| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negeq | GIF version | ||
| Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.) |
| Ref | Expression |
|---|---|
| negeq | ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 5933 | . 2 ⊢ (𝐴 = 𝐵 → (0 − 𝐴) = (0 − 𝐵)) | |
| 2 | df-neg 8217 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
| 3 | df-neg 8217 | . 2 ⊢ -𝐵 = (0 − 𝐵) | |
| 4 | 1, 2, 3 | 3eqtr4g 2254 | 1 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 (class class class)co 5925 0cc0 7896 − cmin 8214 -cneg 8215 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-neg 8217 |
| This theorem is referenced by: negeqi 8237 negeqd 8238 neg11 8294 negf1o 8425 recexre 8622 negiso 8999 elz 9345 znegcl 9374 zaddcllemneg 9382 elz2 9414 zindd 9461 infrenegsupex 9685 supinfneg 9686 infsupneg 9687 supminfex 9688 ublbneg 9704 eqreznegel 9705 negm 9706 qnegcl 9727 xnegeq 9919 infssuzex 10340 infssuzcldc 10342 zsupssdc 10345 ceilqval 10415 exp3val 10650 expnegap0 10656 m1expcl2 10670 negfi 11410 dvdsnegb 11990 lcmneg 12267 pcexp 12503 pcneg 12519 znnen 12640 mulgneg2 13362 negcncf 14925 negfcncf 14926 lgsdir2lem4 15356 ex-ceil 15456 |
| Copyright terms: Public domain | W3C validator |