| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > phpelm | GIF version | ||
| Description: Pigeonhole Principle. A natural number is not equinumerous to an element of itself. (Contributed by Jim Kingdon, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| phpelm | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → ¬ 𝐴 ≈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → 𝐴 ∈ ω) | |
| 2 | nnon 4646 | . . . 4 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
| 3 | onelss 4422 | . . . 4 ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | |
| 4 | 2, 3 | syl 14 | . . 3 ⊢ (𝐴 ∈ ω → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| 5 | 4 | imp 124 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
| 6 | simpr 110 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) | |
| 7 | elirr 4577 | . . . . 5 ⊢ ¬ 𝐵 ∈ 𝐵 | |
| 8 | 7 | a1i 9 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵 ∈ 𝐵) |
| 9 | 6, 8 | eldifd 3167 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ (𝐴 ∖ 𝐵)) |
| 10 | eleq1 2259 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ 𝐵 ∈ (𝐴 ∖ 𝐵))) | |
| 11 | 10 | spcegv 2852 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (𝐵 ∈ (𝐴 ∖ 𝐵) → ∃𝑥 𝑥 ∈ (𝐴 ∖ 𝐵))) |
| 12 | 6, 9, 11 | sylc 62 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → ∃𝑥 𝑥 ∈ (𝐴 ∖ 𝐵)) |
| 13 | phpm 6926 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊆ 𝐴 ∧ ∃𝑥 𝑥 ∈ (𝐴 ∖ 𝐵)) → ¬ 𝐴 ≈ 𝐵) | |
| 14 | 1, 5, 12, 13 | syl3anc 1249 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → ¬ 𝐴 ≈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∃wex 1506 ∈ wcel 2167 ∖ cdif 3154 ⊆ wss 3157 class class class wbr 4033 Oncon0 4398 ωcom 4626 ≈ cen 6797 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-er 6592 df-en 6800 df-dom 6801 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |