![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > slotsdifipndx | GIF version |
Description: The slot for the scalar is not the index of other slots. (Contributed by AV, 12-Nov-2024.) |
Ref | Expression |
---|---|
slotsdifipndx | ⊢ (( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx) ∧ (Scalar‘ndx) ≠ (·𝑖‘ndx)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6re 9002 | . . . 4 ⊢ 6 ∈ ℝ | |
2 | 6lt8 9112 | . . . 4 ⊢ 6 < 8 | |
3 | 1, 2 | ltneii 8056 | . . 3 ⊢ 6 ≠ 8 |
4 | vscandx 12617 | . . . 4 ⊢ ( ·𝑠 ‘ndx) = 6 | |
5 | ipndx 12629 | . . . 4 ⊢ (·𝑖‘ndx) = 8 | |
6 | 4, 5 | neeq12i 2364 | . . 3 ⊢ (( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx) ↔ 6 ≠ 8) |
7 | 3, 6 | mpbir 146 | . 2 ⊢ ( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx) |
8 | 5re 9000 | . . . 4 ⊢ 5 ∈ ℝ | |
9 | 5lt8 9113 | . . . 4 ⊢ 5 < 8 | |
10 | 8, 9 | ltneii 8056 | . . 3 ⊢ 5 ≠ 8 |
11 | scandx 12611 | . . . 4 ⊢ (Scalar‘ndx) = 5 | |
12 | 11, 5 | neeq12i 2364 | . . 3 ⊢ ((Scalar‘ndx) ≠ (·𝑖‘ndx) ↔ 5 ≠ 8) |
13 | 10, 12 | mpbir 146 | . 2 ⊢ (Scalar‘ndx) ≠ (·𝑖‘ndx) |
14 | 7, 13 | pm3.2i 272 | 1 ⊢ (( ·𝑠 ‘ndx) ≠ (·𝑖‘ndx) ∧ (Scalar‘ndx) ≠ (·𝑖‘ndx)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 ≠ wne 2347 ‘cfv 5218 5c5 8975 6c6 8976 8c8 8978 ndxcnx 12461 Scalarcsca 12541 ·𝑠 cvsca 12542 ·𝑖cip 12543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-pre-ltirr 7925 ax-pre-lttrn 7927 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-iota 5180 df-fun 5220 df-fv 5226 df-ov 5880 df-pnf 7996 df-mnf 7997 df-ltxr 7999 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-5 8983 df-6 8984 df-7 8985 df-8 8986 df-ndx 12467 df-slot 12468 df-sca 12554 df-vsca 12555 df-ip 12556 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |