ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  psrval GIF version

Theorem psrval 14638
Description: Value of the multivariate power series structure. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
psrval.s 𝑆 = (𝐼 mPwSer 𝑅)
psrval.k 𝐾 = (Base‘𝑅)
psrval.a + = (+g𝑅)
psrval.m · = (.r𝑅)
psrval.o 𝑂 = (TopOpen‘𝑅)
psrval.d 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
psrval.b (𝜑𝐵 = (𝐾𝑚 𝐷))
psrval.p = ( ∘𝑓 + ↾ (𝐵 × 𝐵))
psrval.t × = (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘𝑓𝑥)))))))
psrval.v = (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))
psrval.j (𝜑𝐽 = (∏t‘(𝐷 × {𝑂})))
psrval.i (𝜑𝐼𝑊)
psrval.r (𝜑𝑅𝑋)
Assertion
Ref Expression
psrval (𝜑𝑆 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), ⟩, ⟨(TopSet‘ndx), 𝐽⟩}))
Distinct variable groups:   𝑦,   𝑓,𝑔,𝑘,𝑥,𝜑   𝐵,𝑓,𝑔,𝑘,𝑥   𝑓,,𝐼,𝑔,𝑘,𝑥   𝑅,𝑓,𝑔,𝑘,𝑥   𝑦,𝑓,𝐷,𝑔,𝑘,𝑥   𝑓,𝐾,𝑥
Allowed substitution hints:   𝜑(𝑦,)   𝐵(𝑦,)   𝐷()   + (𝑥,𝑦,𝑓,𝑔,,𝑘)   (𝑥,𝑦,𝑓,𝑔,,𝑘)   𝑅(𝑦,)   𝑆(𝑥,𝑦,𝑓,𝑔,,𝑘)   (𝑥,𝑦,𝑓,𝑔,,𝑘)   · (𝑥,𝑦,𝑓,𝑔,,𝑘)   × (𝑥,𝑦,𝑓,𝑔,,𝑘)   𝐼(𝑦)   𝐽(𝑥,𝑦,𝑓,𝑔,,𝑘)   𝐾(𝑦,𝑔,,𝑘)   𝑂(𝑥,𝑦,𝑓,𝑔,,𝑘)   𝑊(𝑥,𝑦,𝑓,𝑔,,𝑘)   𝑋(𝑥,𝑦,𝑓,𝑔,,𝑘)

Proof of Theorem psrval
Dummy variables 𝑖 𝑟 𝑏 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 psrval.s . 2 𝑆 = (𝐼 mPwSer 𝑅)
2 df-psr 14635 . . . 4 mPwSer = (𝑖 ∈ V, 𝑟 ∈ V ↦ { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} / 𝑑((Base‘𝑟) ↑𝑚 𝑑) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩}))
32a1i 9 . . 3 (𝜑 → mPwSer = (𝑖 ∈ V, 𝑟 ∈ V ↦ { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} / 𝑑((Base‘𝑟) ↑𝑚 𝑑) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩})))
4 simprl 529 . . . . . . . 8 ((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) → 𝑖 = 𝐼)
54oveq2d 6023 . . . . . . 7 ((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) → (ℕ0𝑚 𝑖) = (ℕ0𝑚 𝐼))
65rabeqdv 2793 . . . . . 6 ((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) → { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin})
7 psrval.d . . . . . 6 𝐷 = { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin}
86, 7eqtr4di 2280 . . . . 5 ((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) → { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} = 𝐷)
98csbeq1d 3131 . . . 4 ((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) → { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} / 𝑑((Base‘𝑟) ↑𝑚 𝑑) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩}) = 𝐷 / 𝑑((Base‘𝑟) ↑𝑚 𝑑) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩}))
10 nn0ex 9383 . . . . . . . . 9 0 ∈ V
11 vex 2802 . . . . . . . . 9 𝑖 ∈ V
1210, 11mapval 6815 . . . . . . . 8 (ℕ0𝑚 𝑖) = {𝑓𝑓:𝑖⟶ℕ0}
13 mapex 6809 . . . . . . . . 9 ((𝑖 ∈ V ∧ ℕ0 ∈ V) → {𝑓𝑓:𝑖⟶ℕ0} ∈ V)
1411, 10, 13mp2an 426 . . . . . . . 8 {𝑓𝑓:𝑖⟶ℕ0} ∈ V
1512, 14eqeltri 2302 . . . . . . 7 (ℕ0𝑚 𝑖) ∈ V
1615rabex 4228 . . . . . 6 { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} ∈ V
178, 16eqeltrrdi 2321 . . . . 5 ((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) → 𝐷 ∈ V)
18 simplrr 536 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → 𝑟 = 𝑅)
1918fveq2d 5633 . . . . . . . . . 10 (((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → (Base‘𝑟) = (Base‘𝑅))
20 psrval.k . . . . . . . . . 10 𝐾 = (Base‘𝑅)
2119, 20eqtr4di 2280 . . . . . . . . 9 (((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → (Base‘𝑟) = 𝐾)
22 simpr 110 . . . . . . . . 9 (((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷)
2321, 22oveq12d 6025 . . . . . . . 8 (((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → ((Base‘𝑟) ↑𝑚 𝑑) = (𝐾𝑚 𝐷))
24 psrval.b . . . . . . . . 9 (𝜑𝐵 = (𝐾𝑚 𝐷))
2524ad2antrr 488 . . . . . . . 8 (((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → 𝐵 = (𝐾𝑚 𝐷))
2623, 25eqtr4d 2265 . . . . . . 7 (((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → ((Base‘𝑟) ↑𝑚 𝑑) = 𝐵)
2726csbeq1d 3131 . . . . . 6 (((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → ((Base‘𝑟) ↑𝑚 𝑑) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩}) = 𝐵 / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩}))
28 basfn 13099 . . . . . . . . . . 11 Base Fn V
29 vex 2802 . . . . . . . . . . 11 𝑟 ∈ V
30 funfvex 5646 . . . . . . . . . . . 12 ((Fun Base ∧ 𝑟 ∈ dom Base) → (Base‘𝑟) ∈ V)
3130funfni 5423 . . . . . . . . . . 11 ((Base Fn V ∧ 𝑟 ∈ V) → (Base‘𝑟) ∈ V)
3228, 29, 31mp2an 426 . . . . . . . . . 10 (Base‘𝑟) ∈ V
33 vex 2802 . . . . . . . . . 10 𝑑 ∈ V
3432, 33mapval 6815 . . . . . . . . 9 ((Base‘𝑟) ↑𝑚 𝑑) = {𝑓𝑓:𝑑⟶(Base‘𝑟)}
35 mapex 6809 . . . . . . . . . 10 ((𝑑 ∈ V ∧ (Base‘𝑟) ∈ V) → {𝑓𝑓:𝑑⟶(Base‘𝑟)} ∈ V)
3633, 32, 35mp2an 426 . . . . . . . . 9 {𝑓𝑓:𝑑⟶(Base‘𝑟)} ∈ V
3734, 36eqeltri 2302 . . . . . . . 8 ((Base‘𝑟) ↑𝑚 𝑑) ∈ V
3826, 37eqeltrrdi 2321 . . . . . . 7 (((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → 𝐵 ∈ V)
39 simpr 110 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵)
4039opeq2d 3864 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ⟨(Base‘ndx), 𝑏⟩ = ⟨(Base‘ndx), 𝐵⟩)
4118adantr 276 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑟 = 𝑅)
4241fveq2d 5633 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (+g𝑟) = (+g𝑅))
43 psrval.a . . . . . . . . . . . . . 14 + = (+g𝑅)
4442, 43eqtr4di 2280 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (+g𝑟) = + )
4544ofeqd 6226 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ∘𝑓 (+g𝑟) = ∘𝑓 + )
4639, 39xpeq12d 4744 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑏 × 𝑏) = (𝐵 × 𝐵))
4745, 46reseq12d 5006 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏)) = ( ∘𝑓 + ↾ (𝐵 × 𝐵)))
48 psrval.p . . . . . . . . . . 11 = ( ∘𝑓 + ↾ (𝐵 × 𝐵))
4947, 48eqtr4di 2280 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏)) = )
5049opeq2d 3864 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ⟨(+g‘ndx), ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏))⟩ = ⟨(+g‘ndx), ⟩)
5122adantr 276 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑑 = 𝐷)
5251rabeqdv 2793 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → {𝑦𝑑𝑦𝑟𝑘} = {𝑦𝐷𝑦𝑟𝑘})
5341fveq2d 5633 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (.r𝑟) = (.r𝑅))
54 psrval.m . . . . . . . . . . . . . . . . 17 · = (.r𝑅)
5553, 54eqtr4di 2280 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (.r𝑟) = · )
5655oveqd 6024 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥))) = ((𝑓𝑥) · (𝑔‘(𝑘𝑓𝑥))))
5752, 56mpteq12dv 4166 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘𝑓𝑥)))))
5841, 57oveq12d 6025 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥))))) = (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘𝑓𝑥))))))
5951, 58mpteq12dv 4166 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥)))))) = (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘𝑓𝑥)))))))
6039, 39, 59mpoeq123dv 6072 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥))))))) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘𝑓𝑥))))))))
61 psrval.t . . . . . . . . . . 11 × = (𝑓𝐵, 𝑔𝐵 ↦ (𝑘𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦𝑟𝑘} ↦ ((𝑓𝑥) · (𝑔‘(𝑘𝑓𝑥)))))))
6260, 61eqtr4di 2280 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥))))))) = × )
6362opeq2d 3864 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥)))))))⟩ = ⟨(.r‘ndx), × ⟩)
6440, 50, 63tpeq123d 3758 . . . . . . . 8 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → {⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥)))))))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), × ⟩})
6541opeq2d 3864 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ⟨(Scalar‘ndx), 𝑟⟩ = ⟨(Scalar‘ndx), 𝑅⟩)
6621adantr 276 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (Base‘𝑟) = 𝐾)
6755ofeqd 6226 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ∘𝑓 (.r𝑟) = ∘𝑓 · )
6851xpeq1d 4742 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑑 × {𝑥}) = (𝐷 × {𝑥}))
69 eqidd 2230 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑓 = 𝑓)
7067, 68, 69oveq123d 6028 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ((𝑑 × {𝑥}) ∘𝑓 (.r𝑟)𝑓) = ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))
7166, 39, 70mpoeq123dv 6072 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r𝑟)𝑓)) = (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓)))
72 psrval.v . . . . . . . . . . 11 = (𝑥𝐾, 𝑓𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))
7371, 72eqtr4di 2280 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r𝑟)𝑓)) = )
7473opeq2d 3864 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r𝑟)𝑓))⟩ = ⟨( ·𝑠 ‘ndx), ⟩)
7541fveq2d 5633 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (TopOpen‘𝑟) = (TopOpen‘𝑅))
76 psrval.o . . . . . . . . . . . . . . 15 𝑂 = (TopOpen‘𝑅)
7775, 76eqtr4di 2280 . . . . . . . . . . . . . 14 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (TopOpen‘𝑟) = 𝑂)
7877sneqd 3679 . . . . . . . . . . . . 13 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → {(TopOpen‘𝑟)} = {𝑂})
7951, 78xpeq12d 4744 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑑 × {(TopOpen‘𝑟)}) = (𝐷 × {𝑂}))
8079fveq2d 5633 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (∏t‘(𝑑 × {(TopOpen‘𝑟)})) = (∏t‘(𝐷 × {𝑂})))
81 psrval.j . . . . . . . . . . . 12 (𝜑𝐽 = (∏t‘(𝐷 × {𝑂})))
8281ad3antrrr 492 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝐽 = (∏t‘(𝐷 × {𝑂})))
8380, 82eqtr4d 2265 . . . . . . . . . 10 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (∏t‘(𝑑 × {(TopOpen‘𝑟)})) = 𝐽)
8483opeq2d 3864 . . . . . . . . 9 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩ = ⟨(TopSet‘ndx), 𝐽⟩)
8565, 74, 84tpeq123d 3758 . . . . . . . 8 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩} = {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
8664, 85uneq12d 3359 . . . . . . 7 ((((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), ⟩, ⟨(TopSet‘ndx), 𝐽⟩}))
8738, 86csbied 3171 . . . . . 6 (((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → 𝐵 / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), ⟩, ⟨(TopSet‘ndx), 𝐽⟩}))
8827, 87eqtrd 2262 . . . . 5 (((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → ((Base‘𝑟) ↑𝑚 𝑑) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), ⟩, ⟨(TopSet‘ndx), 𝐽⟩}))
8917, 88csbied 3171 . . . 4 ((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) → 𝐷 / 𝑑((Base‘𝑟) ↑𝑚 𝑑) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), ⟩, ⟨(TopSet‘ndx), 𝐽⟩}))
909, 89eqtrd 2262 . . 3 ((𝜑 ∧ (𝑖 = 𝐼𝑟 = 𝑅)) → { ∈ (ℕ0𝑚 𝑖) ∣ ( “ ℕ) ∈ Fin} / 𝑑((Base‘𝑟) ↑𝑚 𝑑) / 𝑏({⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), ( ∘𝑓 (+g𝑟) ↾ (𝑏 × 𝑏))⟩, ⟨(.r‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑘𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦𝑑𝑦𝑟𝑘} ↦ ((𝑓𝑥)(.r𝑟)(𝑔‘(𝑘𝑓𝑥)))))))⟩} ∪ {⟨(Scalar‘ndx), 𝑟⟩, ⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓 (.r𝑟)𝑓))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑑 × {(TopOpen‘𝑟)}))⟩}) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), ⟩, ⟨(TopSet‘ndx), 𝐽⟩}))
91 psrval.i . . . 4 (𝜑𝐼𝑊)
9291elexd 2813 . . 3 (𝜑𝐼 ∈ V)
93 psrval.r . . . 4 (𝜑𝑅𝑋)
9493elexd 2813 . . 3 (𝜑𝑅 ∈ V)
95 basendxnn 13096 . . . . . 6 (Base‘ndx) ∈ ℕ
96 funfvex 5646 . . . . . . . . . . . 12 ((Fun Base ∧ 𝑅 ∈ dom Base) → (Base‘𝑅) ∈ V)
9796funfni 5423 . . . . . . . . . . 11 ((Base Fn V ∧ 𝑅 ∈ V) → (Base‘𝑅) ∈ V)
9828, 94, 97sylancr 414 . . . . . . . . . 10 (𝜑 → (Base‘𝑅) ∈ V)
9920, 98eqeltrid 2316 . . . . . . . . 9 (𝜑𝐾 ∈ V)
100 mapvalg 6813 . . . . . . . . . . . . 13 ((ℕ0 ∈ V ∧ 𝐼𝑊) → (ℕ0𝑚 𝐼) = {𝑓𝑓:𝐼⟶ℕ0})
10110, 91, 100sylancr 414 . . . . . . . . . . . 12 (𝜑 → (ℕ0𝑚 𝐼) = {𝑓𝑓:𝐼⟶ℕ0})
102 mapex 6809 . . . . . . . . . . . . 13 ((𝐼𝑊 ∧ ℕ0 ∈ V) → {𝑓𝑓:𝐼⟶ℕ0} ∈ V)
10391, 10, 102sylancl 413 . . . . . . . . . . . 12 (𝜑 → {𝑓𝑓:𝐼⟶ℕ0} ∈ V)
104101, 103eqeltrd 2306 . . . . . . . . . . 11 (𝜑 → (ℕ0𝑚 𝐼) ∈ V)
105 rabexg 4227 . . . . . . . . . . 11 ((ℕ0𝑚 𝐼) ∈ V → { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V)
106104, 105syl 14 . . . . . . . . . 10 (𝜑 → { ∈ (ℕ0𝑚 𝐼) ∣ ( “ ℕ) ∈ Fin} ∈ V)
1077, 106eqeltrid 2316 . . . . . . . . 9 (𝜑𝐷 ∈ V)
108 mapvalg 6813 . . . . . . . . 9 ((𝐾 ∈ V ∧ 𝐷 ∈ V) → (𝐾𝑚 𝐷) = {𝑓𝑓:𝐷𝐾})
10999, 107, 108syl2anc 411 . . . . . . . 8 (𝜑 → (𝐾𝑚 𝐷) = {𝑓𝑓:𝐷𝐾})
110 mapex 6809 . . . . . . . . 9 ((𝐷 ∈ V ∧ 𝐾 ∈ V) → {𝑓𝑓:𝐷𝐾} ∈ V)
111107, 99, 110syl2anc 411 . . . . . . . 8 (𝜑 → {𝑓𝑓:𝐷𝐾} ∈ V)
112109, 111eqeltrd 2306 . . . . . . 7 (𝜑 → (𝐾𝑚 𝐷) ∈ V)
11324, 112eqeltrd 2306 . . . . . 6 (𝜑𝐵 ∈ V)
114 opexg 4314 . . . . . 6 (((Base‘ndx) ∈ ℕ ∧ 𝐵 ∈ V) → ⟨(Base‘ndx), 𝐵⟩ ∈ V)
11595, 113, 114sylancr 414 . . . . 5 (𝜑 → ⟨(Base‘ndx), 𝐵⟩ ∈ V)
116 plusgndxnn 13152 . . . . . 6 (+g‘ndx) ∈ ℕ
117113, 113ofmresex 6288 . . . . . . 7 (𝜑 → ( ∘𝑓 + ↾ (𝐵 × 𝐵)) ∈ V)
11848, 117eqeltrid 2316 . . . . . 6 (𝜑 ∈ V)
119 opexg 4314 . . . . . 6 (((+g‘ndx) ∈ ℕ ∧ ∈ V) → ⟨(+g‘ndx), ⟩ ∈ V)
120116, 118, 119sylancr 414 . . . . 5 (𝜑 → ⟨(+g‘ndx), ⟩ ∈ V)
121 mulrslid 13173 . . . . . . 7 (.r = Slot (.r‘ndx) ∧ (.r‘ndx) ∈ ℕ)
122121simpri 113 . . . . . 6 (.r‘ndx) ∈ ℕ
12361mpoexg 6363 . . . . . . 7 ((𝐵 ∈ V ∧ 𝐵 ∈ V) → × ∈ V)
124113, 113, 123syl2anc 411 . . . . . 6 (𝜑× ∈ V)
125 opexg 4314 . . . . . 6 (((.r‘ndx) ∈ ℕ ∧ × ∈ V) → ⟨(.r‘ndx), × ⟩ ∈ V)
126122, 124, 125sylancr 414 . . . . 5 (𝜑 → ⟨(.r‘ndx), × ⟩ ∈ V)
127 tpexg 4535 . . . . 5 ((⟨(Base‘ndx), 𝐵⟩ ∈ V ∧ ⟨(+g‘ndx), ⟩ ∈ V ∧ ⟨(.r‘ndx), × ⟩ ∈ V) → {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), × ⟩} ∈ V)
128115, 120, 126, 127syl3anc 1271 . . . 4 (𝜑 → {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), × ⟩} ∈ V)
129 scaslid 13194 . . . . . . 7 (Scalar = Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈ ℕ)
130129simpri 113 . . . . . 6 (Scalar‘ndx) ∈ ℕ
131 opexg 4314 . . . . . 6 (((Scalar‘ndx) ∈ ℕ ∧ 𝑅𝑋) → ⟨(Scalar‘ndx), 𝑅⟩ ∈ V)
132130, 93, 131sylancr 414 . . . . 5 (𝜑 → ⟨(Scalar‘ndx), 𝑅⟩ ∈ V)
133 vscaslid 13204 . . . . . . 7 ( ·𝑠 = Slot ( ·𝑠 ‘ndx) ∧ ( ·𝑠 ‘ndx) ∈ ℕ)
134133simpri 113 . . . . . 6 ( ·𝑠 ‘ndx) ∈ ℕ
13572mpoexg 6363 . . . . . . 7 ((𝐾 ∈ V ∧ 𝐵 ∈ V) → ∈ V)
13699, 113, 135syl2anc 411 . . . . . 6 (𝜑 ∈ V)
137 opexg 4314 . . . . . 6 ((( ·𝑠 ‘ndx) ∈ ℕ ∧ ∈ V) → ⟨( ·𝑠 ‘ndx), ⟩ ∈ V)
138134, 136, 137sylancr 414 . . . . 5 (𝜑 → ⟨( ·𝑠 ‘ndx), ⟩ ∈ V)
139 tsetndxnn 13230 . . . . . 6 (TopSet‘ndx) ∈ ℕ
140 topnfn 13285 . . . . . . . . . . . 12 TopOpen Fn V
141 funfvex 5646 . . . . . . . . . . . . 13 ((Fun TopOpen ∧ 𝑅 ∈ dom TopOpen) → (TopOpen‘𝑅) ∈ V)
142141funfni 5423 . . . . . . . . . . . 12 ((TopOpen Fn V ∧ 𝑅 ∈ V) → (TopOpen‘𝑅) ∈ V)
143140, 94, 142sylancr 414 . . . . . . . . . . 11 (𝜑 → (TopOpen‘𝑅) ∈ V)
14476, 143eqeltrid 2316 . . . . . . . . . 10 (𝜑𝑂 ∈ V)
145 snexg 4268 . . . . . . . . . 10 (𝑂 ∈ V → {𝑂} ∈ V)
146144, 145syl 14 . . . . . . . . 9 (𝜑 → {𝑂} ∈ V)
147 xpexg 4833 . . . . . . . . 9 ((𝐷 ∈ V ∧ {𝑂} ∈ V) → (𝐷 × {𝑂}) ∈ V)
148107, 146, 147syl2anc 411 . . . . . . . 8 (𝜑 → (𝐷 × {𝑂}) ∈ V)
149 ptex 13305 . . . . . . . 8 ((𝐷 × {𝑂}) ∈ V → (∏t‘(𝐷 × {𝑂})) ∈ V)
150148, 149syl 14 . . . . . . 7 (𝜑 → (∏t‘(𝐷 × {𝑂})) ∈ V)
15181, 150eqeltrd 2306 . . . . . 6 (𝜑𝐽 ∈ V)
152 opexg 4314 . . . . . 6 (((TopSet‘ndx) ∈ ℕ ∧ 𝐽 ∈ V) → ⟨(TopSet‘ndx), 𝐽⟩ ∈ V)
153139, 151, 152sylancr 414 . . . . 5 (𝜑 → ⟨(TopSet‘ndx), 𝐽⟩ ∈ V)
154 tpexg 4535 . . . . 5 ((⟨(Scalar‘ndx), 𝑅⟩ ∈ V ∧ ⟨( ·𝑠 ‘ndx), ⟩ ∈ V ∧ ⟨(TopSet‘ndx), 𝐽⟩ ∈ V) → {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ∈ V)
155132, 138, 153, 154syl3anc 1271 . . . 4 (𝜑 → {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ∈ V)
156 unexg 4534 . . . 4 (({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), × ⟩} ∈ V ∧ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ∈ V) → ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), ⟩, ⟨(TopSet‘ndx), 𝐽⟩}) ∈ V)
157128, 155, 156syl2anc 411 . . 3 (𝜑 → ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), ⟩, ⟨(TopSet‘ndx), 𝐽⟩}) ∈ V)
1583, 90, 92, 94, 157ovmpod 6138 . 2 (𝜑 → (𝐼 mPwSer 𝑅) = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), ⟩, ⟨(TopSet‘ndx), 𝐽⟩}))
1591, 158eqtrid 2274 1 (𝜑𝑆 = ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), ⟩, ⟨(TopSet‘ndx), 𝐽⟩}))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  {cab 2215  {crab 2512  Vcvv 2799  csb 3124  cun 3195  {csn 3666  {ctp 3668  cop 3669   class class class wbr 4083  cmpt 4145   × cxp 4717  ccnv 4718  cres 4721  cima 4722   Fn wfn 5313  wf 5314  cfv 5318  (class class class)co 6007  cmpo 6009  𝑓 cof 6222  𝑟 cofr 6223  𝑚 cmap 6803  Fincfn 6895  cle 8190  cmin 8325  cn 9118  0cn0 9377  ndxcnx 13037  Slot cslot 13039  Basecbs 13040  +gcplusg 13118  .rcmulr 13119  Scalarcsca 13121   ·𝑠 cvsca 13122  TopSetcts 13124  TopOpenctopn 13281  tcpt 13296   Σg cgsu 13298   mPwSer cmps 14633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-i2m1 8112
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6010  df-oprab 6011  df-mpo 6012  df-of 6224  df-1st 6292  df-2nd 6293  df-map 6805  df-ixp 6854  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-ndx 13043  df-slot 13044  df-base 13046  df-plusg 13131  df-mulr 13132  df-sca 13134  df-vsca 13135  df-tset 13137  df-rest 13282  df-topn 13283  df-topgen 13301  df-pt 13302  df-psr 14635
This theorem is referenced by:  psrbasg  14646  psrplusgg  14650
  Copyright terms: Public domain W3C validator