| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ennnfonelemdc | GIF version | ||
| Description: Lemma for ennnfone 12738. A direct consequence of fidcenumlemrk 7055. (Contributed by Jim Kingdon, 15-Jul-2023.) |
| Ref | Expression |
|---|---|
| ennnfonelemdc.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| ennnfonelemdc.f | ⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
| ennnfonelemdc.p | ⊢ (𝜑 → 𝑃 ∈ ω) |
| Ref | Expression |
|---|---|
| ennnfonelemdc | ⊢ (𝜑 → DECID (𝐹‘𝑃) ∈ (𝐹 “ 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ennnfonelemdc.dceq | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | |
| 2 | ennnfonelemdc.f | . . 3 ⊢ (𝜑 → 𝐹:ω–onto→𝐴) | |
| 3 | ennnfonelemdc.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ ω) | |
| 4 | omelon 4656 | . . . . 5 ⊢ ω ∈ On | |
| 5 | 4 | onelssi 4475 | . . . 4 ⊢ (𝑃 ∈ ω → 𝑃 ⊆ ω) |
| 6 | 3, 5 | syl 14 | . . 3 ⊢ (𝜑 → 𝑃 ⊆ ω) |
| 7 | fof 5497 | . . . . 5 ⊢ (𝐹:ω–onto→𝐴 → 𝐹:ω⟶𝐴) | |
| 8 | 2, 7 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐹:ω⟶𝐴) |
| 9 | 8, 3 | ffvelcdmd 5715 | . . 3 ⊢ (𝜑 → (𝐹‘𝑃) ∈ 𝐴) |
| 10 | 1, 2, 3, 6, 9 | fidcenumlemrk 7055 | . 2 ⊢ (𝜑 → ((𝐹‘𝑃) ∈ (𝐹 “ 𝑃) ∨ ¬ (𝐹‘𝑃) ∈ (𝐹 “ 𝑃))) |
| 11 | df-dc 836 | . 2 ⊢ (DECID (𝐹‘𝑃) ∈ (𝐹 “ 𝑃) ↔ ((𝐹‘𝑃) ∈ (𝐹 “ 𝑃) ∨ ¬ (𝐹‘𝑃) ∈ (𝐹 “ 𝑃))) | |
| 12 | 10, 11 | sylibr 134 | 1 ⊢ (𝜑 → DECID (𝐹‘𝑃) ∈ (𝐹 “ 𝑃)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 DECID wdc 835 ∈ wcel 2175 ∀wral 2483 ⊆ wss 3165 ωcom 4637 “ cima 4677 ⟶wf 5266 –onto→wfo 5268 ‘cfv 5270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fo 5276 df-fv 5278 |
| This theorem is referenced by: ennnfonelemg 12716 ennnfonelemp1 12719 ennnfonelemss 12723 ennnfonelemkh 12725 ennnfonelemhf1o 12726 |
| Copyright terms: Public domain | W3C validator |