| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negeq | GIF version | ||
| Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.) |
| Ref | Expression |
|---|---|
| negeq | ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 5951 | . 2 ⊢ (𝐴 = 𝐵 → (0 − 𝐴) = (0 − 𝐵)) | |
| 2 | df-neg 8245 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
| 3 | df-neg 8245 | . 2 ⊢ -𝐵 = (0 − 𝐵) | |
| 4 | 1, 2, 3 | 3eqtr4g 2262 | 1 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 (class class class)co 5943 0cc0 7924 − cmin 8242 -cneg 8243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-iota 5231 df-fv 5278 df-ov 5946 df-neg 8245 |
| This theorem is referenced by: negeqi 8265 negeqd 8266 neg11 8322 negf1o 8453 recexre 8650 negiso 9027 elz 9373 znegcl 9402 zaddcllemneg 9410 elz2 9443 zindd 9490 infrenegsupex 9714 supinfneg 9715 infsupneg 9716 supminfex 9717 ublbneg 9733 eqreznegel 9734 negm 9735 qnegcl 9756 xnegeq 9948 infssuzex 10374 infssuzcldc 10376 zsupssdc 10379 ceilqval 10449 exp3val 10684 expnegap0 10690 m1expcl2 10704 negfi 11481 dvdsnegb 12061 lcmneg 12338 pcexp 12574 pcneg 12590 znnen 12711 mulgneg2 13434 negcncf 15019 negfcncf 15020 lgsdir2lem4 15450 ex-ceil 15595 |
| Copyright terms: Public domain | W3C validator |