Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > negeq | GIF version |
Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.) |
Ref | Expression |
---|---|
negeq | ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5861 | . 2 ⊢ (𝐴 = 𝐵 → (0 − 𝐴) = (0 − 𝐵)) | |
2 | df-neg 8093 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
3 | df-neg 8093 | . 2 ⊢ -𝐵 = (0 − 𝐵) | |
4 | 1, 2, 3 | 3eqtr4g 2228 | 1 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 (class class class)co 5853 0cc0 7774 − cmin 8090 -cneg 8091 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-iota 5160 df-fv 5206 df-ov 5856 df-neg 8093 |
This theorem is referenced by: negeqi 8113 negeqd 8114 neg11 8170 negf1o 8301 recexre 8497 negiso 8871 elz 9214 znegcl 9243 zaddcllemneg 9251 elz2 9283 zindd 9330 infrenegsupex 9553 supinfneg 9554 infsupneg 9555 supminfex 9556 ublbneg 9572 eqreznegel 9573 negm 9574 qnegcl 9595 xnegeq 9784 ceilqval 10262 exp3val 10478 expnegap0 10484 m1expcl2 10498 negfi 11191 dvdsnegb 11770 infssuzex 11904 infssuzcldc 11906 zsupssdc 11909 lcmneg 12028 pcexp 12263 pcneg 12278 znnen 12353 negcncf 13382 negfcncf 13383 lgsdir2lem4 13726 ex-ceil 13761 |
Copyright terms: Public domain | W3C validator |