ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  negeq GIF version

Theorem negeq 7962
Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.)
Assertion
Ref Expression
negeq (𝐴 = 𝐵 → -𝐴 = -𝐵)

Proof of Theorem negeq
StepHypRef Expression
1 oveq2 5782 . 2 (𝐴 = 𝐵 → (0 − 𝐴) = (0 − 𝐵))
2 df-neg 7943 . 2 -𝐴 = (0 − 𝐴)
3 df-neg 7943 . 2 -𝐵 = (0 − 𝐵)
41, 2, 33eqtr4g 2197 1 (𝐴 = 𝐵 → -𝐴 = -𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1331  (class class class)co 5774  0cc0 7627  cmin 7940  -cneg 7941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-rex 2422  df-v 2688  df-un 3075  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-iota 5088  df-fv 5131  df-ov 5777  df-neg 7943
This theorem is referenced by:  negeqi  7963  negeqd  7964  neg11  8020  negf1o  8151  recexre  8347  negiso  8720  elz  9063  znegcl  9092  zaddcllemneg  9100  elz2  9129  zindd  9176  infrenegsupex  9396  supinfneg  9397  infsupneg  9398  supminfex  9399  ublbneg  9412  eqreznegel  9413  negm  9414  qnegcl  9435  xnegeq  9617  ceilqval  10086  exp3val  10302  expnegap0  10308  m1expcl2  10322  negfi  11006  dvdsnegb  11516  infssuzex  11648  infssuzcldc  11650  lcmneg  11761  znnen  11917  negcncf  12766  negfcncf  12767  ex-ceil  12991
  Copyright terms: Public domain W3C validator