| Step | Hyp | Ref
| Expression |
| 1 | | psrval.s |
. 2
⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
| 2 | | df-psr 14218 |
. . . 4
⊢ mPwSer =
(𝑖 ∈ V, 𝑟 ∈ V ↦
⦋{ℎ ∈
(ℕ0 ↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑𝑚 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑
× {(TopOpen‘𝑟)}))〉})) |
| 3 | 2 | a1i 9 |
. . 3
⊢ (𝜑 → mPwSer = (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋{ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑𝑚 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑
× {(TopOpen‘𝑟)}))〉}))) |
| 4 | | simprl 529 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) → 𝑖 = 𝐼) |
| 5 | 4 | oveq2d 5938 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) → (ℕ0
↑𝑚 𝑖) = (ℕ0
↑𝑚 𝐼)) |
| 6 | 5 | rabeqdv 2757 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) → {ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈
Fin}) |
| 7 | | psrval.d |
. . . . . 6
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} |
| 8 | 6, 7 | eqtr4di 2247 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) → {ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} = 𝐷) |
| 9 | 8 | csbeq1d 3091 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) → ⦋{ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑𝑚 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑
× {(TopOpen‘𝑟)}))〉}) = ⦋𝐷 / 𝑑⦌⦋((Base‘𝑟) ↑𝑚 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑
× {(TopOpen‘𝑟)}))〉})) |
| 10 | | nn0ex 9255 |
. . . . . . . . 9
⊢
ℕ0 ∈ V |
| 11 | | vex 2766 |
. . . . . . . . 9
⊢ 𝑖 ∈ V |
| 12 | 10, 11 | mapval 6719 |
. . . . . . . 8
⊢
(ℕ0 ↑𝑚 𝑖) = {𝑓 ∣ 𝑓:𝑖⟶ℕ0} |
| 13 | | mapex 6713 |
. . . . . . . . 9
⊢ ((𝑖 ∈ V ∧
ℕ0 ∈ V) → {𝑓 ∣ 𝑓:𝑖⟶ℕ0} ∈
V) |
| 14 | 11, 10, 13 | mp2an 426 |
. . . . . . . 8
⊢ {𝑓 ∣ 𝑓:𝑖⟶ℕ0} ∈
V |
| 15 | 12, 14 | eqeltri 2269 |
. . . . . . 7
⊢
(ℕ0 ↑𝑚 𝑖) ∈ V |
| 16 | 15 | rabex 4177 |
. . . . . 6
⊢ {ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V |
| 17 | 8, 16 | eqeltrrdi 2288 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) → 𝐷 ∈ V) |
| 18 | | simplrr 536 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → 𝑟 = 𝑅) |
| 19 | 18 | fveq2d 5562 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → (Base‘𝑟) = (Base‘𝑅)) |
| 20 | | psrval.k |
. . . . . . . . . 10
⊢ 𝐾 = (Base‘𝑅) |
| 21 | 19, 20 | eqtr4di 2247 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → (Base‘𝑟) = 𝐾) |
| 22 | | simpr 110 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷) |
| 23 | 21, 22 | oveq12d 5940 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → ((Base‘𝑟) ↑𝑚 𝑑) = (𝐾 ↑𝑚 𝐷)) |
| 24 | | psrval.b |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 = (𝐾 ↑𝑚 𝐷)) |
| 25 | 24 | ad2antrr 488 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → 𝐵 = (𝐾 ↑𝑚 𝐷)) |
| 26 | 23, 25 | eqtr4d 2232 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → ((Base‘𝑟) ↑𝑚 𝑑) = 𝐵) |
| 27 | 26 | csbeq1d 3091 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → ⦋((Base‘𝑟) ↑𝑚
𝑑) / 𝑏⦌({〈(Base‘ndx),
𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉}) = ⦋𝐵 / 𝑏⦌({〈(Base‘ndx),
𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉})) |
| 28 | | basfn 12736 |
. . . . . . . . . . 11
⊢ Base Fn
V |
| 29 | | vex 2766 |
. . . . . . . . . . 11
⊢ 𝑟 ∈ V |
| 30 | | funfvex 5575 |
. . . . . . . . . . . 12
⊢ ((Fun
Base ∧ 𝑟 ∈ dom
Base) → (Base‘𝑟)
∈ V) |
| 31 | 30 | funfni 5358 |
. . . . . . . . . . 11
⊢ ((Base Fn
V ∧ 𝑟 ∈ V) →
(Base‘𝑟) ∈
V) |
| 32 | 28, 29, 31 | mp2an 426 |
. . . . . . . . . 10
⊢
(Base‘𝑟)
∈ V |
| 33 | | vex 2766 |
. . . . . . . . . 10
⊢ 𝑑 ∈ V |
| 34 | 32, 33 | mapval 6719 |
. . . . . . . . 9
⊢
((Base‘𝑟)
↑𝑚 𝑑) = {𝑓 ∣ 𝑓:𝑑⟶(Base‘𝑟)} |
| 35 | | mapex 6713 |
. . . . . . . . . 10
⊢ ((𝑑 ∈ V ∧
(Base‘𝑟) ∈ V)
→ {𝑓 ∣ 𝑓:𝑑⟶(Base‘𝑟)} ∈ V) |
| 36 | 33, 32, 35 | mp2an 426 |
. . . . . . . . 9
⊢ {𝑓 ∣ 𝑓:𝑑⟶(Base‘𝑟)} ∈ V |
| 37 | 34, 36 | eqeltri 2269 |
. . . . . . . 8
⊢
((Base‘𝑟)
↑𝑚 𝑑) ∈ V |
| 38 | 26, 37 | eqeltrrdi 2288 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → 𝐵 ∈ V) |
| 39 | | simpr 110 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵) |
| 40 | 39 | opeq2d 3815 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 〈(Base‘ndx), 𝑏〉 = 〈(Base‘ndx),
𝐵〉) |
| 41 | 18 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑟 = 𝑅) |
| 42 | 41 | fveq2d 5562 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (+g‘𝑟) = (+g‘𝑅)) |
| 43 | | psrval.a |
. . . . . . . . . . . . . 14
⊢ + =
(+g‘𝑅) |
| 44 | 42, 43 | eqtr4di 2247 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (+g‘𝑟) = + ) |
| 45 | 44 | ofeqd 6137 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ∘𝑓
(+g‘𝑟) =
∘𝑓 + ) |
| 46 | 39, 39 | xpeq12d 4688 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑏 × 𝑏) = (𝐵 × 𝐵)) |
| 47 | 45, 46 | reseq12d 4947 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏)) = (
∘𝑓 + ↾ (𝐵 × 𝐵))) |
| 48 | | psrval.p |
. . . . . . . . . . 11
⊢ ✚ = (
∘𝑓 + ↾ (𝐵 × 𝐵)) |
| 49 | 47, 48 | eqtr4di 2247 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏)) = ✚ ) |
| 50 | 49 | opeq2d 3815 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 〈(+g‘ndx), (
∘𝑓 (+g‘𝑟) ↾ (𝑏 × 𝑏))〉 = 〈(+g‘ndx),
✚
〉) |
| 51 | 22 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑑 = 𝐷) |
| 52 | 51 | rabeqdv 2757 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} = {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) |
| 53 | 41 | fveq2d 5562 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (.r‘𝑟) = (.r‘𝑅)) |
| 54 | | psrval.m |
. . . . . . . . . . . . . . . . 17
⊢ · =
(.r‘𝑅) |
| 55 | 53, 54 | eqtr4di 2247 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (.r‘𝑟) = · ) |
| 56 | 55 | oveqd 5939 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥))) = ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥)))) |
| 57 | 52, 56 | mpteq12dv 4115 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))) = (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥))))) |
| 58 | 41, 57 | oveq12d 5940 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥))))) = (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥)))))) |
| 59 | 51, 58 | mpteq12dv 4115 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥))))))) |
| 60 | 39, 39, 59 | mpoeq123dv 5984 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥))))))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))) |
| 61 | | psrval.t |
. . . . . . . . . . 11
⊢ × =
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥))))))) |
| 62 | 60, 61 | eqtr4di 2247 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥))))))) = × ) |
| 63 | 62 | opeq2d 3815 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 〈(.r‘ndx),
(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉 =
〈(.r‘ndx), ×
〉) |
| 64 | 40, 50, 63 | tpeq123d 3714 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → {〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} =
{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
✚
〉, 〈(.r‘ndx), ×
〉}) |
| 65 | 41 | opeq2d 3815 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 〈(Scalar‘ndx), 𝑟〉 =
〈(Scalar‘ndx), 𝑅〉) |
| 66 | 21 | adantr 276 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (Base‘𝑟) = 𝐾) |
| 67 | 55 | ofeqd 6137 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ∘𝑓
(.r‘𝑟) =
∘𝑓 · ) |
| 68 | 51 | xpeq1d 4686 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑑 × {𝑥}) = (𝐷 × {𝑥})) |
| 69 | | eqidd 2197 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑓 = 𝑓) |
| 70 | 67, 68, 69 | oveq123d 5943 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓) = ((𝐷 × {𝑥}) ∘𝑓 · 𝑓)) |
| 71 | 66, 39, 70 | mpoeq123dv 5984 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓)) = (𝑥 ∈ 𝐾, 𝑓 ∈ 𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))) |
| 72 | | psrval.v |
. . . . . . . . . . 11
⊢ ∙ =
(𝑥 ∈ 𝐾, 𝑓 ∈ 𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓)) |
| 73 | 71, 72 | eqtr4di 2247 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓)) = ∙ ) |
| 74 | 73 | opeq2d 3815 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉 = 〈(
·𝑠 ‘ndx), ∙
〉) |
| 75 | 41 | fveq2d 5562 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (TopOpen‘𝑟) = (TopOpen‘𝑅)) |
| 76 | | psrval.o |
. . . . . . . . . . . . . . 15
⊢ 𝑂 = (TopOpen‘𝑅) |
| 77 | 75, 76 | eqtr4di 2247 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (TopOpen‘𝑟) = 𝑂) |
| 78 | 77 | sneqd 3635 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → {(TopOpen‘𝑟)} = {𝑂}) |
| 79 | 51, 78 | xpeq12d 4688 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑑 × {(TopOpen‘𝑟)}) = (𝐷 × {𝑂})) |
| 80 | 79 | fveq2d 5562 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (∏t‘(𝑑 × {(TopOpen‘𝑟)})) =
(∏t‘(𝐷 × {𝑂}))) |
| 81 | | psrval.j |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽 = (∏t‘(𝐷 × {𝑂}))) |
| 82 | 81 | ad3antrrr 492 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝐽 = (∏t‘(𝐷 × {𝑂}))) |
| 83 | 80, 82 | eqtr4d 2232 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (∏t‘(𝑑 × {(TopOpen‘𝑟)})) = 𝐽) |
| 84 | 83 | opeq2d 3815 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉 = 〈(TopSet‘ndx), 𝐽〉) |
| 85 | 65, 74, 84 | tpeq123d 3714 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → {〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉} = {〈(Scalar‘ndx),
𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉}) |
| 86 | 64, 85 | uneq12d 3318 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉}) = ({〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉})) |
| 87 | 38, 86 | csbied 3131 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → ⦋𝐵 / 𝑏⦌({〈(Base‘ndx),
𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉}) = ({〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉})) |
| 88 | 27, 87 | eqtrd 2229 |
. . . . 5
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → ⦋((Base‘𝑟) ↑𝑚
𝑑) / 𝑏⦌({〈(Base‘ndx),
𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉}) = ({〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉})) |
| 89 | 17, 88 | csbied 3131 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) → ⦋𝐷 / 𝑑⦌⦋((Base‘𝑟) ↑𝑚 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑
× {(TopOpen‘𝑟)}))〉}) = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉})) |
| 90 | 9, 89 | eqtrd 2229 |
. . 3
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) → ⦋{ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑𝑚 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑
× {(TopOpen‘𝑟)}))〉}) = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉})) |
| 91 | | psrval.i |
. . . 4
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| 92 | 91 | elexd 2776 |
. . 3
⊢ (𝜑 → 𝐼 ∈ V) |
| 93 | | psrval.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ 𝑋) |
| 94 | 93 | elexd 2776 |
. . 3
⊢ (𝜑 → 𝑅 ∈ V) |
| 95 | | basendxnn 12734 |
. . . . . 6
⊢
(Base‘ndx) ∈ ℕ |
| 96 | | funfvex 5575 |
. . . . . . . . . . . 12
⊢ ((Fun
Base ∧ 𝑅 ∈ dom
Base) → (Base‘𝑅)
∈ V) |
| 97 | 96 | funfni 5358 |
. . . . . . . . . . 11
⊢ ((Base Fn
V ∧ 𝑅 ∈ V) →
(Base‘𝑅) ∈
V) |
| 98 | 28, 94, 97 | sylancr 414 |
. . . . . . . . . 10
⊢ (𝜑 → (Base‘𝑅) ∈ V) |
| 99 | 20, 98 | eqeltrid 2283 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ V) |
| 100 | | mapvalg 6717 |
. . . . . . . . . . . . 13
⊢
((ℕ0 ∈ V ∧ 𝐼 ∈ 𝑊) → (ℕ0
↑𝑚 𝐼) = {𝑓 ∣ 𝑓:𝐼⟶ℕ0}) |
| 101 | 10, 91, 100 | sylancr 414 |
. . . . . . . . . . . 12
⊢ (𝜑 → (ℕ0
↑𝑚 𝐼) = {𝑓 ∣ 𝑓:𝐼⟶ℕ0}) |
| 102 | | mapex 6713 |
. . . . . . . . . . . . 13
⊢ ((𝐼 ∈ 𝑊 ∧ ℕ0 ∈ V) →
{𝑓 ∣ 𝑓:𝐼⟶ℕ0} ∈
V) |
| 103 | 91, 10, 102 | sylancl 413 |
. . . . . . . . . . . 12
⊢ (𝜑 → {𝑓 ∣ 𝑓:𝐼⟶ℕ0} ∈
V) |
| 104 | 101, 103 | eqeltrd 2273 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℕ0
↑𝑚 𝐼) ∈ V) |
| 105 | | rabexg 4176 |
. . . . . . . . . . 11
⊢
((ℕ0 ↑𝑚 𝐼) ∈ V → {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V) |
| 106 | 104, 105 | syl 14 |
. . . . . . . . . 10
⊢ (𝜑 → {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V) |
| 107 | 7, 106 | eqeltrid 2283 |
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ V) |
| 108 | | mapvalg 6717 |
. . . . . . . . 9
⊢ ((𝐾 ∈ V ∧ 𝐷 ∈ V) → (𝐾 ↑𝑚
𝐷) = {𝑓 ∣ 𝑓:𝐷⟶𝐾}) |
| 109 | 99, 107, 108 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → (𝐾 ↑𝑚 𝐷) = {𝑓 ∣ 𝑓:𝐷⟶𝐾}) |
| 110 | | mapex 6713 |
. . . . . . . . 9
⊢ ((𝐷 ∈ V ∧ 𝐾 ∈ V) → {𝑓 ∣ 𝑓:𝐷⟶𝐾} ∈ V) |
| 111 | 107, 99, 110 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → {𝑓 ∣ 𝑓:𝐷⟶𝐾} ∈ V) |
| 112 | 109, 111 | eqeltrd 2273 |
. . . . . . 7
⊢ (𝜑 → (𝐾 ↑𝑚 𝐷) ∈ V) |
| 113 | 24, 112 | eqeltrd 2273 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ V) |
| 114 | | opexg 4261 |
. . . . . 6
⊢
(((Base‘ndx) ∈ ℕ ∧ 𝐵 ∈ V) → 〈(Base‘ndx),
𝐵〉 ∈
V) |
| 115 | 95, 113, 114 | sylancr 414 |
. . . . 5
⊢ (𝜑 → 〈(Base‘ndx),
𝐵〉 ∈
V) |
| 116 | | plusgndxnn 12789 |
. . . . . 6
⊢
(+g‘ndx) ∈ ℕ |
| 117 | 113, 113 | ofmresex 6194 |
. . . . . . 7
⊢ (𝜑 → (
∘𝑓 + ↾ (𝐵 × 𝐵)) ∈ V) |
| 118 | 48, 117 | eqeltrid 2283 |
. . . . . 6
⊢ (𝜑 → ✚ ∈
V) |
| 119 | | opexg 4261 |
. . . . . 6
⊢
(((+g‘ndx) ∈ ℕ ∧ ✚ ∈ V) →
〈(+g‘ndx), ✚ 〉 ∈
V) |
| 120 | 116, 118,
119 | sylancr 414 |
. . . . 5
⊢ (𝜑 →
〈(+g‘ndx), ✚ 〉 ∈
V) |
| 121 | | mulrslid 12809 |
. . . . . . 7
⊢
(.r = Slot (.r‘ndx) ∧
(.r‘ndx) ∈ ℕ) |
| 122 | 121 | simpri 113 |
. . . . . 6
⊢
(.r‘ndx) ∈ ℕ |
| 123 | 61 | mpoexg 6269 |
. . . . . . 7
⊢ ((𝐵 ∈ V ∧ 𝐵 ∈ V) → × ∈
V) |
| 124 | 113, 113,
123 | syl2anc 411 |
. . . . . 6
⊢ (𝜑 → × ∈
V) |
| 125 | | opexg 4261 |
. . . . . 6
⊢
(((.r‘ndx) ∈ ℕ ∧ × ∈ V) →
〈(.r‘ndx), × 〉 ∈
V) |
| 126 | 122, 124,
125 | sylancr 414 |
. . . . 5
⊢ (𝜑 →
〈(.r‘ndx), × 〉 ∈
V) |
| 127 | | tpexg 4479 |
. . . . 5
⊢
((〈(Base‘ndx), 𝐵〉 ∈ V ∧
〈(+g‘ndx), ✚ 〉 ∈ V
∧ 〈(.r‘ndx), × 〉 ∈ V)
→ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
✚
〉, 〈(.r‘ndx), × 〉} ∈
V) |
| 128 | 115, 120,
126, 127 | syl3anc 1249 |
. . . 4
⊢ (𝜑 → {〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), × 〉} ∈
V) |
| 129 | | scaslid 12830 |
. . . . . . 7
⊢ (Scalar =
Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈
ℕ) |
| 130 | 129 | simpri 113 |
. . . . . 6
⊢
(Scalar‘ndx) ∈ ℕ |
| 131 | | opexg 4261 |
. . . . . 6
⊢
(((Scalar‘ndx) ∈ ℕ ∧ 𝑅 ∈ 𝑋) → 〈(Scalar‘ndx), 𝑅〉 ∈
V) |
| 132 | 130, 93, 131 | sylancr 414 |
. . . . 5
⊢ (𝜑 → 〈(Scalar‘ndx),
𝑅〉 ∈
V) |
| 133 | | vscaslid 12840 |
. . . . . . 7
⊢ (
·𝑠 = Slot (
·𝑠 ‘ndx) ∧ (
·𝑠 ‘ndx) ∈
ℕ) |
| 134 | 133 | simpri 113 |
. . . . . 6
⊢ (
·𝑠 ‘ndx) ∈ ℕ |
| 135 | 72 | mpoexg 6269 |
. . . . . . 7
⊢ ((𝐾 ∈ V ∧ 𝐵 ∈ V) → ∙ ∈
V) |
| 136 | 99, 113, 135 | syl2anc 411 |
. . . . . 6
⊢ (𝜑 → ∙ ∈
V) |
| 137 | | opexg 4261 |
. . . . . 6
⊢ (((
·𝑠 ‘ndx) ∈ ℕ ∧ ∙ ∈
V) → 〈( ·𝑠 ‘ndx), ∙ 〉
∈ V) |
| 138 | 134, 136,
137 | sylancr 414 |
. . . . 5
⊢ (𝜑 → 〈(
·𝑠 ‘ndx), ∙ 〉 ∈
V) |
| 139 | | tsetndxnn 12866 |
. . . . . 6
⊢
(TopSet‘ndx) ∈ ℕ |
| 140 | | topnfn 12915 |
. . . . . . . . . . . 12
⊢ TopOpen
Fn V |
| 141 | | funfvex 5575 |
. . . . . . . . . . . . 13
⊢ ((Fun
TopOpen ∧ 𝑅 ∈ dom
TopOpen) → (TopOpen‘𝑅) ∈ V) |
| 142 | 141 | funfni 5358 |
. . . . . . . . . . . 12
⊢ ((TopOpen
Fn V ∧ 𝑅 ∈ V)
→ (TopOpen‘𝑅)
∈ V) |
| 143 | 140, 94, 142 | sylancr 414 |
. . . . . . . . . . 11
⊢ (𝜑 → (TopOpen‘𝑅) ∈ V) |
| 144 | 76, 143 | eqeltrid 2283 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑂 ∈ V) |
| 145 | | snexg 4217 |
. . . . . . . . . 10
⊢ (𝑂 ∈ V → {𝑂} ∈ V) |
| 146 | 144, 145 | syl 14 |
. . . . . . . . 9
⊢ (𝜑 → {𝑂} ∈ V) |
| 147 | | xpexg 4777 |
. . . . . . . . 9
⊢ ((𝐷 ∈ V ∧ {𝑂} ∈ V) → (𝐷 × {𝑂}) ∈ V) |
| 148 | 107, 146,
147 | syl2anc 411 |
. . . . . . . 8
⊢ (𝜑 → (𝐷 × {𝑂}) ∈ V) |
| 149 | | ptex 12935 |
. . . . . . . 8
⊢ ((𝐷 × {𝑂}) ∈ V →
(∏t‘(𝐷 × {𝑂})) ∈ V) |
| 150 | 148, 149 | syl 14 |
. . . . . . 7
⊢ (𝜑 →
(∏t‘(𝐷 × {𝑂})) ∈ V) |
| 151 | 81, 150 | eqeltrd 2273 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ V) |
| 152 | | opexg 4261 |
. . . . . 6
⊢
(((TopSet‘ndx) ∈ ℕ ∧ 𝐽 ∈ V) → 〈(TopSet‘ndx),
𝐽〉 ∈
V) |
| 153 | 139, 151,
152 | sylancr 414 |
. . . . 5
⊢ (𝜑 → 〈(TopSet‘ndx),
𝐽〉 ∈
V) |
| 154 | | tpexg 4479 |
. . . . 5
⊢
((〈(Scalar‘ndx), 𝑅〉 ∈ V ∧ 〈(
·𝑠 ‘ndx), ∙ 〉 ∈ V
∧ 〈(TopSet‘ndx), 𝐽〉 ∈ V) →
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉} ∈ V) |
| 155 | 132, 138,
153, 154 | syl3anc 1249 |
. . . 4
⊢ (𝜑 → {〈(Scalar‘ndx),
𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉} ∈ V) |
| 156 | | unexg 4478 |
. . . 4
⊢
(({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
✚
〉, 〈(.r‘ndx), × 〉} ∈ V
∧ {〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉} ∈ V) →
({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
✚
〉, 〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉}) ∈ V) |
| 157 | 128, 155,
156 | syl2anc 411 |
. . 3
⊢ (𝜑 → ({〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉}) ∈ V) |
| 158 | 3, 90, 92, 94, 157 | ovmpod 6050 |
. 2
⊢ (𝜑 → (𝐼 mPwSer 𝑅) = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉})) |
| 159 | 1, 158 | eqtrid 2241 |
1
⊢ (𝜑 → 𝑆 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉})) |