| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > setsmsbasg | GIF version | ||
| Description: The base set of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| Ref | Expression |
|---|---|
| setsms.x | ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) |
| setsms.d | ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
| setsms.k | ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) |
| setsmsbasg.m | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
| setsmsbasg.d | ⊢ (𝜑 → (MetOpen‘𝐷) ∈ 𝑊) |
| Ref | Expression |
|---|---|
| setsmsbasg | ⊢ (𝜑 → 𝑋 = (Base‘𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsmsbasg.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
| 2 | setsmsbasg.d | . . 3 ⊢ (𝜑 → (MetOpen‘𝐷) ∈ 𝑊) | |
| 3 | baseslid 13098 | . . . 4 ⊢ (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ) | |
| 4 | 1re 8153 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 5 | 1lt9 9323 | . . . . . 6 ⊢ 1 < 9 | |
| 6 | 4, 5 | ltneii 8251 | . . . . 5 ⊢ 1 ≠ 9 |
| 7 | basendx 13095 | . . . . . 6 ⊢ (Base‘ndx) = 1 | |
| 8 | tsetndx 13227 | . . . . . 6 ⊢ (TopSet‘ndx) = 9 | |
| 9 | 7, 8 | neeq12i 2417 | . . . . 5 ⊢ ((Base‘ndx) ≠ (TopSet‘ndx) ↔ 1 ≠ 9) |
| 10 | 6, 9 | mpbir 146 | . . . 4 ⊢ (Base‘ndx) ≠ (TopSet‘ndx) |
| 11 | 9nn 9287 | . . . . 5 ⊢ 9 ∈ ℕ | |
| 12 | 8, 11 | eqeltri 2302 | . . . 4 ⊢ (TopSet‘ndx) ∈ ℕ |
| 13 | 3, 10, 12 | setsslnid 13092 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ (MetOpen‘𝐷) ∈ 𝑊) → (Base‘𝑀) = (Base‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉))) |
| 14 | 1, 2, 13 | syl2anc 411 | . 2 ⊢ (𝜑 → (Base‘𝑀) = (Base‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉))) |
| 15 | setsms.x | . 2 ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) | |
| 16 | setsms.k | . . 3 ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) | |
| 17 | 16 | fveq2d 5633 | . 2 ⊢ (𝜑 → (Base‘𝐾) = (Base‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉))) |
| 18 | 14, 15, 17 | 3eqtr4d 2272 | 1 ⊢ (𝜑 → 𝑋 = (Base‘𝐾)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 ≠ wne 2400 〈cop 3669 × cxp 4717 ↾ cres 4721 ‘cfv 5318 (class class class)co 6007 1c1 8008 ℕcn 9118 9c9 9176 ndxcnx 13037 sSet csts 13038 Basecbs 13040 TopSetcts 13124 distcds 13127 MetOpencmopn 14513 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-pre-ltirr 8119 ax-pre-lttrn 8121 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fv 5326 df-ov 6010 df-oprab 6011 df-mpo 6012 df-pnf 8191 df-mnf 8192 df-ltxr 8194 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-9 9184 df-ndx 13043 df-slot 13044 df-base 13046 df-sets 13047 df-tset 13137 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |