| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negeq | GIF version | ||
| Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.) |
| Ref | Expression |
|---|---|
| negeq | ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 6008 | . 2 ⊢ (𝐴 = 𝐵 → (0 − 𝐴) = (0 − 𝐵)) | |
| 2 | df-neg 8316 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
| 3 | df-neg 8316 | . 2 ⊢ -𝐵 = (0 − 𝐵) | |
| 4 | 1, 2, 3 | 3eqtr4g 2287 | 1 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 (class class class)co 6000 0cc0 7995 − cmin 8313 -cneg 8314 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rex 2514 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-iota 5277 df-fv 5325 df-ov 6003 df-neg 8316 |
| This theorem is referenced by: negeqi 8336 negeqd 8337 neg11 8393 negf1o 8524 recexre 8721 negiso 9098 elz 9444 znegcl 9473 zaddcllemneg 9481 elz2 9514 zindd 9561 infrenegsupex 9785 supinfneg 9786 infsupneg 9787 supminfex 9788 ublbneg 9804 eqreznegel 9805 negm 9806 qnegcl 9827 xnegeq 10019 infssuzex 10448 infssuzcldc 10450 zsupssdc 10453 ceilqval 10523 exp3val 10758 expnegap0 10764 m1expcl2 10778 negfi 11734 dvdsnegb 12314 lcmneg 12591 pcexp 12827 pcneg 12843 znnen 12964 mulgneg2 13688 negcncf 15273 negfcncf 15274 lgsdir2lem4 15704 ex-ceil 16048 |
| Copyright terms: Public domain | W3C validator |