜑 → (MetOpen‘𝐷) ∈ 𝑊) | |
| 3 | baseslid 13056 | . . . 4 ⊢ (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ) | |
| 4 | 1re 8113 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 5 | 1lt9 9283 | . . . . . 6 ⊢ 1 < 9 | |
| 6 | 4, 5 | ltneii 8211 | . . . . 5 ⊢ 1 ≠ 9 |
| 7 | basendx 13053 | . . . . . 6 ⊢ (Base‘ndx) = 1 | |
| 8 | tsetndx 13185 | . . . . . 6 ⊢ (TopSet‘ndx) = 9 | |
| 9 | 7, 8 | neeq12i 2397 | . . . . 5 ⊢ ((Base‘ndx) ≠ (TopSet‘ndx) ↔ 1 ≠ 9) |
| 10 | 6, 9 | mpbir 146 | . . . 4 ⊢ (Base‘ndx) ≠ (TopSet‘ndx) |
| 11 | 9nn 9247 | . . . . 5 ⊢ 9 ∈ ℕ | |
| 12 | 8, 11 | eqeltri 2282 | . . . 4 ⊢ (TopSet‘ndx) ∈ ℕ |
| 13 | 3, 10, 12 | setsslnid 13050 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ (MetOpen‘𝐷) ∈ 𝑊) → (Base‘𝑀) = (Base‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉))) |
| 14 | 1, 2, 13 | syl2anc 411 | . 2 ⊢ (𝜑 → (Base‘𝑀) = (Base‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉))) |
| 15 | setsms.x | . 2 ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) | |
| 16 | setsms.k | . . 3 ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) | |
| 17 | 16 | fveq2d 5607 | . 2 ⊢ (𝜑 → (Base‘𝐾) = (Base‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉))) |
| 18 | 14, 15, 17 | 3eqtr4d 2252 | 1 ⊢ (𝜑 → 𝑋 = (Base‘𝐾)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 ≠ wne 2380 〈cop 3649 × cxp 4694 ↾ cres 4698 ‘cfv 5294 (class class class)co 5974 1c1 7968 ℕcn 9078 9c9 9136 ndxcnx 12995 sSet csts 12996 Basecbs 12998 TopSetcts 13082 distcds 13085 MetOpencmopn 14470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-addass 8069 ax-i2m1 8072 ax-0lt1 8073 ax-0id 8075 ax-rnegex 8076 ax-pre-ltirr 8079 ax-pre-lttrn 8081 ax-pre-ltadd 8083 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-iota 5254 df-fun 5296 df-fv 5302 df-ov 5977 df-oprab 5978 df-mpo 5979 df-pnf 8151 df-mnf 8152 df-ltxr 8154 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-5 9140 df-6 9141 df-7 9142 df-8 9143 df-9 9144 df-ndx 13001 df-slot 13002 df-base 13004 df-sets 13005 df-tset 13095 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |