Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > setsmsbasg | GIF version |
Description: The base set of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
Ref | Expression |
---|---|
setsms.x | ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) |
setsms.d | ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
setsms.k | ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) |
setsmsbasg.m | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
setsmsbasg.d | ⊢ (𝜑 → (MetOpen‘𝐷) ∈ 𝑊) |
Ref | Expression |
---|---|
setsmsbasg | ⊢ (𝜑 → 𝑋 = (Base‘𝐾)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | setsmsbasg.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
2 | setsmsbasg.d | . . 3 ⊢ (𝜑 → (MetOpen‘𝐷) ∈ 𝑊) | |
3 | baseslid 12485 | . . . 4 ⊢ (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ) | |
4 | 1re 7931 | . . . . . 6 ⊢ 1 ∈ ℝ | |
5 | 1lt9 9096 | . . . . . 6 ⊢ 1 < 9 | |
6 | 4, 5 | ltneii 8028 | . . . . 5 ⊢ 1 ≠ 9 |
7 | basendx 12483 | . . . . . 6 ⊢ (Base‘ndx) = 1 | |
8 | tsetndx 12591 | . . . . . 6 ⊢ (TopSet‘ndx) = 9 | |
9 | 7, 8 | neeq12i 2362 | . . . . 5 ⊢ ((Base‘ndx) ≠ (TopSet‘ndx) ↔ 1 ≠ 9) |
10 | 6, 9 | mpbir 146 | . . . 4 ⊢ (Base‘ndx) ≠ (TopSet‘ndx) |
11 | 9nn 9060 | . . . . 5 ⊢ 9 ∈ ℕ | |
12 | 8, 11 | eqeltri 2248 | . . . 4 ⊢ (TopSet‘ndx) ∈ ℕ |
13 | 3, 10, 12 | setsslnid 12480 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ (MetOpen‘𝐷) ∈ 𝑊) → (Base‘𝑀) = (Base‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉))) |
14 | 1, 2, 13 | syl2anc 411 | . 2 ⊢ (𝜑 → (Base‘𝑀) = (Base‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉))) |
15 | setsms.x | . 2 ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) | |
16 | setsms.k | . . 3 ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) | |
17 | 16 | fveq2d 5511 | . 2 ⊢ (𝜑 → (Base‘𝐾) = (Base‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉))) |
18 | 14, 15, 17 | 3eqtr4d 2218 | 1 ⊢ (𝜑 → 𝑋 = (Base‘𝐾)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1353 ∈ wcel 2146 ≠ wne 2345 〈cop 3592 × cxp 4618 ↾ cres 4622 ‘cfv 5208 (class class class)co 5865 1c1 7787 ℕcn 8892 9c9 8950 ndxcnx 12426 sSet csts 12427 Basecbs 12429 TopSetcts 12508 distcds 12511 MetOpencmopn 13065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-pre-ltirr 7898 ax-pre-lttrn 7900 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fv 5216 df-ov 5868 df-oprab 5869 df-mpo 5870 df-pnf 7968 df-mnf 7969 df-ltxr 7971 df-inn 8893 df-2 8951 df-3 8952 df-4 8953 df-5 8954 df-6 8955 df-7 8956 df-8 8957 df-9 8958 df-ndx 12432 df-slot 12433 df-base 12435 df-sets 12436 df-tset 12521 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |