| Step | Hyp | Ref
 | Expression | 
| 1 |   | psrval.s | 
. 2
⊢ 𝑆 = (𝐼 mPwSer 𝑅) | 
| 2 |   | df-psr 14218 | 
. . . 4
⊢  mPwSer =
(𝑖 ∈ V, 𝑟 ∈ V ↦
⦋{ℎ ∈
(ℕ0 ↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑𝑚 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑
× {(TopOpen‘𝑟)}))〉})) | 
| 3 | 2 | a1i 9 | 
. . 3
⊢ (𝜑 → mPwSer = (𝑖 ∈ V, 𝑟 ∈ V ↦ ⦋{ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑𝑚 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑
× {(TopOpen‘𝑟)}))〉}))) | 
| 4 |   | simprl 529 | 
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) → 𝑖 = 𝐼) | 
| 5 | 4 | oveq2d 5938 | 
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) → (ℕ0
↑𝑚 𝑖) = (ℕ0
↑𝑚 𝐼)) | 
| 6 | 5 | rabeqdv 2757 | 
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) → {ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈
Fin}) | 
| 7 |   | psrval.d | 
. . . . . 6
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | 
| 8 | 6, 7 | eqtr4di 2247 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) → {ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} = 𝐷) | 
| 9 | 8 | csbeq1d 3091 | 
. . . 4
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) → ⦋{ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑𝑚 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑
× {(TopOpen‘𝑟)}))〉}) = ⦋𝐷 / 𝑑⦌⦋((Base‘𝑟) ↑𝑚 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑
× {(TopOpen‘𝑟)}))〉})) | 
| 10 |   | nn0ex 9255 | 
. . . . . . . . 9
⊢
ℕ0 ∈ V | 
| 11 |   | vex 2766 | 
. . . . . . . . 9
⊢ 𝑖 ∈ V | 
| 12 | 10, 11 | mapval 6719 | 
. . . . . . . 8
⊢
(ℕ0 ↑𝑚 𝑖) = {𝑓 ∣ 𝑓:𝑖⟶ℕ0} | 
| 13 |   | mapex 6713 | 
. . . . . . . . 9
⊢ ((𝑖 ∈ V ∧
ℕ0 ∈ V) → {𝑓 ∣ 𝑓:𝑖⟶ℕ0} ∈
V) | 
| 14 | 11, 10, 13 | mp2an 426 | 
. . . . . . . 8
⊢ {𝑓 ∣ 𝑓:𝑖⟶ℕ0} ∈
V | 
| 15 | 12, 14 | eqeltri 2269 | 
. . . . . . 7
⊢
(ℕ0 ↑𝑚 𝑖) ∈ V | 
| 16 | 15 | rabex 4177 | 
. . . . . 6
⊢ {ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V | 
| 17 | 8, 16 | eqeltrrdi 2288 | 
. . . . 5
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) → 𝐷 ∈ V) | 
| 18 |   | simplrr 536 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → 𝑟 = 𝑅) | 
| 19 | 18 | fveq2d 5562 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → (Base‘𝑟) = (Base‘𝑅)) | 
| 20 |   | psrval.k | 
. . . . . . . . . 10
⊢ 𝐾 = (Base‘𝑅) | 
| 21 | 19, 20 | eqtr4di 2247 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → (Base‘𝑟) = 𝐾) | 
| 22 |   | simpr 110 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → 𝑑 = 𝐷) | 
| 23 | 21, 22 | oveq12d 5940 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → ((Base‘𝑟) ↑𝑚 𝑑) = (𝐾 ↑𝑚 𝐷)) | 
| 24 |   | psrval.b | 
. . . . . . . . 9
⊢ (𝜑 → 𝐵 = (𝐾 ↑𝑚 𝐷)) | 
| 25 | 24 | ad2antrr 488 | 
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → 𝐵 = (𝐾 ↑𝑚 𝐷)) | 
| 26 | 23, 25 | eqtr4d 2232 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → ((Base‘𝑟) ↑𝑚 𝑑) = 𝐵) | 
| 27 | 26 | csbeq1d 3091 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → ⦋((Base‘𝑟) ↑𝑚
𝑑) / 𝑏⦌({〈(Base‘ndx),
𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉}) = ⦋𝐵 / 𝑏⦌({〈(Base‘ndx),
𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉})) | 
| 28 |   | basfn 12736 | 
. . . . . . . . . . 11
⊢ Base Fn
V | 
| 29 |   | vex 2766 | 
. . . . . . . . . . 11
⊢ 𝑟 ∈ V | 
| 30 |   | funfvex 5575 | 
. . . . . . . . . . . 12
⊢ ((Fun
Base ∧ 𝑟 ∈ dom
Base) → (Base‘𝑟)
∈ V) | 
| 31 | 30 | funfni 5358 | 
. . . . . . . . . . 11
⊢ ((Base Fn
V ∧ 𝑟 ∈ V) →
(Base‘𝑟) ∈
V) | 
| 32 | 28, 29, 31 | mp2an 426 | 
. . . . . . . . . 10
⊢
(Base‘𝑟)
∈ V | 
| 33 |   | vex 2766 | 
. . . . . . . . . 10
⊢ 𝑑 ∈ V | 
| 34 | 32, 33 | mapval 6719 | 
. . . . . . . . 9
⊢
((Base‘𝑟)
↑𝑚 𝑑) = {𝑓 ∣ 𝑓:𝑑⟶(Base‘𝑟)} | 
| 35 |   | mapex 6713 | 
. . . . . . . . . 10
⊢ ((𝑑 ∈ V ∧
(Base‘𝑟) ∈ V)
→ {𝑓 ∣ 𝑓:𝑑⟶(Base‘𝑟)} ∈ V) | 
| 36 | 33, 32, 35 | mp2an 426 | 
. . . . . . . . 9
⊢ {𝑓 ∣ 𝑓:𝑑⟶(Base‘𝑟)} ∈ V | 
| 37 | 34, 36 | eqeltri 2269 | 
. . . . . . . 8
⊢
((Base‘𝑟)
↑𝑚 𝑑) ∈ V | 
| 38 | 26, 37 | eqeltrrdi 2288 | 
. . . . . . 7
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → 𝐵 ∈ V) | 
| 39 |   | simpr 110 | 
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑏 = 𝐵) | 
| 40 | 39 | opeq2d 3815 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 〈(Base‘ndx), 𝑏〉 = 〈(Base‘ndx),
𝐵〉) | 
| 41 | 18 | adantr 276 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑟 = 𝑅) | 
| 42 | 41 | fveq2d 5562 | 
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (+g‘𝑟) = (+g‘𝑅)) | 
| 43 |   | psrval.a | 
. . . . . . . . . . . . . 14
⊢  + =
(+g‘𝑅) | 
| 44 | 42, 43 | eqtr4di 2247 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (+g‘𝑟) = + ) | 
| 45 | 44 | ofeqd 6137 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ∘𝑓
(+g‘𝑟) =
∘𝑓 + ) | 
| 46 | 39, 39 | xpeq12d 4688 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑏 × 𝑏) = (𝐵 × 𝐵)) | 
| 47 | 45, 46 | reseq12d 4947 | 
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏)) = (
∘𝑓 + ↾ (𝐵 × 𝐵))) | 
| 48 |   | psrval.p | 
. . . . . . . . . . 11
⊢  ✚ = (
∘𝑓 + ↾ (𝐵 × 𝐵)) | 
| 49 | 47, 48 | eqtr4di 2247 | 
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏)) = ✚ ) | 
| 50 | 49 | opeq2d 3815 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 〈(+g‘ndx), (
∘𝑓 (+g‘𝑟) ↾ (𝑏 × 𝑏))〉 = 〈(+g‘ndx),
✚
〉) | 
| 51 | 22 | adantr 276 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑑 = 𝐷) | 
| 52 | 51 | rabeqdv 2757 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} = {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘}) | 
| 53 | 41 | fveq2d 5562 | 
. . . . . . . . . . . . . . . . 17
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (.r‘𝑟) = (.r‘𝑅)) | 
| 54 |   | psrval.m | 
. . . . . . . . . . . . . . . . 17
⊢  · =
(.r‘𝑅) | 
| 55 | 53, 54 | eqtr4di 2247 | 
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (.r‘𝑟) = · ) | 
| 56 | 55 | oveqd 5939 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥))) = ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥)))) | 
| 57 | 52, 56 | mpteq12dv 4115 | 
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))) = (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥))))) | 
| 58 | 41, 57 | oveq12d 5940 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥))))) = (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥)))))) | 
| 59 | 51, 58 | mpteq12dv 4115 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))) = (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥))))))) | 
| 60 | 39, 39, 59 | mpoeq123dv 5984 | 
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥))))))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))) | 
| 61 |   | psrval.t | 
. . . . . . . . . . 11
⊢  × =
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑘 ∈ 𝐷 ↦ (𝑅 Σg (𝑥 ∈ {𝑦 ∈ 𝐷 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥) · (𝑔‘(𝑘 ∘𝑓 − 𝑥))))))) | 
| 62 | 60, 61 | eqtr4di 2247 | 
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥))))))) = × ) | 
| 63 | 62 | opeq2d 3815 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 〈(.r‘ndx),
(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉 =
〈(.r‘ndx), ×
〉) | 
| 64 | 40, 50, 63 | tpeq123d 3714 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → {〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} =
{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
✚
〉, 〈(.r‘ndx), ×
〉}) | 
| 65 | 41 | opeq2d 3815 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 〈(Scalar‘ndx), 𝑟〉 =
〈(Scalar‘ndx), 𝑅〉) | 
| 66 | 21 | adantr 276 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (Base‘𝑟) = 𝐾) | 
| 67 | 55 | ofeqd 6137 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ∘𝑓
(.r‘𝑟) =
∘𝑓 · ) | 
| 68 | 51 | xpeq1d 4686 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑑 × {𝑥}) = (𝐷 × {𝑥})) | 
| 69 |   | eqidd 2197 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝑓 = 𝑓) | 
| 70 | 67, 68, 69 | oveq123d 5943 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓) = ((𝐷 × {𝑥}) ∘𝑓 · 𝑓)) | 
| 71 | 66, 39, 70 | mpoeq123dv 5984 | 
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓)) = (𝑥 ∈ 𝐾, 𝑓 ∈ 𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓))) | 
| 72 |   | psrval.v | 
. . . . . . . . . . 11
⊢  ∙ =
(𝑥 ∈ 𝐾, 𝑓 ∈ 𝐵 ↦ ((𝐷 × {𝑥}) ∘𝑓 · 𝑓)) | 
| 73 | 71, 72 | eqtr4di 2247 | 
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓)) = ∙ ) | 
| 74 | 73 | opeq2d 3815 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉 = 〈(
·𝑠 ‘ndx), ∙
〉) | 
| 75 | 41 | fveq2d 5562 | 
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (TopOpen‘𝑟) = (TopOpen‘𝑅)) | 
| 76 |   | psrval.o | 
. . . . . . . . . . . . . . 15
⊢ 𝑂 = (TopOpen‘𝑅) | 
| 77 | 75, 76 | eqtr4di 2247 | 
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (TopOpen‘𝑟) = 𝑂) | 
| 78 | 77 | sneqd 3635 | 
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → {(TopOpen‘𝑟)} = {𝑂}) | 
| 79 | 51, 78 | xpeq12d 4688 | 
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (𝑑 × {(TopOpen‘𝑟)}) = (𝐷 × {𝑂})) | 
| 80 | 79 | fveq2d 5562 | 
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (∏t‘(𝑑 × {(TopOpen‘𝑟)})) =
(∏t‘(𝐷 × {𝑂}))) | 
| 81 |   | psrval.j | 
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽 = (∏t‘(𝐷 × {𝑂}))) | 
| 82 | 81 | ad3antrrr 492 | 
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 𝐽 = (∏t‘(𝐷 × {𝑂}))) | 
| 83 | 80, 82 | eqtr4d 2232 | 
. . . . . . . . . 10
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → (∏t‘(𝑑 × {(TopOpen‘𝑟)})) = 𝐽) | 
| 84 | 83 | opeq2d 3815 | 
. . . . . . . . 9
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉 = 〈(TopSet‘ndx), 𝐽〉) | 
| 85 | 65, 74, 84 | tpeq123d 3714 | 
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → {〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉} = {〈(Scalar‘ndx),
𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉}) | 
| 86 | 64, 85 | uneq12d 3318 | 
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) ∧ 𝑏 = 𝐵) → ({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉}) = ({〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉})) | 
| 87 | 38, 86 | csbied 3131 | 
. . . . . 6
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → ⦋𝐵 / 𝑏⦌({〈(Base‘ndx),
𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉}) = ({〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉})) | 
| 88 | 27, 87 | eqtrd 2229 | 
. . . . 5
⊢ (((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) ∧ 𝑑 = 𝐷) → ⦋((Base‘𝑟) ↑𝑚
𝑑) / 𝑏⦌({〈(Base‘ndx),
𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑 × {(TopOpen‘𝑟)}))〉}) = ({〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉})) | 
| 89 | 17, 88 | csbied 3131 | 
. . . 4
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) → ⦋𝐷 / 𝑑⦌⦋((Base‘𝑟) ↑𝑚 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑
× {(TopOpen‘𝑟)}))〉}) = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉})) | 
| 90 | 9, 89 | eqtrd 2229 | 
. . 3
⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑟 = 𝑅)) → ⦋{ℎ ∈ (ℕ0
↑𝑚 𝑖) ∣ (◡ℎ “ ℕ) ∈ Fin} / 𝑑⦌⦋((Base‘𝑟) ↑𝑚 𝑑) / 𝑏⦌({〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), ( ∘𝑓
(+g‘𝑟)
↾ (𝑏 × 𝑏))〉,
〈(.r‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑘 ∈ 𝑑 ↦ (𝑟 Σg (𝑥 ∈ {𝑦 ∈ 𝑑 ∣ 𝑦 ∘𝑟 ≤ 𝑘} ↦ ((𝑓‘𝑥)(.r‘𝑟)(𝑔‘(𝑘 ∘𝑓 − 𝑥)))))))〉} ∪
{〈(Scalar‘ndx), 𝑟〉, 〈(
·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑟), 𝑓 ∈ 𝑏 ↦ ((𝑑 × {𝑥}) ∘𝑓
(.r‘𝑟)𝑓))〉, 〈(TopSet‘ndx),
(∏t‘(𝑑
× {(TopOpen‘𝑟)}))〉}) = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉})) | 
| 91 |   | psrval.i | 
. . . 4
⊢ (𝜑 → 𝐼 ∈ 𝑊) | 
| 92 | 91 | elexd 2776 | 
. . 3
⊢ (𝜑 → 𝐼 ∈ V) | 
| 93 |   | psrval.r | 
. . . 4
⊢ (𝜑 → 𝑅 ∈ 𝑋) | 
| 94 | 93 | elexd 2776 | 
. . 3
⊢ (𝜑 → 𝑅 ∈ V) | 
| 95 |   | basendxnn 12734 | 
. . . . . 6
⊢
(Base‘ndx) ∈ ℕ | 
| 96 |   | funfvex 5575 | 
. . . . . . . . . . . 12
⊢ ((Fun
Base ∧ 𝑅 ∈ dom
Base) → (Base‘𝑅)
∈ V) | 
| 97 | 96 | funfni 5358 | 
. . . . . . . . . . 11
⊢ ((Base Fn
V ∧ 𝑅 ∈ V) →
(Base‘𝑅) ∈
V) | 
| 98 | 28, 94, 97 | sylancr 414 | 
. . . . . . . . . 10
⊢ (𝜑 → (Base‘𝑅) ∈ V) | 
| 99 | 20, 98 | eqeltrid 2283 | 
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ∈ V) | 
| 100 |   | mapvalg 6717 | 
. . . . . . . . . . . . 13
⊢
((ℕ0 ∈ V ∧ 𝐼 ∈ 𝑊) → (ℕ0
↑𝑚 𝐼) = {𝑓 ∣ 𝑓:𝐼⟶ℕ0}) | 
| 101 | 10, 91, 100 | sylancr 414 | 
. . . . . . . . . . . 12
⊢ (𝜑 → (ℕ0
↑𝑚 𝐼) = {𝑓 ∣ 𝑓:𝐼⟶ℕ0}) | 
| 102 |   | mapex 6713 | 
. . . . . . . . . . . . 13
⊢ ((𝐼 ∈ 𝑊 ∧ ℕ0 ∈ V) →
{𝑓 ∣ 𝑓:𝐼⟶ℕ0} ∈
V) | 
| 103 | 91, 10, 102 | sylancl 413 | 
. . . . . . . . . . . 12
⊢ (𝜑 → {𝑓 ∣ 𝑓:𝐼⟶ℕ0} ∈
V) | 
| 104 | 101, 103 | eqeltrd 2273 | 
. . . . . . . . . . 11
⊢ (𝜑 → (ℕ0
↑𝑚 𝐼) ∈ V) | 
| 105 |   | rabexg 4176 | 
. . . . . . . . . . 11
⊢
((ℕ0 ↑𝑚 𝐼) ∈ V → {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V) | 
| 106 | 104, 105 | syl 14 | 
. . . . . . . . . 10
⊢ (𝜑 → {ℎ ∈ (ℕ0
↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ∈
V) | 
| 107 | 7, 106 | eqeltrid 2283 | 
. . . . . . . . 9
⊢ (𝜑 → 𝐷 ∈ V) | 
| 108 |   | mapvalg 6717 | 
. . . . . . . . 9
⊢ ((𝐾 ∈ V ∧ 𝐷 ∈ V) → (𝐾 ↑𝑚
𝐷) = {𝑓 ∣ 𝑓:𝐷⟶𝐾}) | 
| 109 | 99, 107, 108 | syl2anc 411 | 
. . . . . . . 8
⊢ (𝜑 → (𝐾 ↑𝑚 𝐷) = {𝑓 ∣ 𝑓:𝐷⟶𝐾}) | 
| 110 |   | mapex 6713 | 
. . . . . . . . 9
⊢ ((𝐷 ∈ V ∧ 𝐾 ∈ V) → {𝑓 ∣ 𝑓:𝐷⟶𝐾} ∈ V) | 
| 111 | 107, 99, 110 | syl2anc 411 | 
. . . . . . . 8
⊢ (𝜑 → {𝑓 ∣ 𝑓:𝐷⟶𝐾} ∈ V) | 
| 112 | 109, 111 | eqeltrd 2273 | 
. . . . . . 7
⊢ (𝜑 → (𝐾 ↑𝑚 𝐷) ∈ V) | 
| 113 | 24, 112 | eqeltrd 2273 | 
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ V) | 
| 114 |   | opexg 4261 | 
. . . . . 6
⊢
(((Base‘ndx) ∈ ℕ ∧ 𝐵 ∈ V) → 〈(Base‘ndx),
𝐵〉 ∈
V) | 
| 115 | 95, 113, 114 | sylancr 414 | 
. . . . 5
⊢ (𝜑 → 〈(Base‘ndx),
𝐵〉 ∈
V) | 
| 116 |   | plusgndxnn 12789 | 
. . . . . 6
⊢
(+g‘ndx) ∈ ℕ | 
| 117 | 113, 113 | ofmresex 6194 | 
. . . . . . 7
⊢ (𝜑 → (
∘𝑓 + ↾ (𝐵 × 𝐵)) ∈ V) | 
| 118 | 48, 117 | eqeltrid 2283 | 
. . . . . 6
⊢ (𝜑 → ✚ ∈
V) | 
| 119 |   | opexg 4261 | 
. . . . . 6
⊢
(((+g‘ndx) ∈ ℕ ∧ ✚ ∈ V) →
〈(+g‘ndx), ✚ 〉 ∈
V) | 
| 120 | 116, 118,
119 | sylancr 414 | 
. . . . 5
⊢ (𝜑 →
〈(+g‘ndx), ✚ 〉 ∈
V) | 
| 121 |   | mulrslid 12809 | 
. . . . . . 7
⊢
(.r = Slot (.r‘ndx) ∧
(.r‘ndx) ∈ ℕ) | 
| 122 | 121 | simpri 113 | 
. . . . . 6
⊢
(.r‘ndx) ∈ ℕ | 
| 123 | 61 | mpoexg 6269 | 
. . . . . . 7
⊢ ((𝐵 ∈ V ∧ 𝐵 ∈ V) → × ∈
V) | 
| 124 | 113, 113,
123 | syl2anc 411 | 
. . . . . 6
⊢ (𝜑 → × ∈
V) | 
| 125 |   | opexg 4261 | 
. . . . . 6
⊢
(((.r‘ndx) ∈ ℕ ∧ × ∈ V) →
〈(.r‘ndx), × 〉 ∈
V) | 
| 126 | 122, 124,
125 | sylancr 414 | 
. . . . 5
⊢ (𝜑 →
〈(.r‘ndx), × 〉 ∈
V) | 
| 127 |   | tpexg 4479 | 
. . . . 5
⊢
((〈(Base‘ndx), 𝐵〉 ∈ V ∧
〈(+g‘ndx), ✚ 〉 ∈ V
∧ 〈(.r‘ndx), × 〉 ∈ V)
→ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
✚
〉, 〈(.r‘ndx), × 〉} ∈
V) | 
| 128 | 115, 120,
126, 127 | syl3anc 1249 | 
. . . 4
⊢ (𝜑 → {〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), × 〉} ∈
V) | 
| 129 |   | scaslid 12830 | 
. . . . . . 7
⊢ (Scalar =
Slot (Scalar‘ndx) ∧ (Scalar‘ndx) ∈
ℕ) | 
| 130 | 129 | simpri 113 | 
. . . . . 6
⊢
(Scalar‘ndx) ∈ ℕ | 
| 131 |   | opexg 4261 | 
. . . . . 6
⊢
(((Scalar‘ndx) ∈ ℕ ∧ 𝑅 ∈ 𝑋) → 〈(Scalar‘ndx), 𝑅〉 ∈
V) | 
| 132 | 130, 93, 131 | sylancr 414 | 
. . . . 5
⊢ (𝜑 → 〈(Scalar‘ndx),
𝑅〉 ∈
V) | 
| 133 |   | vscaslid 12840 | 
. . . . . . 7
⊢ (
·𝑠 = Slot (
·𝑠 ‘ndx) ∧ (
·𝑠 ‘ndx) ∈
ℕ) | 
| 134 | 133 | simpri 113 | 
. . . . . 6
⊢ (
·𝑠 ‘ndx) ∈ ℕ | 
| 135 | 72 | mpoexg 6269 | 
. . . . . . 7
⊢ ((𝐾 ∈ V ∧ 𝐵 ∈ V) → ∙ ∈
V) | 
| 136 | 99, 113, 135 | syl2anc 411 | 
. . . . . 6
⊢ (𝜑 → ∙ ∈
V) | 
| 137 |   | opexg 4261 | 
. . . . . 6
⊢ (((
·𝑠 ‘ndx) ∈ ℕ ∧ ∙ ∈
V) → 〈( ·𝑠 ‘ndx), ∙ 〉
∈ V) | 
| 138 | 134, 136,
137 | sylancr 414 | 
. . . . 5
⊢ (𝜑 → 〈(
·𝑠 ‘ndx), ∙ 〉 ∈
V) | 
| 139 |   | tsetndxnn 12866 | 
. . . . . 6
⊢
(TopSet‘ndx) ∈ ℕ | 
| 140 |   | topnfn 12915 | 
. . . . . . . . . . . 12
⊢ TopOpen
Fn V | 
| 141 |   | funfvex 5575 | 
. . . . . . . . . . . . 13
⊢ ((Fun
TopOpen ∧ 𝑅 ∈ dom
TopOpen) → (TopOpen‘𝑅) ∈ V) | 
| 142 | 141 | funfni 5358 | 
. . . . . . . . . . . 12
⊢ ((TopOpen
Fn V ∧ 𝑅 ∈ V)
→ (TopOpen‘𝑅)
∈ V) | 
| 143 | 140, 94, 142 | sylancr 414 | 
. . . . . . . . . . 11
⊢ (𝜑 → (TopOpen‘𝑅) ∈ V) | 
| 144 | 76, 143 | eqeltrid 2283 | 
. . . . . . . . . 10
⊢ (𝜑 → 𝑂 ∈ V) | 
| 145 |   | snexg 4217 | 
. . . . . . . . . 10
⊢ (𝑂 ∈ V → {𝑂} ∈ V) | 
| 146 | 144, 145 | syl 14 | 
. . . . . . . . 9
⊢ (𝜑 → {𝑂} ∈ V) | 
| 147 |   | xpexg 4777 | 
. . . . . . . . 9
⊢ ((𝐷 ∈ V ∧ {𝑂} ∈ V) → (𝐷 × {𝑂}) ∈ V) | 
| 148 | 107, 146,
147 | syl2anc 411 | 
. . . . . . . 8
⊢ (𝜑 → (𝐷 × {𝑂}) ∈ V) | 
| 149 |   | ptex 12935 | 
. . . . . . . 8
⊢ ((𝐷 × {𝑂}) ∈ V →
(∏t‘(𝐷 × {𝑂})) ∈ V) | 
| 150 | 148, 149 | syl 14 | 
. . . . . . 7
⊢ (𝜑 →
(∏t‘(𝐷 × {𝑂})) ∈ V) | 
| 151 | 81, 150 | eqeltrd 2273 | 
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ V) | 
| 152 |   | opexg 4261 | 
. . . . . 6
⊢
(((TopSet‘ndx) ∈ ℕ ∧ 𝐽 ∈ V) → 〈(TopSet‘ndx),
𝐽〉 ∈
V) | 
| 153 | 139, 151,
152 | sylancr 414 | 
. . . . 5
⊢ (𝜑 → 〈(TopSet‘ndx),
𝐽〉 ∈
V) | 
| 154 |   | tpexg 4479 | 
. . . . 5
⊢
((〈(Scalar‘ndx), 𝑅〉 ∈ V ∧ 〈(
·𝑠 ‘ndx), ∙ 〉 ∈ V
∧ 〈(TopSet‘ndx), 𝐽〉 ∈ V) →
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉} ∈ V) | 
| 155 | 132, 138,
153, 154 | syl3anc 1249 | 
. . . 4
⊢ (𝜑 → {〈(Scalar‘ndx),
𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉} ∈ V) | 
| 156 |   | unexg 4478 | 
. . . 4
⊢
(({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
✚
〉, 〈(.r‘ndx), × 〉} ∈ V
∧ {〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉} ∈ V) →
({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
✚
〉, 〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉}) ∈ V) | 
| 157 | 128, 155,
156 | syl2anc 411 | 
. . 3
⊢ (𝜑 → ({〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉}) ∈ V) | 
| 158 | 3, 90, 92, 94, 157 | ovmpod 6050 | 
. 2
⊢ (𝜑 → (𝐼 mPwSer 𝑅) = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉})) | 
| 159 | 1, 158 | eqtrid 2241 | 
1
⊢ (𝜑 → 𝑆 = ({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), ✚ 〉,
〈(.r‘ndx), × 〉} ∪
{〈(Scalar‘ndx), 𝑅〉, 〈(
·𝑠 ‘ndx), ∙ 〉,
〈(TopSet‘ndx), 𝐽〉})) |