ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  geo2sum2 GIF version

Theorem geo2sum2 10909
Description: The value of the finite geometric series 1 + 2 + 4 + 8 +... + 2↑(𝑁 − 1). (Contributed by Mario Carneiro, 7-Sep-2016.)
Assertion
Ref Expression
geo2sum2 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0..^𝑁)(2↑𝑘) = ((2↑𝑁) − 1))
Distinct variable group:   𝑘,𝑁

Proof of Theorem geo2sum2
StepHypRef Expression
1 nn0z 8770 . . . 4 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
2 fzoval 9559 . . . 4 (𝑁 ∈ ℤ → (0..^𝑁) = (0...(𝑁 − 1)))
31, 2syl 14 . . 3 (𝑁 ∈ ℕ0 → (0..^𝑁) = (0...(𝑁 − 1)))
43sumeq1d 10755 . 2 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0..^𝑁)(2↑𝑘) = Σ𝑘 ∈ (0...(𝑁 − 1))(2↑𝑘))
5 2cn 8493 . . . 4 2 ∈ ℂ
65a1i 9 . . 3 (𝑁 ∈ ℕ0 → 2 ∈ ℂ)
7 1ap2 8623 . . . . 5 1 # 2
8 ax-1cn 7438 . . . . . 6 1 ∈ ℂ
9 apsym 8083 . . . . . 6 ((1 ∈ ℂ ∧ 2 ∈ ℂ) → (1 # 2 ↔ 2 # 1))
108, 5, 9mp2an 417 . . . . 5 (1 # 2 ↔ 2 # 1)
117, 10mpbi 143 . . . 4 2 # 1
1211a1i 9 . . 3 (𝑁 ∈ ℕ0 → 2 # 1)
13 id 19 . . 3 (𝑁 ∈ ℕ0𝑁 ∈ ℕ0)
146, 12, 13geoserap 10901 . 2 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0...(𝑁 − 1))(2↑𝑘) = ((1 − (2↑𝑁)) / (1 − 2)))
156, 13expcld 10086 . . . . 5 (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℂ)
168a1i 9 . . . . 5 (𝑁 ∈ ℕ0 → 1 ∈ ℂ)
1715, 16subcld 7793 . . . 4 (𝑁 ∈ ℕ0 → ((2↑𝑁) − 1) ∈ ℂ)
18 1ap0 8067 . . . . 5 1 # 0
1918a1i 9 . . . 4 (𝑁 ∈ ℕ0 → 1 # 0)
2017, 16, 19div2negapd 8272 . . 3 (𝑁 ∈ ℕ0 → (-((2↑𝑁) − 1) / -1) = (((2↑𝑁) − 1) / 1))
2115, 16negsubdi2d 7809 . . . 4 (𝑁 ∈ ℕ0 → -((2↑𝑁) − 1) = (1 − (2↑𝑁)))
22 2m1e1 8540 . . . . . . 7 (2 − 1) = 1
2322negeqi 7676 . . . . . 6 -(2 − 1) = -1
245, 8negsubdi2i 7768 . . . . . 6 -(2 − 1) = (1 − 2)
2523, 24eqtr3i 2110 . . . . 5 -1 = (1 − 2)
2625a1i 9 . . . 4 (𝑁 ∈ ℕ0 → -1 = (1 − 2))
2721, 26oveq12d 5670 . . 3 (𝑁 ∈ ℕ0 → (-((2↑𝑁) − 1) / -1) = ((1 − (2↑𝑁)) / (1 − 2)))
2817div1d 8247 . . 3 (𝑁 ∈ ℕ0 → (((2↑𝑁) − 1) / 1) = ((2↑𝑁) − 1))
2920, 27, 283eqtr3d 2128 . 2 (𝑁 ∈ ℕ0 → ((1 − (2↑𝑁)) / (1 − 2)) = ((2↑𝑁) − 1))
304, 14, 293eqtrd 2124 1 (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0..^𝑁)(2↑𝑘) = ((2↑𝑁) − 1))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103   = wceq 1289  wcel 1438   class class class wbr 3845  (class class class)co 5652  cc 7348  0cc0 7350  1c1 7351  cmin 7653  -cneg 7654   # cap 8058   / cdiv 8139  2c2 8473  0cn0 8673  cz 8750  ...cfz 9424  ..^cfzo 9553  cexp 9954  Σcsu 10742
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403  ax-cnex 7436  ax-resscn 7437  ax-1cn 7438  ax-1re 7439  ax-icn 7440  ax-addcl 7441  ax-addrcl 7442  ax-mulcl 7443  ax-mulrcl 7444  ax-addcom 7445  ax-mulcom 7446  ax-addass 7447  ax-mulass 7448  ax-distr 7449  ax-i2m1 7450  ax-0lt1 7451  ax-1rid 7452  ax-0id 7453  ax-rnegex 7454  ax-precex 7455  ax-cnre 7456  ax-pre-ltirr 7457  ax-pre-ltwlin 7458  ax-pre-lttrn 7459  ax-pre-apti 7460  ax-pre-ltadd 7461  ax-pre-mulgt0 7462  ax-pre-mulext 7463  ax-arch 7464  ax-caucvg 7465
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-if 3394  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-id 4120  df-po 4123  df-iso 4124  df-iord 4193  df-on 4195  df-ilim 4196  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-isom 5024  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-irdg 6135  df-frec 6156  df-1o 6181  df-oadd 6185  df-er 6292  df-en 6458  df-dom 6459  df-fin 6460  df-pnf 7524  df-mnf 7525  df-xr 7526  df-ltxr 7527  df-le 7528  df-sub 7655  df-neg 7656  df-reap 8052  df-ap 8059  df-div 8140  df-inn 8423  df-2 8481  df-3 8482  df-4 8483  df-n0 8674  df-z 8751  df-uz 9020  df-q 9105  df-rp 9135  df-fz 9425  df-fzo 9554  df-iseq 9853  df-seq3 9854  df-exp 9955  df-ihash 10184  df-cj 10276  df-re 10277  df-im 10278  df-rsqrt 10431  df-abs 10432  df-clim 10667  df-isum 10743
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator