| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negeq | GIF version | ||
| Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.) |
| Ref | Expression |
|---|---|
| negeq | ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 5965 | . 2 ⊢ (𝐴 = 𝐵 → (0 − 𝐴) = (0 − 𝐵)) | |
| 2 | df-neg 8266 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
| 3 | df-neg 8266 | . 2 ⊢ -𝐵 = (0 − 𝐵) | |
| 4 | 1, 2, 3 | 3eqtr4g 2264 | 1 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 (class class class)co 5957 0cc0 7945 − cmin 8263 -cneg 8264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-un 3174 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-iota 5241 df-fv 5288 df-ov 5960 df-neg 8266 |
| This theorem is referenced by: negeqi 8286 negeqd 8287 neg11 8343 negf1o 8474 recexre 8671 negiso 9048 elz 9394 znegcl 9423 zaddcllemneg 9431 elz2 9464 zindd 9511 infrenegsupex 9735 supinfneg 9736 infsupneg 9737 supminfex 9738 ublbneg 9754 eqreznegel 9755 negm 9756 qnegcl 9777 xnegeq 9969 infssuzex 10398 infssuzcldc 10400 zsupssdc 10403 ceilqval 10473 exp3val 10708 expnegap0 10714 m1expcl2 10728 negfi 11614 dvdsnegb 12194 lcmneg 12471 pcexp 12707 pcneg 12723 znnen 12844 mulgneg2 13567 negcncf 15152 negfcncf 15153 lgsdir2lem4 15583 ex-ceil 15801 |
| Copyright terms: Public domain | W3C validator |