| Step | Hyp | Ref
| Expression |
| 1 | | neg1cn 9112 |
. . 3
⊢ -1 ∈
ℂ |
| 2 | | prid1g 3727 |
. . 3
⊢ (-1
∈ ℂ → -1 ∈ {-1, 1}) |
| 3 | 1, 2 | ax-mp 5 |
. 2
⊢ -1 ∈
{-1, 1} |
| 4 | | neg1ap0 9116 |
. 2
⊢ -1 #
0 |
| 5 | | ax-1cn 7989 |
. . . 4
⊢ 1 ∈
ℂ |
| 6 | | prssi 3781 |
. . . 4
⊢ ((-1
∈ ℂ ∧ 1 ∈ ℂ) → {-1, 1} ⊆
ℂ) |
| 7 | 1, 5, 6 | mp2an 426 |
. . 3
⊢ {-1, 1}
⊆ ℂ |
| 8 | | elpri 3646 |
. . . . 5
⊢ (𝑥 ∈ {-1, 1} → (𝑥 = -1 ∨ 𝑥 = 1)) |
| 9 | 7 | sseli 3180 |
. . . . . . . . 9
⊢ (𝑦 ∈ {-1, 1} → 𝑦 ∈
ℂ) |
| 10 | 9 | mulm1d 8453 |
. . . . . . . 8
⊢ (𝑦 ∈ {-1, 1} → (-1
· 𝑦) = -𝑦) |
| 11 | | elpri 3646 |
. . . . . . . . 9
⊢ (𝑦 ∈ {-1, 1} → (𝑦 = -1 ∨ 𝑦 = 1)) |
| 12 | | negeq 8236 |
. . . . . . . . . . 11
⊢ (𝑦 = -1 → -𝑦 = --1) |
| 13 | | negneg1e1 9117 |
. . . . . . . . . . . 12
⊢ --1 =
1 |
| 14 | | 1ex 8038 |
. . . . . . . . . . . . 13
⊢ 1 ∈
V |
| 15 | 14 | prid2 3730 |
. . . . . . . . . . . 12
⊢ 1 ∈
{-1, 1} |
| 16 | 13, 15 | eqeltri 2269 |
. . . . . . . . . . 11
⊢ --1
∈ {-1, 1} |
| 17 | 12, 16 | eqeltrdi 2287 |
. . . . . . . . . 10
⊢ (𝑦 = -1 → -𝑦 ∈ {-1, 1}) |
| 18 | | negeq 8236 |
. . . . . . . . . . 11
⊢ (𝑦 = 1 → -𝑦 = -1) |
| 19 | 18, 3 | eqeltrdi 2287 |
. . . . . . . . . 10
⊢ (𝑦 = 1 → -𝑦 ∈ {-1, 1}) |
| 20 | 17, 19 | jaoi 717 |
. . . . . . . . 9
⊢ ((𝑦 = -1 ∨ 𝑦 = 1) → -𝑦 ∈ {-1, 1}) |
| 21 | 11, 20 | syl 14 |
. . . . . . . 8
⊢ (𝑦 ∈ {-1, 1} → -𝑦 ∈ {-1,
1}) |
| 22 | 10, 21 | eqeltrd 2273 |
. . . . . . 7
⊢ (𝑦 ∈ {-1, 1} → (-1
· 𝑦) ∈ {-1,
1}) |
| 23 | | oveq1 5932 |
. . . . . . . 8
⊢ (𝑥 = -1 → (𝑥 · 𝑦) = (-1 · 𝑦)) |
| 24 | 23 | eleq1d 2265 |
. . . . . . 7
⊢ (𝑥 = -1 → ((𝑥 · 𝑦) ∈ {-1, 1} ↔ (-1 · 𝑦) ∈ {-1,
1})) |
| 25 | 22, 24 | imbitrrid 156 |
. . . . . 6
⊢ (𝑥 = -1 → (𝑦 ∈ {-1, 1} → (𝑥 · 𝑦) ∈ {-1, 1})) |
| 26 | 9 | mulid2d 8062 |
. . . . . . . 8
⊢ (𝑦 ∈ {-1, 1} → (1
· 𝑦) = 𝑦) |
| 27 | | id 19 |
. . . . . . . 8
⊢ (𝑦 ∈ {-1, 1} → 𝑦 ∈ {-1,
1}) |
| 28 | 26, 27 | eqeltrd 2273 |
. . . . . . 7
⊢ (𝑦 ∈ {-1, 1} → (1
· 𝑦) ∈ {-1,
1}) |
| 29 | | oveq1 5932 |
. . . . . . . 8
⊢ (𝑥 = 1 → (𝑥 · 𝑦) = (1 · 𝑦)) |
| 30 | 29 | eleq1d 2265 |
. . . . . . 7
⊢ (𝑥 = 1 → ((𝑥 · 𝑦) ∈ {-1, 1} ↔ (1 · 𝑦) ∈ {-1,
1})) |
| 31 | 28, 30 | imbitrrid 156 |
. . . . . 6
⊢ (𝑥 = 1 → (𝑦 ∈ {-1, 1} → (𝑥 · 𝑦) ∈ {-1, 1})) |
| 32 | 25, 31 | jaoi 717 |
. . . . 5
⊢ ((𝑥 = -1 ∨ 𝑥 = 1) → (𝑦 ∈ {-1, 1} → (𝑥 · 𝑦) ∈ {-1, 1})) |
| 33 | 8, 32 | syl 14 |
. . . 4
⊢ (𝑥 ∈ {-1, 1} → (𝑦 ∈ {-1, 1} → (𝑥 · 𝑦) ∈ {-1, 1})) |
| 34 | 33 | imp 124 |
. . 3
⊢ ((𝑥 ∈ {-1, 1} ∧ 𝑦 ∈ {-1, 1}) → (𝑥 · 𝑦) ∈ {-1, 1}) |
| 35 | | oveq2 5933 |
. . . . . . 7
⊢ (𝑥 = -1 → (1 / 𝑥) = (1 / -1)) |
| 36 | | 1ap0 8634 |
. . . . . . . . . 10
⊢ 1 #
0 |
| 37 | | divneg2ap 8780 |
. . . . . . . . . 10
⊢ ((1
∈ ℂ ∧ 1 ∈ ℂ ∧ 1 # 0) → -(1 / 1) = (1 /
-1)) |
| 38 | 5, 5, 36, 37 | mp3an 1348 |
. . . . . . . . 9
⊢ -(1 / 1)
= (1 / -1) |
| 39 | | 1div1e1 8748 |
. . . . . . . . . 10
⊢ (1 / 1) =
1 |
| 40 | 39 | negeqi 8237 |
. . . . . . . . 9
⊢ -(1 / 1)
= -1 |
| 41 | 38, 40 | eqtr3i 2219 |
. . . . . . . 8
⊢ (1 / -1)
= -1 |
| 42 | 41, 3 | eqeltri 2269 |
. . . . . . 7
⊢ (1 / -1)
∈ {-1, 1} |
| 43 | 35, 42 | eqeltrdi 2287 |
. . . . . 6
⊢ (𝑥 = -1 → (1 / 𝑥) ∈ {-1,
1}) |
| 44 | | oveq2 5933 |
. . . . . . 7
⊢ (𝑥 = 1 → (1 / 𝑥) = (1 / 1)) |
| 45 | 39, 15 | eqeltri 2269 |
. . . . . . 7
⊢ (1 / 1)
∈ {-1, 1} |
| 46 | 44, 45 | eqeltrdi 2287 |
. . . . . 6
⊢ (𝑥 = 1 → (1 / 𝑥) ∈ {-1,
1}) |
| 47 | 43, 46 | jaoi 717 |
. . . . 5
⊢ ((𝑥 = -1 ∨ 𝑥 = 1) → (1 / 𝑥) ∈ {-1, 1}) |
| 48 | 8, 47 | syl 14 |
. . . 4
⊢ (𝑥 ∈ {-1, 1} → (1 /
𝑥) ∈ {-1,
1}) |
| 49 | 48 | adantr 276 |
. . 3
⊢ ((𝑥 ∈ {-1, 1} ∧ 𝑥 # 0) → (1 / 𝑥) ∈ {-1,
1}) |
| 50 | 7, 34, 15, 49 | expcl2lemap 10660 |
. 2
⊢ ((-1
∈ {-1, 1} ∧ -1 # 0 ∧ 𝑁 ∈ ℤ) → (-1↑𝑁) ∈ {-1,
1}) |
| 51 | 3, 4, 50 | mp3an12 1338 |
1
⊢ (𝑁 ∈ ℤ →
(-1↑𝑁) ∈ {-1,
1}) |