| Step | Hyp | Ref
 | Expression | 
| 1 |   | neg1cn 9095 | 
. . 3
⊢ -1 ∈
ℂ | 
| 2 |   | prid1g 3726 | 
. . 3
⊢ (-1
∈ ℂ → -1 ∈ {-1, 1}) | 
| 3 | 1, 2 | ax-mp 5 | 
. 2
⊢ -1 ∈
{-1, 1} | 
| 4 |   | neg1ap0 9099 | 
. 2
⊢ -1 #
0 | 
| 5 |   | ax-1cn 7972 | 
. . . 4
⊢ 1 ∈
ℂ | 
| 6 |   | prssi 3780 | 
. . . 4
⊢ ((-1
∈ ℂ ∧ 1 ∈ ℂ) → {-1, 1} ⊆
ℂ) | 
| 7 | 1, 5, 6 | mp2an 426 | 
. . 3
⊢ {-1, 1}
⊆ ℂ | 
| 8 |   | elpri 3645 | 
. . . . 5
⊢ (𝑥 ∈ {-1, 1} → (𝑥 = -1 ∨ 𝑥 = 1)) | 
| 9 | 7 | sseli 3179 | 
. . . . . . . . 9
⊢ (𝑦 ∈ {-1, 1} → 𝑦 ∈
ℂ) | 
| 10 | 9 | mulm1d 8436 | 
. . . . . . . 8
⊢ (𝑦 ∈ {-1, 1} → (-1
· 𝑦) = -𝑦) | 
| 11 |   | elpri 3645 | 
. . . . . . . . 9
⊢ (𝑦 ∈ {-1, 1} → (𝑦 = -1 ∨ 𝑦 = 1)) | 
| 12 |   | negeq 8219 | 
. . . . . . . . . . 11
⊢ (𝑦 = -1 → -𝑦 = --1) | 
| 13 |   | negneg1e1 9100 | 
. . . . . . . . . . . 12
⊢ --1 =
1 | 
| 14 |   | 1ex 8021 | 
. . . . . . . . . . . . 13
⊢ 1 ∈
V | 
| 15 | 14 | prid2 3729 | 
. . . . . . . . . . . 12
⊢ 1 ∈
{-1, 1} | 
| 16 | 13, 15 | eqeltri 2269 | 
. . . . . . . . . . 11
⊢ --1
∈ {-1, 1} | 
| 17 | 12, 16 | eqeltrdi 2287 | 
. . . . . . . . . 10
⊢ (𝑦 = -1 → -𝑦 ∈ {-1, 1}) | 
| 18 |   | negeq 8219 | 
. . . . . . . . . . 11
⊢ (𝑦 = 1 → -𝑦 = -1) | 
| 19 | 18, 3 | eqeltrdi 2287 | 
. . . . . . . . . 10
⊢ (𝑦 = 1 → -𝑦 ∈ {-1, 1}) | 
| 20 | 17, 19 | jaoi 717 | 
. . . . . . . . 9
⊢ ((𝑦 = -1 ∨ 𝑦 = 1) → -𝑦 ∈ {-1, 1}) | 
| 21 | 11, 20 | syl 14 | 
. . . . . . . 8
⊢ (𝑦 ∈ {-1, 1} → -𝑦 ∈ {-1,
1}) | 
| 22 | 10, 21 | eqeltrd 2273 | 
. . . . . . 7
⊢ (𝑦 ∈ {-1, 1} → (-1
· 𝑦) ∈ {-1,
1}) | 
| 23 |   | oveq1 5929 | 
. . . . . . . 8
⊢ (𝑥 = -1 → (𝑥 · 𝑦) = (-1 · 𝑦)) | 
| 24 | 23 | eleq1d 2265 | 
. . . . . . 7
⊢ (𝑥 = -1 → ((𝑥 · 𝑦) ∈ {-1, 1} ↔ (-1 · 𝑦) ∈ {-1,
1})) | 
| 25 | 22, 24 | imbitrrid 156 | 
. . . . . 6
⊢ (𝑥 = -1 → (𝑦 ∈ {-1, 1} → (𝑥 · 𝑦) ∈ {-1, 1})) | 
| 26 | 9 | mulid2d 8045 | 
. . . . . . . 8
⊢ (𝑦 ∈ {-1, 1} → (1
· 𝑦) = 𝑦) | 
| 27 |   | id 19 | 
. . . . . . . 8
⊢ (𝑦 ∈ {-1, 1} → 𝑦 ∈ {-1,
1}) | 
| 28 | 26, 27 | eqeltrd 2273 | 
. . . . . . 7
⊢ (𝑦 ∈ {-1, 1} → (1
· 𝑦) ∈ {-1,
1}) | 
| 29 |   | oveq1 5929 | 
. . . . . . . 8
⊢ (𝑥 = 1 → (𝑥 · 𝑦) = (1 · 𝑦)) | 
| 30 | 29 | eleq1d 2265 | 
. . . . . . 7
⊢ (𝑥 = 1 → ((𝑥 · 𝑦) ∈ {-1, 1} ↔ (1 · 𝑦) ∈ {-1,
1})) | 
| 31 | 28, 30 | imbitrrid 156 | 
. . . . . 6
⊢ (𝑥 = 1 → (𝑦 ∈ {-1, 1} → (𝑥 · 𝑦) ∈ {-1, 1})) | 
| 32 | 25, 31 | jaoi 717 | 
. . . . 5
⊢ ((𝑥 = -1 ∨ 𝑥 = 1) → (𝑦 ∈ {-1, 1} → (𝑥 · 𝑦) ∈ {-1, 1})) | 
| 33 | 8, 32 | syl 14 | 
. . . 4
⊢ (𝑥 ∈ {-1, 1} → (𝑦 ∈ {-1, 1} → (𝑥 · 𝑦) ∈ {-1, 1})) | 
| 34 | 33 | imp 124 | 
. . 3
⊢ ((𝑥 ∈ {-1, 1} ∧ 𝑦 ∈ {-1, 1}) → (𝑥 · 𝑦) ∈ {-1, 1}) | 
| 35 |   | oveq2 5930 | 
. . . . . . 7
⊢ (𝑥 = -1 → (1 / 𝑥) = (1 / -1)) | 
| 36 |   | 1ap0 8617 | 
. . . . . . . . . 10
⊢ 1 #
0 | 
| 37 |   | divneg2ap 8763 | 
. . . . . . . . . 10
⊢ ((1
∈ ℂ ∧ 1 ∈ ℂ ∧ 1 # 0) → -(1 / 1) = (1 /
-1)) | 
| 38 | 5, 5, 36, 37 | mp3an 1348 | 
. . . . . . . . 9
⊢ -(1 / 1)
= (1 / -1) | 
| 39 |   | 1div1e1 8731 | 
. . . . . . . . . 10
⊢ (1 / 1) =
1 | 
| 40 | 39 | negeqi 8220 | 
. . . . . . . . 9
⊢ -(1 / 1)
= -1 | 
| 41 | 38, 40 | eqtr3i 2219 | 
. . . . . . . 8
⊢ (1 / -1)
= -1 | 
| 42 | 41, 3 | eqeltri 2269 | 
. . . . . . 7
⊢ (1 / -1)
∈ {-1, 1} | 
| 43 | 35, 42 | eqeltrdi 2287 | 
. . . . . 6
⊢ (𝑥 = -1 → (1 / 𝑥) ∈ {-1,
1}) | 
| 44 |   | oveq2 5930 | 
. . . . . . 7
⊢ (𝑥 = 1 → (1 / 𝑥) = (1 / 1)) | 
| 45 | 39, 15 | eqeltri 2269 | 
. . . . . . 7
⊢ (1 / 1)
∈ {-1, 1} | 
| 46 | 44, 45 | eqeltrdi 2287 | 
. . . . . 6
⊢ (𝑥 = 1 → (1 / 𝑥) ∈ {-1,
1}) | 
| 47 | 43, 46 | jaoi 717 | 
. . . . 5
⊢ ((𝑥 = -1 ∨ 𝑥 = 1) → (1 / 𝑥) ∈ {-1, 1}) | 
| 48 | 8, 47 | syl 14 | 
. . . 4
⊢ (𝑥 ∈ {-1, 1} → (1 /
𝑥) ∈ {-1,
1}) | 
| 49 | 48 | adantr 276 | 
. . 3
⊢ ((𝑥 ∈ {-1, 1} ∧ 𝑥 # 0) → (1 / 𝑥) ∈ {-1,
1}) | 
| 50 | 7, 34, 15, 49 | expcl2lemap 10643 | 
. 2
⊢ ((-1
∈ {-1, 1} ∧ -1 # 0 ∧ 𝑁 ∈ ℤ) → (-1↑𝑁) ∈ {-1,
1}) | 
| 51 | 3, 4, 50 | mp3an12 1338 | 
1
⊢ (𝑁 ∈ ℤ →
(-1↑𝑁) ∈ {-1,
1}) |