| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > setsmsbasg | GIF version | ||
| Description: The base set of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015.) |
| Ref | Expression |
|---|---|
| setsms.x | ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) |
| setsms.d | ⊢ (𝜑 → 𝐷 = ((dist‘𝑀) ↾ (𝑋 × 𝑋))) |
| setsms.k | ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) |
| setsmsbasg.m | ⊢ (𝜑 → 𝑀 ∈ 𝑉) |
| setsmsbasg.d | ⊢ (𝜑 → (MetOpen‘𝐷) ∈ 𝑊) |
| Ref | Expression |
|---|---|
| setsmsbasg | ⊢ (𝜑 → 𝑋 = (Base‘𝐾)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsmsbasg.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ 𝑉) | |
| 2 | setsmsbasg.d | . . 3 ⊢ (𝜑 → (MetOpen‘𝐷) ∈ 𝑊) | |
| 3 | baseslid 12933 | . . . 4 ⊢ (Base = Slot (Base‘ndx) ∧ (Base‘ndx) ∈ ℕ) | |
| 4 | 1re 8078 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 5 | 1lt9 9248 | . . . . . 6 ⊢ 1 < 9 | |
| 6 | 4, 5 | ltneii 8176 | . . . . 5 ⊢ 1 ≠ 9 |
| 7 | basendx 12931 | . . . . . 6 ⊢ (Base‘ndx) = 1 | |
| 8 | tsetndx 13062 | . . . . . 6 ⊢ (TopSet‘ndx) = 9 | |
| 9 | 7, 8 | neeq12i 2394 | . . . . 5 ⊢ ((Base‘ndx) ≠ (TopSet‘ndx) ↔ 1 ≠ 9) |
| 10 | 6, 9 | mpbir 146 | . . . 4 ⊢ (Base‘ndx) ≠ (TopSet‘ndx) |
| 11 | 9nn 9212 | . . . . 5 ⊢ 9 ∈ ℕ | |
| 12 | 8, 11 | eqeltri 2279 | . . . 4 ⊢ (TopSet‘ndx) ∈ ℕ |
| 13 | 3, 10, 12 | setsslnid 12928 | . . 3 ⊢ ((𝑀 ∈ 𝑉 ∧ (MetOpen‘𝐷) ∈ 𝑊) → (Base‘𝑀) = (Base‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉))) |
| 14 | 1, 2, 13 | syl2anc 411 | . 2 ⊢ (𝜑 → (Base‘𝑀) = (Base‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉))) |
| 15 | setsms.x | . 2 ⊢ (𝜑 → 𝑋 = (Base‘𝑀)) | |
| 16 | setsms.k | . . 3 ⊢ (𝜑 → 𝐾 = (𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉)) | |
| 17 | 16 | fveq2d 5587 | . 2 ⊢ (𝜑 → (Base‘𝐾) = (Base‘(𝑀 sSet 〈(TopSet‘ndx), (MetOpen‘𝐷)〉))) |
| 18 | 14, 15, 17 | 3eqtr4d 2249 | 1 ⊢ (𝜑 → 𝑋 = (Base‘𝐾)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 ≠ wne 2377 〈cop 3637 × cxp 4677 ↾ cres 4681 ‘cfv 5276 (class class class)co 5951 1c1 7933 ℕcn 9043 9c9 9101 ndxcnx 12873 sSet csts 12874 Basecbs 12876 TopSetcts 12959 distcds 12962 MetOpencmopn 14347 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-addcom 8032 ax-addass 8034 ax-i2m1 8037 ax-0lt1 8038 ax-0id 8040 ax-rnegex 8041 ax-pre-ltirr 8044 ax-pre-lttrn 8046 ax-pre-ltadd 8048 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3000 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-iota 5237 df-fun 5278 df-fv 5284 df-ov 5954 df-oprab 5955 df-mpo 5956 df-pnf 8116 df-mnf 8117 df-ltxr 8119 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-5 9105 df-6 9106 df-7 9107 df-8 9108 df-9 9109 df-ndx 12879 df-slot 12880 df-base 12882 df-sets 12883 df-tset 12972 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |