Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > negeq | GIF version |
Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.) |
Ref | Expression |
---|---|
negeq | ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5858 | . 2 ⊢ (𝐴 = 𝐵 → (0 − 𝐴) = (0 − 𝐵)) | |
2 | df-neg 8080 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
3 | df-neg 8080 | . 2 ⊢ -𝐵 = (0 − 𝐵) | |
4 | 1, 2, 3 | 3eqtr4g 2228 | 1 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1348 (class class class)co 5850 0cc0 7761 − cmin 8077 -cneg 8078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-un 3125 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-br 3988 df-iota 5158 df-fv 5204 df-ov 5853 df-neg 8080 |
This theorem is referenced by: negeqi 8100 negeqd 8101 neg11 8157 negf1o 8288 recexre 8484 negiso 8858 elz 9201 znegcl 9230 zaddcllemneg 9238 elz2 9270 zindd 9317 infrenegsupex 9540 supinfneg 9541 infsupneg 9542 supminfex 9543 ublbneg 9559 eqreznegel 9560 negm 9561 qnegcl 9582 xnegeq 9771 ceilqval 10249 exp3val 10465 expnegap0 10471 m1expcl2 10485 negfi 11178 dvdsnegb 11757 infssuzex 11891 infssuzcldc 11893 zsupssdc 11896 lcmneg 12015 pcexp 12250 pcneg 12265 znnen 12340 negcncf 13303 negfcncf 13304 lgsdir2lem4 13647 ex-ceil 13682 |
Copyright terms: Public domain | W3C validator |