| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > slotsdifipndx | GIF version | ||
| Description: The slot for the scalar is not the index of other slots. (Contributed by AV, 12-Nov-2024.) |
| Ref | Expression |
|---|---|
| slotsdifipndx | ⊢ (( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx) ∧ (Scalar‘ndx) ≠ (·𝑖‘ndx)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 6re 9199 | . . . 4 ⊢ 6 ∈ ℝ | |
| 2 | 6lt8 9310 | . . . 4 ⊢ 6 < 8 | |
| 3 | 1, 2 | ltneii 8251 | . . 3 ⊢ 6 ≠ 8 |
| 4 | vscandx 13198 | . . . 4 ⊢ ( ·𝑠 ‘ndx) = 6 | |
| 5 | ipndx 13210 | . . . 4 ⊢ (·𝑖‘ndx) = 8 | |
| 6 | 4, 5 | neeq12i 2417 | . . 3 ⊢ (( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx) ↔ 6 ≠ 8) |
| 7 | 3, 6 | mpbir 146 | . 2 ⊢ ( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx) |
| 8 | 5re 9197 | . . . 4 ⊢ 5 ∈ ℝ | |
| 9 | 5lt8 9311 | . . . 4 ⊢ 5 < 8 | |
| 10 | 8, 9 | ltneii 8251 | . . 3 ⊢ 5 ≠ 8 |
| 11 | scandx 13192 | . . . 4 ⊢ (Scalar‘ndx) = 5 | |
| 12 | 11, 5 | neeq12i 2417 | . . 3 ⊢ ((Scalar‘ndx) ≠ (·𝑖‘ndx) ↔ 5 ≠ 8) |
| 13 | 10, 12 | mpbir 146 | . 2 ⊢ (Scalar‘ndx) ≠ (·𝑖‘ndx) |
| 14 | 7, 13 | pm3.2i 272 | 1 ⊢ (( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx) ∧ (Scalar‘ndx) ≠ (·𝑖‘ndx)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ≠ wne 2400 ‘cfv 5318 5c5 9172 6c6 9173 8c8 9175 ndxcnx 13037 Scalarcsca 13121 ·𝑠 cvsca 13122 ·𝑖cip 13123 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-pre-ltirr 8119 ax-pre-lttrn 8121 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-iota 5278 df-fun 5320 df-fv 5326 df-ov 6010 df-pnf 8191 df-mnf 8192 df-ltxr 8194 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-5 9180 df-6 9181 df-7 9182 df-8 9183 df-ndx 13043 df-slot 13044 df-sca 13134 df-vsca 13135 df-ip 13136 |
| This theorem is referenced by: srascag 14414 sravscag 14415 |
| Copyright terms: Public domain | W3C validator |