| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > negeq | GIF version | ||
| Description: Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.) |
| Ref | Expression |
|---|---|
| negeq | ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 5933 | . 2 ⊢ (𝐴 = 𝐵 → (0 − 𝐴) = (0 − 𝐵)) | |
| 2 | df-neg 8219 | . 2 ⊢ -𝐴 = (0 − 𝐴) | |
| 3 | df-neg 8219 | . 2 ⊢ -𝐵 = (0 − 𝐵) | |
| 4 | 1, 2, 3 | 3eqtr4g 2254 | 1 ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 (class class class)co 5925 0cc0 7898 − cmin 8216 -cneg 8217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rex 2481 df-v 2765 df-un 3161 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-neg 8219 |
| This theorem is referenced by: negeqi 8239 negeqd 8240 neg11 8296 negf1o 8427 recexre 8624 negiso 9001 elz 9347 znegcl 9376 zaddcllemneg 9384 elz2 9416 zindd 9463 infrenegsupex 9687 supinfneg 9688 infsupneg 9689 supminfex 9690 ublbneg 9706 eqreznegel 9707 negm 9708 qnegcl 9729 xnegeq 9921 infssuzex 10342 infssuzcldc 10344 zsupssdc 10347 ceilqval 10417 exp3val 10652 expnegap0 10658 m1expcl2 10672 negfi 11412 dvdsnegb 11992 lcmneg 12269 pcexp 12505 pcneg 12521 znnen 12642 mulgneg2 13364 negcncf 14949 negfcncf 14950 lgsdir2lem4 15380 ex-ceil 15480 |
| Copyright terms: Public domain | W3C validator |