![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > geo2sum2 | GIF version |
Description: The value of the finite geometric series 1 + 2 + 4 + 8 +... + 2↑(𝑁 − 1). (Contributed by Mario Carneiro, 7-Sep-2016.) |
Ref | Expression |
---|---|
geo2sum2 | ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0..^𝑁)(2↑𝑘) = ((2↑𝑁) − 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0z 9287 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
2 | fzoval 10162 | . . . 4 ⊢ (𝑁 ∈ ℤ → (0..^𝑁) = (0...(𝑁 − 1))) | |
3 | 1, 2 | syl 14 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (0..^𝑁) = (0...(𝑁 − 1))) |
4 | 3 | sumeq1d 11388 | . 2 ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0..^𝑁)(2↑𝑘) = Σ𝑘 ∈ (0...(𝑁 − 1))(2↑𝑘)) |
5 | 2cn 9004 | . . . 4 ⊢ 2 ∈ ℂ | |
6 | 5 | a1i 9 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℂ) |
7 | 1ap2 9140 | . . . . 5 ⊢ 1 # 2 | |
8 | ax-1cn 7918 | . . . . . 6 ⊢ 1 ∈ ℂ | |
9 | apsym 8577 | . . . . . 6 ⊢ ((1 ∈ ℂ ∧ 2 ∈ ℂ) → (1 # 2 ↔ 2 # 1)) | |
10 | 8, 5, 9 | mp2an 426 | . . . . 5 ⊢ (1 # 2 ↔ 2 # 1) |
11 | 7, 10 | mpbi 145 | . . . 4 ⊢ 2 # 1 |
12 | 11 | a1i 9 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 2 # 1) |
13 | id 19 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0) | |
14 | 6, 12, 13 | geoserap 11529 | . 2 ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0...(𝑁 − 1))(2↑𝑘) = ((1 − (2↑𝑁)) / (1 − 2))) |
15 | 6, 13 | expcld 10668 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℂ) |
16 | 8 | a1i 9 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℂ) |
17 | 15, 16 | subcld 8282 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((2↑𝑁) − 1) ∈ ℂ) |
18 | 1ap0 8561 | . . . . 5 ⊢ 1 # 0 | |
19 | 18 | a1i 9 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 1 # 0) |
20 | 17, 16, 19 | div2negapd 8776 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (-((2↑𝑁) − 1) / -1) = (((2↑𝑁) − 1) / 1)) |
21 | 15, 16 | negsubdi2d 8298 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → -((2↑𝑁) − 1) = (1 − (2↑𝑁))) |
22 | 2m1e1 9051 | . . . . . . 7 ⊢ (2 − 1) = 1 | |
23 | 22 | negeqi 8165 | . . . . . 6 ⊢ -(2 − 1) = -1 |
24 | 5, 8 | negsubdi2i 8257 | . . . . . 6 ⊢ -(2 − 1) = (1 − 2) |
25 | 23, 24 | eqtr3i 2210 | . . . . 5 ⊢ -1 = (1 − 2) |
26 | 25 | a1i 9 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → -1 = (1 − 2)) |
27 | 21, 26 | oveq12d 5906 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (-((2↑𝑁) − 1) / -1) = ((1 − (2↑𝑁)) / (1 − 2))) |
28 | 17 | div1d 8751 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (((2↑𝑁) − 1) / 1) = ((2↑𝑁) − 1)) |
29 | 20, 27, 28 | 3eqtr3d 2228 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((1 − (2↑𝑁)) / (1 − 2)) = ((2↑𝑁) − 1)) |
30 | 4, 14, 29 | 3eqtrd 2224 | 1 ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0..^𝑁)(2↑𝑘) = ((2↑𝑁) − 1)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1363 ∈ wcel 2158 class class class wbr 4015 (class class class)co 5888 ℂcc 7823 0cc0 7825 1c1 7826 − cmin 8142 -cneg 8143 # cap 8552 / cdiv 8643 2c2 8984 ℕ0cn0 9190 ℤcz 9267 ...cfz 10022 ..^cfzo 10156 ↑cexp 10533 Σcsu 11375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-mulrcl 7924 ax-addcom 7925 ax-mulcom 7926 ax-addass 7927 ax-mulass 7928 ax-distr 7929 ax-i2m1 7930 ax-0lt1 7931 ax-1rid 7932 ax-0id 7933 ax-rnegex 7934 ax-precex 7935 ax-cnre 7936 ax-pre-ltirr 7937 ax-pre-ltwlin 7938 ax-pre-lttrn 7939 ax-pre-apti 7940 ax-pre-ltadd 7941 ax-pre-mulgt0 7942 ax-pre-mulext 7943 ax-arch 7944 ax-caucvg 7945 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rmo 2473 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-if 3547 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-id 4305 df-po 4308 df-iso 4309 df-iord 4378 df-on 4380 df-ilim 4381 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-isom 5237 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6155 df-2nd 6156 df-recs 6320 df-irdg 6385 df-frec 6406 df-1o 6431 df-oadd 6435 df-er 6549 df-en 6755 df-dom 6756 df-fin 6757 df-pnf 8008 df-mnf 8009 df-xr 8010 df-ltxr 8011 df-le 8012 df-sub 8144 df-neg 8145 df-reap 8546 df-ap 8553 df-div 8644 df-inn 8934 df-2 8992 df-3 8993 df-4 8994 df-n0 9191 df-z 9268 df-uz 9543 df-q 9634 df-rp 9668 df-fz 10023 df-fzo 10157 df-seqfrec 10460 df-exp 10534 df-ihash 10770 df-cj 10865 df-re 10866 df-im 10867 df-rsqrt 11021 df-abs 11022 df-clim 11301 df-sumdc 11376 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |