ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemdc GIF version

Theorem ennnfonelemdc 12332
Description: Lemma for ennnfone 12358. A direct consequence of fidcenumlemrk 6919. (Contributed by Jim Kingdon, 15-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemdc.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemdc.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemdc.p (𝜑𝑃 ∈ ω)
Assertion
Ref Expression
ennnfonelemdc (𝜑DECID (𝐹𝑃) ∈ (𝐹𝑃))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦   𝑥,𝑃,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem ennnfonelemdc
StepHypRef Expression
1 ennnfonelemdc.dceq . . 3 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
2 ennnfonelemdc.f . . 3 (𝜑𝐹:ω–onto𝐴)
3 ennnfonelemdc.p . . 3 (𝜑𝑃 ∈ ω)
4 omelon 4586 . . . . 5 ω ∈ On
54onelssi 4407 . . . 4 (𝑃 ∈ ω → 𝑃 ⊆ ω)
63, 5syl 14 . . 3 (𝜑𝑃 ⊆ ω)
7 fof 5410 . . . . 5 (𝐹:ω–onto𝐴𝐹:ω⟶𝐴)
82, 7syl 14 . . . 4 (𝜑𝐹:ω⟶𝐴)
98, 3ffvelrnd 5621 . . 3 (𝜑 → (𝐹𝑃) ∈ 𝐴)
101, 2, 3, 6, 9fidcenumlemrk 6919 . 2 (𝜑 → ((𝐹𝑃) ∈ (𝐹𝑃) ∨ ¬ (𝐹𝑃) ∈ (𝐹𝑃)))
11 df-dc 825 . 2 (DECID (𝐹𝑃) ∈ (𝐹𝑃) ↔ ((𝐹𝑃) ∈ (𝐹𝑃) ∨ ¬ (𝐹𝑃) ∈ (𝐹𝑃)))
1210, 11sylibr 133 1 (𝜑DECID (𝐹𝑃) ∈ (𝐹𝑃))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 698  DECID wdc 824  wcel 2136  wral 2444  wss 3116  ωcom 4567  cima 4607  wf 5184  ontowfo 5186  cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fo 5194  df-fv 5196
This theorem is referenced by:  ennnfonelemg  12336  ennnfonelemp1  12339  ennnfonelemss  12343  ennnfonelemkh  12345  ennnfonelemhf1o  12346
  Copyright terms: Public domain W3C validator