![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > negeq | GIF version |
Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.) |
Ref | Expression |
---|---|
negeq | ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5926 | . 2 ⊢ (𝐴 = 𝐵 → (0 − 𝐴) = (0 − 𝐵)) | |
2 | df-neg 8193 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
3 | df-neg 8193 | . 2 ⊢ -𝐵 = (0 − 𝐵) | |
4 | 1, 2, 3 | 3eqtr4g 2251 | 1 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 (class class class)co 5918 0cc0 7872 − cmin 8190 -cneg 8191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rex 2478 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-iota 5215 df-fv 5262 df-ov 5921 df-neg 8193 |
This theorem is referenced by: negeqi 8213 negeqd 8214 neg11 8270 negf1o 8401 recexre 8597 negiso 8974 elz 9319 znegcl 9348 zaddcllemneg 9356 elz2 9388 zindd 9435 infrenegsupex 9659 supinfneg 9660 infsupneg 9661 supminfex 9662 ublbneg 9678 eqreznegel 9679 negm 9680 qnegcl 9701 xnegeq 9893 ceilqval 10377 exp3val 10612 expnegap0 10618 m1expcl2 10632 negfi 11371 dvdsnegb 11951 infssuzex 12086 infssuzcldc 12088 zsupssdc 12091 lcmneg 12212 pcexp 12447 pcneg 12463 znnen 12555 mulgneg2 13226 negcncf 14759 negfcncf 14760 lgsdir2lem4 15147 ex-ceil 15218 |
Copyright terms: Public domain | W3C validator |