Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > negeq | GIF version |
Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.) |
Ref | Expression |
---|---|
negeq | ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5849 | . 2 ⊢ (𝐴 = 𝐵 → (0 − 𝐴) = (0 − 𝐵)) | |
2 | df-neg 8068 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
3 | df-neg 8068 | . 2 ⊢ -𝐵 = (0 − 𝐵) | |
4 | 1, 2, 3 | 3eqtr4g 2223 | 1 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1343 (class class class)co 5841 0cc0 7749 − cmin 8065 -cneg 8066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-rex 2449 df-v 2727 df-un 3119 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-iota 5152 df-fv 5195 df-ov 5844 df-neg 8068 |
This theorem is referenced by: negeqi 8088 negeqd 8089 neg11 8145 negf1o 8276 recexre 8472 negiso 8846 elz 9189 znegcl 9218 zaddcllemneg 9226 elz2 9258 zindd 9305 infrenegsupex 9528 supinfneg 9529 infsupneg 9530 supminfex 9531 ublbneg 9547 eqreznegel 9548 negm 9549 qnegcl 9570 xnegeq 9759 ceilqval 10237 exp3val 10453 expnegap0 10459 m1expcl2 10473 negfi 11165 dvdsnegb 11744 infssuzex 11878 infssuzcldc 11880 zsupssdc 11883 lcmneg 12002 pcexp 12237 pcneg 12252 znnen 12327 negcncf 13188 negfcncf 13189 lgsdir2lem4 13532 ex-ceil 13567 |
Copyright terms: Public domain | W3C validator |