| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negeq | GIF version | ||
| Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.) |
| Ref | Expression |
|---|---|
| negeq | ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 5942 | . 2 ⊢ (𝐴 = 𝐵 → (0 − 𝐴) = (0 − 𝐵)) | |
| 2 | df-neg 8228 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
| 3 | df-neg 8228 | . 2 ⊢ -𝐵 = (0 − 𝐵) | |
| 4 | 1, 2, 3 | 3eqtr4g 2262 | 1 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 (class class class)co 5934 0cc0 7907 − cmin 8225 -cneg 8226 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-rex 2489 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-iota 5229 df-fv 5276 df-ov 5937 df-neg 8228 |
| This theorem is referenced by: negeqi 8248 negeqd 8249 neg11 8305 negf1o 8436 recexre 8633 negiso 9010 elz 9356 znegcl 9385 zaddcllemneg 9393 elz2 9426 zindd 9473 infrenegsupex 9697 supinfneg 9698 infsupneg 9699 supminfex 9700 ublbneg 9716 eqreznegel 9717 negm 9718 qnegcl 9739 xnegeq 9931 infssuzex 10357 infssuzcldc 10359 zsupssdc 10362 ceilqval 10432 exp3val 10667 expnegap0 10673 m1expcl2 10687 negfi 11458 dvdsnegb 12038 lcmneg 12315 pcexp 12551 pcneg 12567 znnen 12688 mulgneg2 13410 negcncf 14995 negfcncf 14996 lgsdir2lem4 15426 ex-ceil 15526 |
| Copyright terms: Public domain | W3C validator |