Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > scandxnmulrndx | GIF version |
Description: The slot for the scalar field is not the slot for the ring (multiplication) operation in an extensible structure. (Contributed by AV, 29-Oct-2024.) |
Ref | Expression |
---|---|
scandxnmulrndx | ⊢ (Scalar‘ndx) ≠ (.r‘ndx) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3re 8964 | . . 3 ⊢ 3 ∈ ℝ | |
2 | 3lt5 9066 | . . 3 ⊢ 3 < 5 | |
3 | 1, 2 | gtneii 8027 | . 2 ⊢ 5 ≠ 3 |
4 | scandx 12557 | . . 3 ⊢ (Scalar‘ndx) = 5 | |
5 | mulrndx 12540 | . . 3 ⊢ (.r‘ndx) = 3 | |
6 | 4, 5 | neeq12i 2362 | . 2 ⊢ ((Scalar‘ndx) ≠ (.r‘ndx) ↔ 5 ≠ 3) |
7 | 3, 6 | mpbir 146 | 1 ⊢ (Scalar‘ndx) ≠ (.r‘ndx) |
Colors of variables: wff set class |
Syntax hints: ≠ wne 2345 ‘cfv 5208 3c3 8942 5c5 8944 ndxcnx 12425 .rcmulr 12493 Scalarcsca 12495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 ax-setind 4530 ax-cnex 7877 ax-resscn 7878 ax-1cn 7879 ax-1re 7880 ax-icn 7881 ax-addcl 7882 ax-addrcl 7883 ax-mulcl 7884 ax-addcom 7886 ax-addass 7888 ax-i2m1 7891 ax-0lt1 7892 ax-0id 7894 ax-rnegex 7895 ax-pre-ltirr 7898 ax-pre-lttrn 7900 ax-pre-ltadd 7902 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-nel 2441 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-int 3841 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fv 5216 df-ov 5868 df-pnf 7968 df-mnf 7969 df-ltxr 7971 df-inn 8891 df-2 8949 df-3 8950 df-4 8951 df-5 8952 df-ndx 12431 df-slot 12432 df-mulr 12506 df-sca 12508 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |