| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > phpelm | GIF version | ||
| Description: Pigeonhole Principle. A natural number is not equinumerous to an element of itself. (Contributed by Jim Kingdon, 6-Sep-2021.) |
| Ref | Expression |
|---|---|
| phpelm | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → ¬ 𝐴 ≈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → 𝐴 ∈ ω) | |
| 2 | nnon 4658 | . . . 4 ⊢ (𝐴 ∈ ω → 𝐴 ∈ On) | |
| 3 | onelss 4434 | . . . 4 ⊢ (𝐴 ∈ On → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | |
| 4 | 2, 3 | syl 14 | . . 3 ⊢ (𝐴 ∈ ω → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) |
| 5 | 4 | imp 124 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
| 6 | simpr 110 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ 𝐴) | |
| 7 | elirr 4589 | . . . . 5 ⊢ ¬ 𝐵 ∈ 𝐵 | |
| 8 | 7 | a1i 9 | . . . 4 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → ¬ 𝐵 ∈ 𝐵) |
| 9 | 6, 8 | eldifd 3176 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ (𝐴 ∖ 𝐵)) |
| 10 | eleq1 2268 | . . . 4 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ 𝐵 ∈ (𝐴 ∖ 𝐵))) | |
| 11 | 10 | spcegv 2861 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (𝐵 ∈ (𝐴 ∖ 𝐵) → ∃𝑥 𝑥 ∈ (𝐴 ∖ 𝐵))) |
| 12 | 6, 9, 11 | sylc 62 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → ∃𝑥 𝑥 ∈ (𝐴 ∖ 𝐵)) |
| 13 | phpm 6962 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊆ 𝐴 ∧ ∃𝑥 𝑥 ∈ (𝐴 ∖ 𝐵)) → ¬ 𝐴 ≈ 𝐵) | |
| 14 | 1, 5, 12, 13 | syl3anc 1250 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → ¬ 𝐴 ≈ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∃wex 1515 ∈ wcel 2176 ∖ cdif 3163 ⊆ wss 3166 class class class wbr 4044 Oncon0 4410 ωcom 4638 ≈ cen 6825 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-er 6620 df-en 6828 df-dom 6829 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |