| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > geo2sum2 | GIF version | ||
| Description: The value of the finite geometric series 1 + 2 + 4 + 8 +... + 2↑(𝑁 − 1). (Contributed by Mario Carneiro, 7-Sep-2016.) |
| Ref | Expression |
|---|---|
| geo2sum2 | ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0..^𝑁)(2↑𝑘) = ((2↑𝑁) − 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0z 9399 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
| 2 | fzoval 10277 | . . . 4 ⊢ (𝑁 ∈ ℤ → (0..^𝑁) = (0...(𝑁 − 1))) | |
| 3 | 1, 2 | syl 14 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (0..^𝑁) = (0...(𝑁 − 1))) |
| 4 | 3 | sumeq1d 11721 | . 2 ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0..^𝑁)(2↑𝑘) = Σ𝑘 ∈ (0...(𝑁 − 1))(2↑𝑘)) |
| 5 | 2cn 9114 | . . . 4 ⊢ 2 ∈ ℂ | |
| 6 | 5 | a1i 9 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 2 ∈ ℂ) |
| 7 | 1ap2 9251 | . . . . 5 ⊢ 1 # 2 | |
| 8 | ax-1cn 8025 | . . . . . 6 ⊢ 1 ∈ ℂ | |
| 9 | apsym 8686 | . . . . . 6 ⊢ ((1 ∈ ℂ ∧ 2 ∈ ℂ) → (1 # 2 ↔ 2 # 1)) | |
| 10 | 8, 5, 9 | mp2an 426 | . . . . 5 ⊢ (1 # 2 ↔ 2 # 1) |
| 11 | 7, 10 | mpbi 145 | . . . 4 ⊢ 2 # 1 |
| 12 | 11 | a1i 9 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 2 # 1) |
| 13 | id 19 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℕ0) | |
| 14 | 6, 12, 13 | geoserap 11862 | . 2 ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0...(𝑁 − 1))(2↑𝑘) = ((1 − (2↑𝑁)) / (1 − 2))) |
| 15 | 6, 13 | expcld 10825 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (2↑𝑁) ∈ ℂ) |
| 16 | 8 | a1i 9 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → 1 ∈ ℂ) |
| 17 | 15, 16 | subcld 8390 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → ((2↑𝑁) − 1) ∈ ℂ) |
| 18 | 1ap0 8670 | . . . . 5 ⊢ 1 # 0 | |
| 19 | 18 | a1i 9 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 1 # 0) |
| 20 | 17, 16, 19 | div2negapd 8885 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (-((2↑𝑁) − 1) / -1) = (((2↑𝑁) − 1) / 1)) |
| 21 | 15, 16 | negsubdi2d 8406 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → -((2↑𝑁) − 1) = (1 − (2↑𝑁))) |
| 22 | 2m1e1 9161 | . . . . . . 7 ⊢ (2 − 1) = 1 | |
| 23 | 22 | negeqi 8273 | . . . . . 6 ⊢ -(2 − 1) = -1 |
| 24 | 5, 8 | negsubdi2i 8365 | . . . . . 6 ⊢ -(2 − 1) = (1 − 2) |
| 25 | 23, 24 | eqtr3i 2229 | . . . . 5 ⊢ -1 = (1 − 2) |
| 26 | 25 | a1i 9 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → -1 = (1 − 2)) |
| 27 | 21, 26 | oveq12d 5969 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (-((2↑𝑁) − 1) / -1) = ((1 − (2↑𝑁)) / (1 − 2))) |
| 28 | 17 | div1d 8860 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (((2↑𝑁) − 1) / 1) = ((2↑𝑁) − 1)) |
| 29 | 20, 27, 28 | 3eqtr3d 2247 | . 2 ⊢ (𝑁 ∈ ℕ0 → ((1 − (2↑𝑁)) / (1 − 2)) = ((2↑𝑁) − 1)) |
| 30 | 4, 14, 29 | 3eqtrd 2243 | 1 ⊢ (𝑁 ∈ ℕ0 → Σ𝑘 ∈ (0..^𝑁)(2↑𝑘) = ((2↑𝑁) − 1)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2177 class class class wbr 4047 (class class class)co 5951 ℂcc 7930 0cc0 7932 1c1 7933 − cmin 8250 -cneg 8251 # cap 8661 / cdiv 8752 2c2 9094 ℕ0cn0 9302 ℤcz 9379 ...cfz 10137 ..^cfzo 10271 ↑cexp 10690 Σcsu 11708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4163 ax-sep 4166 ax-nul 4174 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-iinf 4640 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 ax-arch 8051 ax-caucvg 8052 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-nul 3462 df-if 3573 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-tr 4147 df-id 4344 df-po 4347 df-iso 4348 df-iord 4417 df-on 4419 df-ilim 4420 df-suc 4422 df-iom 4643 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-fv 5284 df-isom 5285 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-recs 6398 df-irdg 6463 df-frec 6484 df-1o 6509 df-oadd 6513 df-er 6627 df-en 6835 df-dom 6836 df-fin 6837 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-2 9102 df-3 9103 df-4 9104 df-n0 9303 df-z 9380 df-uz 9656 df-q 9748 df-rp 9783 df-fz 10138 df-fzo 10272 df-seqfrec 10600 df-exp 10691 df-ihash 10928 df-cj 11197 df-re 11198 df-im 11199 df-rsqrt 11353 df-abs 11354 df-clim 11634 df-sumdc 11709 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |