ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  plendxnplusgndx GIF version

Theorem plendxnplusgndx 13225
Description: The slot for the "less than or equal to" ordering is not the slot for the group operation in an extensible structure. (Contributed by AV, 18-Oct-2024.)
Assertion
Ref Expression
plendxnplusgndx (le‘ndx) ≠ (+g‘ndx)

Proof of Theorem plendxnplusgndx
StepHypRef Expression
1 2re 9168 . . 3 2 ∈ ℝ
2 2lt10 9703 . . 3 2 < 10
31, 2gtneii 8230 . 2 10 ≠ 2
4 plendx 13219 . . 3 (le‘ndx) = 10
5 plusgndx 13128 . . 3 (+g‘ndx) = 2
64, 5neeq12i 2417 . 2 ((le‘ndx) ≠ (+g‘ndx) ↔ 10 ≠ 2)
73, 6mpbir 146 1 (le‘ndx) ≠ (+g‘ndx)
Colors of variables: wff set class
Syntax hints:  wne 2400  cfv 5314  0cc0 7987  1c1 7988  2c2 9149  cdc 9566  ndxcnx 13015  +gcplusg 13096  lecple 13103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-lttrn 8101  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-iota 5274  df-fun 5316  df-fv 5322  df-ov 5997  df-pnf 8171  df-mnf 8172  df-ltxr 8174  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-5 9160  df-6 9161  df-7 9162  df-8 9163  df-9 9164  df-dec 9567  df-ndx 13021  df-slot 13022  df-plusg 13109  df-ple 13116
This theorem is referenced by:  znadd  14590
  Copyright terms: Public domain W3C validator