| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ennnfonelemdc | GIF version | ||
| Description: Lemma for ennnfone 12881. A direct consequence of fidcenumlemrk 7077. (Contributed by Jim Kingdon, 15-Jul-2023.) |
| Ref | Expression |
|---|---|
| ennnfonelemdc.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
| ennnfonelemdc.f | ⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
| ennnfonelemdc.p | ⊢ (𝜑 → 𝑃 ∈ ω) |
| Ref | Expression |
|---|---|
| ennnfonelemdc | ⊢ (𝜑 → DECID (𝐹‘𝑃) ∈ (𝐹 “ 𝑃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ennnfonelemdc.dceq | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | |
| 2 | ennnfonelemdc.f | . . 3 ⊢ (𝜑 → 𝐹:ω–onto→𝐴) | |
| 3 | ennnfonelemdc.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ ω) | |
| 4 | omelon 4670 | . . . . 5 ⊢ ω ∈ On | |
| 5 | 4 | onelssi 4489 | . . . 4 ⊢ (𝑃 ∈ ω → 𝑃 ⊆ ω) |
| 6 | 3, 5 | syl 14 | . . 3 ⊢ (𝜑 → 𝑃 ⊆ ω) |
| 7 | fof 5515 | . . . . 5 ⊢ (𝐹:ω–onto→𝐴 → 𝐹:ω⟶𝐴) | |
| 8 | 2, 7 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐹:ω⟶𝐴) |
| 9 | 8, 3 | ffvelcdmd 5734 | . . 3 ⊢ (𝜑 → (𝐹‘𝑃) ∈ 𝐴) |
| 10 | 1, 2, 3, 6, 9 | fidcenumlemrk 7077 | . 2 ⊢ (𝜑 → ((𝐹‘𝑃) ∈ (𝐹 “ 𝑃) ∨ ¬ (𝐹‘𝑃) ∈ (𝐹 “ 𝑃))) |
| 11 | df-dc 837 | . 2 ⊢ (DECID (𝐹‘𝑃) ∈ (𝐹 “ 𝑃) ↔ ((𝐹‘𝑃) ∈ (𝐹 “ 𝑃) ∨ ¬ (𝐹‘𝑃) ∈ (𝐹 “ 𝑃))) | |
| 12 | 10, 11 | sylibr 134 | 1 ⊢ (𝜑 → DECID (𝐹‘𝑃) ∈ (𝐹 “ 𝑃)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 710 DECID wdc 836 ∈ wcel 2177 ∀wral 2485 ⊆ wss 3170 ωcom 4651 “ cima 4691 ⟶wf 5281 –onto→wfo 5283 ‘cfv 5285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-iinf 4649 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-tr 4154 df-id 4353 df-iord 4426 df-on 4428 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-fo 5291 df-fv 5293 |
| This theorem is referenced by: ennnfonelemg 12859 ennnfonelemp1 12862 ennnfonelemss 12866 ennnfonelemkh 12868 ennnfonelemhf1o 12869 |
| Copyright terms: Public domain | W3C validator |