Step | Hyp | Ref
| Expression |
1 | | psrval.s |
. 2
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
2 | | df-psr 14150 |
. . . 4
⊢ mPwSer =
(𝑖 ∈ V, 𝑟 ∈ V ↦
⦋{ℎ ∈
(ℕ0 ↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑𝑚 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑
× {(TopOpen‘𝑟)}))〉})) |
3 | 2 | a1i 9 |
. . 3
⊢ (𝜑 → mPwSer = (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋{ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑𝑚 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑
× {(TopOpen‘𝑟)}))〉}))) |
4 | | simprl 529 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) → 𝑖 = 𝐼) |
5 | 4 | oveq2d 5934 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) → (ℕ0
↑𝑚 𝑖) = (ℕ0
↑𝑚 𝐼)) |
6 | 5 | rabeqdv 2754 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) → {ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈
Fin}) |
7 | | psrval.d |
. . . . . 6
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
8 | 6, 7 | eqtr4di 2244 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) → {ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} = 𝐷) |
9 | 8 | csbeq1d 3087 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) → ⦋{ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑𝑚 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑
× {(TopOpen‘𝑟)}))〉}) = ⦋𝐷 / 𝑑⦌⦋((Base‘𝑟) ↑𝑚 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑
× {(TopOpen‘𝑟)}))〉})) |
10 | | nn0ex 9246 |
. . . . . . . . 9
⊢
ℕ0 ∈ V |
11 | | vex 2763 |
. . . . . . . . 9
⊢ 𝑖 ∈ V |
12 | 10, 11 | mapval 6714 |
. . . . . . . 8
⊢
(ℕ0 ↑𝑚 𝑖) = {𝑓 ∣ 𝑓:𝑖⟶ℕ0} |
13 | | mapex 6708 |
. . . . . . . . 9
⊢ ((𝑖 ∈ V ∧
ℕ0 ∈ V) → {𝑓 ∣ 𝑓:𝑖⟶ℕ0} ∈
V) |
14 | 11, 10, 13 | mp2an 426 |
. . . . . . . 8
⊢ {𝑓 ∣ 𝑓:𝑖⟶ℕ0} ∈
V |
15 | 12, 14 | eqeltri 2266 |
. . . . . . 7
⊢
(ℕ0 ↑𝑚 𝑖) ∈ V |
16 | 15 | rabex 4173 |
. . . . . 6
⊢ {ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V |
17 | 8, 16 | eqeltrrdi 2285 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) → 𝐷 ∈ V) |
18 | | simplrr 536 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → 𝑟 = 𝑅) |
19 | 18 | fveq2d 5558 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → (Base‘𝑟) = (Base‘𝑅)) |
20 | | psrval.k |
. . . . . . . . . 10
⊢ 𝐾 = (Base‘𝑅) |
21 | 19, 20 | eqtr4di 2244 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → (Base‘𝑟) = 𝐾) |
22 | | simpr 110 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷) |
23 | 21, 22 | oveq12d 5936 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → ((Base‘𝑟) ↑𝑚 𝑑) = (𝐾 ↑𝑚 𝐷)) |
24 | | psrval.b |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 = (𝐾 ↑𝑚 𝐷)) |
25 | 24 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → 𝐵 = (𝐾 ↑𝑚 𝐷)) |
26 | 23, 25 | eqtr4d 2229 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → ((Base‘𝑟) ↑𝑚 𝑑) = 𝐵) |
27 | 26 | csbeq1d 3087 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → ⦋((Base‘𝑟) ↑𝑚
𝑑) / 𝑏⦌({〈(Base‘ndx),
𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉}) = ⦋𝐵 / 𝑏⦌({〈(Base‘ndx),
𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉})) |
28 | | basfn 12676 |
. . . . . . . . . . 11
⊢ Base Fn
V |
29 | | vex 2763 |
. . . . . . . . . . 11
⊢ 𝑟 ∈ V |
30 | | funfvex 5571 |
. . . . . . . . . . . 12
⊢ ((Fun
Base ∧ 𝑟 ∈ dom
Base) → (Base‘𝑟)
∈ V) |
31 | 30 | funfni 5354 |
. . . . . . . . . . 11
⊢ ((Base Fn
V ∧ 𝑟 ∈ V) →
(Base‘𝑟) ∈
V) |
32 | 28, 29, 31 | mp2an 426 |
. . . . . . . . . 10
⊢
(Base‘𝑟)
∈ V |
33 | | vex 2763 |
. . . . . . . . . 10
⊢ 𝑑 ∈ V |
34 | 32, 33 | mapval 6714 |
. . . . . . . . 9
⊢
((Base‘𝑟)
↑𝑚 𝑑) = {𝑓 ∣ 𝑓:𝑑⟶(Base‘𝑟)} |
35 | | mapex 6708 |
. . . . . . . . . 10
⊢ ((𝑑 ∈ V ∧
(Base‘𝑟) ∈ V)
→ {𝑓 ∣ 𝑓:𝑑⟶(Base‘𝑟)} ∈ V) |
36 | 33, 32, 35 | mp2an 426 |
. . . . . . . . 9
⊢ {𝑓 ∣ 𝑓:𝑑⟶(Base‘𝑟)} ∈ V |
37 | 34, 36 | eqeltri 2266 |
. . . . . . . 8
⊢
((Base‘𝑟)
↑𝑚 𝑑) ∈ V |
38 | 26, 37 | eqeltrrdi 2285 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → 𝐵 ∈ V) |
39 | | simpr 110 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵) |
40 | 39 | opeq2d 3811 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 〈(Base‘ndx), 𝑏〉 = 〈(Base‘ndx),
𝐵〉) |
41 | 18 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑟 = 𝑅) |
42 | 41 | fveq2d 5558 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (+g‘𝑟) = (+g‘𝑅)) |
43 | | psrval.a |
. . . . . . . . . . . . . 14
⊢ + =
(+g‘𝑅) |
44 | 42, 43 | eqtr4di 2244 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (+g‘𝑟) = + ) |
45 | 44 | ofeqd 6132 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ∘𝑓
(+g‘𝑟) =
∘𝑓 + ) |
46 | 39, 39 | xpeq12d 4684 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑏 × 𝑏) = (𝐵 × 𝐵)) |
47 | 45, 46 | reseq12d 4943 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏)) = (
∘𝑓 + ↾ (𝐵 × 𝐵))) |
48 | | psrval.p |
. . . . . . . . . . 11
⊢ ✚ = (
∘𝑓 + ↾ (𝐵 × 𝐵)) |
49 | 47, 48 | eqtr4di 2244 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏)) = ✚ ) |
50 | 49 | opeq2d 3811 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 〈(+g‘ndx), (
∘𝑓 (+g‘𝑟) ↾ (𝑏 × 𝑏))〉 = 〈(+g‘ndx),
✚
〉) |
51 | 22 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑑 = 𝐷) |
52 | 51 | rabeqdv 2754 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} = {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) |
53 | 41 | fveq2d 5558 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (.r‘𝑟) = (.r‘𝑅)) |
54 | | psrval.m |
. . . . . . . . . . . . . . . . 17
⊢ · =
(.r‘𝑅) |
55 | 53, 54 | eqtr4di 2244 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (.r‘𝑟) = · ) |
56 | 55 | oveqd 5935 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥))) = ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥)))) |
57 | 52, 56 | mpteq12dv 4111 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))) = (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥))))) |
58 | 41, 57 | oveq12d 5936 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥))))) = (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥)))))) |
59 | 51, 58 | mpteq12dv 4111 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥))))))) |
60 | 39, 39, 59 | mpoeq123dv 5980 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥))))))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))) |
61 | | psrval.t |
. . . . . . . . . . 11
⊢ × =
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥))))))) |
62 | 60, 61 | eqtr4di 2244 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥))))))) = × ) |
63 | 62 | opeq2d 3811 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 〈(.r‘ndx),
(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉 =
〈(.r‘ndx), ×
〉) |
64 | 40, 50, 63 | tpeq123d 3710 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → {〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} =
{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
✚
〉, 〈(.r‘ndx), ×
〉}) |
65 | 41 | opeq2d 3811 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 〈(Scalar‘ndx), 𝑟〉 =
〈(Scalar‘ndx), 𝑅〉) |
66 | 21 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (Base‘𝑟) = 𝐾) |
67 | 55 | ofeqd 6132 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ∘𝑓
(.r‘𝑟) =
∘𝑓 · ) |
68 | 51 | xpeq1d 4682 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑑 × {𝑥}) = (𝐷 × {𝑥})) |
69 | | eqidd 2194 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑓 = 𝑓) |
70 | 67, 68, 69 | oveq123d 5939 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓) = ((𝐷 × {𝑥}) ∘𝑓 · 𝑓)) |
71 | 66, 39, 70 | mpoeq123dv 5980 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓)) = (𝑥 ∈ 𝐾, 𝑓 ∈ 𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))) |
72 | | psrval.v |
. . . . . . . . . . 11
⊢ ∙ =
(𝑥 ∈ 𝐾, 𝑓 ∈ 𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓)) |
73 | 71, 72 | eqtr4di 2244 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓)) = ∙ ) |
74 | 73 | opeq2d 3811 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉 = 〈(
·𝑠 ‘ndx), ∙
〉) |
75 | 41 | fveq2d 5558 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (TopOpen‘𝑟) = (TopOpen‘𝑅)) |
76 | | psrval.o |
. . . . . . . . . . . . . . 15
⊢ 𝑂 = (TopOpen‘𝑅) |
77 | 75, 76 | eqtr4di 2244 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (TopOpen‘𝑟) = 𝑂) |
78 | 77 | sneqd 3631 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → {(TopOpen‘𝑟)} = {𝑂}) |
79 | 51, 78 | xpeq12d 4684 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑑 × {(TopOpen‘𝑟)}) = (𝐷 × {𝑂})) |
80 | 79 | fveq2d 5558 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (∏t‘(𝑑 × {(TopOpen‘𝑟)})) =
(∏t‘(𝐷 × {𝑂}))) |
81 | | psrval.j |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽 = (∏t‘(𝐷 × {𝑂}))) |
82 | 81 | ad3antrrr 492 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝐽 = (∏t‘(𝐷 × {𝑂}))) |
83 | 80, 82 | eqtr4d 2229 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (∏t‘(𝑑 × {(TopOpen‘𝑟)})) = 𝐽) |
84 | 83 | opeq2d 3811 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉 = 〈(TopSet‘ndx), 𝐽〉) |
85 | 65, 74, 84 | tpeq123d 3710 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → {〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉} = {〈(Scalar‘ndx),
𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉}) |
86 | 64, 85 | uneq12d 3314 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉}) = ({〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉})) |
87 | 38, 86 | csbied 3127 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → ⦋𝐵 / 𝑏⦌({〈(Base‘ndx),
𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉}) = ({〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉})) |
88 | 27, 87 | eqtrd 2226 |
. . . . 5
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → ⦋((Base‘𝑟) ↑𝑚
𝑑) / 𝑏⦌({〈(Base‘ndx),
𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉}) = ({〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉})) |
89 | 17, 88 | csbied 3127 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) → ⦋𝐷 / 𝑑⦌⦋((Base‘𝑟) ↑𝑚 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑
× {(TopOpen‘𝑟)}))〉}) = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉})) |
90 | 9, 89 | eqtrd 2226 |
. . 3
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) → ⦋{ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑𝑚 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑
× {(TopOpen‘𝑟)}))〉}) = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉})) |
91 | | psrval.i |
. . . 4
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
92 | 91 | elexd 2773 |
. . 3
⊢ (𝜑 → 𝐼 ∈ V) |
93 | | psrval.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ 𝑋) |
94 | 93 | elexd 2773 |
. . 3
⊢ (𝜑 → 𝑅 ∈ V) |
95 | | basendxnn 12674 |
. . . . . 6
⊢
(Base‘ndx) ∈ ℕ |
96 | | funfvex 5571 |
. . . . . . . . . . . 12
⊢ ((Fun
Base ∧ 𝑅 ∈ dom
Base) → (Base‘𝑅)
∈ V) |
97 | 96 | funfni 5354 |
. . . . . . . . . . 11
⊢ ((Base Fn
V ∧ 𝑅 ∈ V) →
(Base‘𝑅) ∈
V) |
98 | 28, 94, 97 | sylancr 414 |
. . . . . . . . . 10
⊢ (𝜑 → (Base‘𝑅) ∈ V) |
99 | 20, 98 | eqeltrid 2280 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ V) |
100 | | mapvalg 6712 |
. . . . . . . . . . . . 13
⊢
((ℕ0 ∈ V ∧ 𝐼 ∈ 𝑊) → (ℕ0
↑𝑚 𝐼) = {𝑓 ∣ 𝑓:𝐼⟶ℕ0}) |
101 | 10, 91, 100 | sylancr 414 |
. . . . . . . . . . . 12
⊢ (𝜑 → (ℕ0
↑𝑚 𝐼) = {𝑓 ∣ 𝑓:𝐼⟶ℕ0}) |
102 | | mapex 6708 |
. . . . . . . . . . . . 13
⊢ ((𝐼 ∈ 𝑊 ∧ ℕ0 ∈ V) →
{𝑓 ∣ 𝑓:𝐼⟶ℕ0} ∈
V) |
103 | 91, 10, 102 | sylancl 413 |
. . . . . . . . . . . 12
⊢ (𝜑 → {𝑓 ∣ 𝑓:𝐼⟶ℕ0} ∈
V) |
104 | 101, 103 | eqeltrd 2270 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℕ0
↑𝑚 𝐼) ∈ V) |
105 | | rabexg 4172 |
. . . . . . . . . . 11
⊢
((ℕ0 ↑𝑚 𝐼) ∈ V → {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V) |
106 | 104, 105 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V) |
107 | 7, 106 | eqeltrid 2280 |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ V) |
108 | | mapvalg 6712 |
. . . . . . . . 9
⊢ ((𝐾 ∈ V ∧ 𝐷 ∈ V) → (𝐾 ↑𝑚
𝐷) = {𝑓 ∣ 𝑓:𝐷⟶𝐾}) |
109 | 99, 107, 108 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → (𝐾 ↑𝑚 𝐷) = {𝑓 ∣ 𝑓:𝐷⟶𝐾}) |
110 | | mapex 6708 |
. . . . . . . . 9
⊢ ((𝐷 ∈ V ∧ 𝐾 ∈ V) → {𝑓 ∣ 𝑓:𝐷⟶𝐾} ∈ V) |
111 | 107, 99, 110 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → {𝑓 ∣ 𝑓:𝐷⟶𝐾} ∈ V) |
112 | 109, 111 | eqeltrd 2270 |
. . . . . . 7
⊢ (𝜑 → (𝐾 ↑𝑚 𝐷) ∈ V) |
113 | 24, 112 | eqeltrd 2270 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ V) |
114 | | opexg 4257 |
. . . . . 6
⊢
(((Base‘ndx) ∈ ℕ ∧ 𝐵 ∈ V) → 〈(Base‘ndx),
𝐵〉 ∈
V) |
115 | 95, 113, 114 | sylancr 414 |
. . . . 5
⊢ (𝜑 → 〈(Base‘ndx),
𝐵〉 ∈
V) |
116 | | plusgndxnn 12729 |
. . . . . 6
⊢
(+g‘ndx) ∈ ℕ |
117 | 113, 113 | ofmresex 6189 |
. . . . . . 7
⊢ (𝜑 → (
∘𝑓 + ↾ (𝐵 × 𝐵)) ∈ V) |
118 | 48, 117 | eqeltrid 2280 |
. . . . . 6
⊢ (𝜑 → ✚ ∈
V) |
119 | | opexg 4257 |
. . . . . 6
⊢
(((+g‘ndx) ∈ ℕ ∧ ✚ ∈ V) →
〈(+g‘ndx), ✚ 〉 ∈
V) |
120 | 116, 118,
119 | sylancr 414 |
. . . . 5
⊢ (𝜑 →
〈(+g‘ndx), ✚ 〉 ∈
V) |
121 | | mulrslid 12749 |
. . . . . . 7
⊢
(.r = Slot (.r‘ndx) ∧
(.r‘ndx) ∈ ℕ) |
122 | 121 | simpri 113 |
. . . . . 6
⊢
(.r‘ndx) ∈ ℕ |
123 | 61 | mpoexg 6264 |
. . . . . . 7
⊢ ((𝐵 ∈ V ∧ 𝐵 ∈ V) → × ∈
V) |
124 | 113, 113,
123 | syl2anc 411 |
. . . . . 6
⊢ (𝜑 → × ∈
V) |
125 | | opexg 4257 |
. . . . . 6
⊢
(((.r‘ndx) ∈ ℕ ∧ × ∈ V) →
〈(.r‘ndx), × 〉 ∈
V) |
126 | 122, 124,
125 | sylancr 414 |
. . . . 5
⊢ (𝜑 →
〈(.r‘ndx), × 〉 ∈
V) |
127 | | tpexg 4475 |
. . . . 5
⊢
((〈(Base‘ndx), 𝐵〉 ∈ V ∧
〈(+g‘ndx), ✚ 〉 ∈ V
∧ 〈(.r‘ndx), × 〉 ∈ V)
→ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
✚
〉, 〈(.r‘ndx), × 〉} ∈
V) |
128 | 115, 120,
126, 127 | syl3anc 1249 |
. . . 4
⊢ (𝜑 → {〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), × 〉} ∈
V) |
129 | | scaslid 12770 |
. . . . . . 7
⊢ (Scalar =
Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈
ℕ) |
130 | 129 | simpri 113 |
. . . . . 6
⊢
(Scalar‘ndx) ∈ ℕ |
131 | | opexg 4257 |
. . . . . 6
⊢
(((Scalar‘ndx) ∈ ℕ ∧ 𝑅 ∈ 𝑋) → 〈(Scalar‘ndx), 𝑅〉 ∈
V) |
132 | 130, 93, 131 | sylancr 414 |
. . . . 5
⊢ (𝜑 → 〈(Scalar‘ndx),
𝑅〉 ∈
V) |
133 | | vscaslid 12780 |
. . . . . . 7
⊢ (
·𝑠 = Slot (
·𝑠 ‘ndx) ∧ (
·𝑠 ‘ndx) ∈
ℕ) |
134 | 133 | simpri 113 |
. . . . . 6
⊢ (
·𝑠 ‘ndx) ∈ ℕ |
135 | 72 | mpoexg 6264 |
. . . . . . 7
⊢ ((𝐾 ∈ V ∧ 𝐵 ∈ V) → ∙ ∈
V) |
136 | 99, 113, 135 | syl2anc 411 |
. . . . . 6
⊢ (𝜑 → ∙ ∈
V) |
137 | | opexg 4257 |
. . . . . 6
⊢ (((
·𝑠 ‘ndx) ∈ ℕ ∧ ∙ ∈
V) → 〈( ·𝑠 ‘ndx), ∙ 〉
∈ V) |
138 | 134, 136,
137 | sylancr 414 |
. . . . 5
⊢ (𝜑 → 〈(
·𝑠 ‘ndx), ∙ 〉 ∈
V) |
139 | | tsetndxnn 12806 |
. . . . . 6
⊢
(TopSet‘ndx) ∈ ℕ |
140 | | topnfn 12855 |
. . . . . . . . . . . 12
⊢ TopOpen
Fn V |
141 | | funfvex 5571 |
. . . . . . . . . . . . 13
⊢ ((Fun
TopOpen ∧ 𝑅 ∈ dom
TopOpen) → (TopOpen‘𝑅) ∈ V) |
142 | 141 | funfni 5354 |
. . . . . . . . . . . 12
⊢ ((TopOpen
Fn V ∧ 𝑅 ∈ V)
→ (TopOpen‘𝑅)
∈ V) |
143 | 140, 94, 142 | sylancr 414 |
. . . . . . . . . . 11
⊢ (𝜑 → (TopOpen‘𝑅) ∈ V) |
144 | 76, 143 | eqeltrid 2280 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑂 ∈ V) |
145 | | snexg 4213 |
. . . . . . . . . 10
⊢ (𝑂 ∈ V → {𝑂} ∈ V) |
146 | 144, 145 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → {𝑂} ∈ V) |
147 | | xpexg 4773 |
. . . . . . . . 9
⊢ ((𝐷 ∈ V ∧ {𝑂} ∈ V) → (𝐷 × {𝑂}) ∈ V) |
148 | 107, 146,
147 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → (𝐷 × {𝑂}) ∈ V) |
149 | | ptex 12875 |
. . . . . . . 8
⊢ ((𝐷 × {𝑂}) ∈ V →
(∏t‘(𝐷 × {𝑂})) ∈ V) |
150 | 148, 149 | syl 14 |
. . . . . . 7
⊢ (𝜑 →
(∏t‘(𝐷 × {𝑂})) ∈ V) |
151 | 81, 150 | eqeltrd 2270 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ V) |
152 | | opexg 4257 |
. . . . . 6
⊢
(((TopSet‘ndx) ∈ ℕ ∧ 𝐽 ∈ V) → 〈(TopSet‘ndx),
𝐽〉 ∈
V) |
153 | 139, 151,
152 | sylancr 414 |
. . . . 5
⊢ (𝜑 → 〈(TopSet‘ndx),
𝐽〉 ∈
V) |
154 | | tpexg 4475 |
. . . . 5
⊢
((〈(Scalar‘ndx), 𝑅〉 ∈ V ∧ 〈(
·𝑠 ‘ndx), ∙ 〉 ∈ V
∧ 〈(TopSet‘ndx), 𝐽〉 ∈ V) →
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉} ∈ V) |
155 | 132, 138,
153, 154 | syl3anc 1249 |
. . . 4
⊢ (𝜑 → {〈(Scalar‘ndx),
𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉} ∈ V) |
156 | | unexg 4474 |
. . . 4
⊢
(({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
✚
〉, 〈(.r‘ndx), × 〉} ∈ V
∧ {〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉} ∈ V) →
({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
✚
〉, 〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉}) ∈ V) |
157 | 128, 155,
156 | syl2anc 411 |
. . 3
⊢ (𝜑 → ({〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉}) ∈ V) |
158 | 3, 90, 92, 94, 157 | ovmpod 6046 |
. 2
⊢ (𝜑 → (𝐼 mPwSer 𝑅) = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉})) |
159 | 1, 158 | eqtrid 2238 |
1
⊢ (𝜑 → 𝑆 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉})) |