![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ennnfonelemdc | GIF version |
Description: Lemma for ennnfone 12585. A direct consequence of fidcenumlemrk 7015. (Contributed by Jim Kingdon, 15-Jul-2023.) |
Ref | Expression |
---|---|
ennnfonelemdc.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
ennnfonelemdc.f | ⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
ennnfonelemdc.p | ⊢ (𝜑 → 𝑃 ∈ ω) |
Ref | Expression |
---|---|
ennnfonelemdc | ⊢ (𝜑 → DECID (𝐹‘𝑃) ∈ (𝐹 “ 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ennnfonelemdc.dceq | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | |
2 | ennnfonelemdc.f | . . 3 ⊢ (𝜑 → 𝐹:ω–onto→𝐴) | |
3 | ennnfonelemdc.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ ω) | |
4 | omelon 4642 | . . . . 5 ⊢ ω ∈ On | |
5 | 4 | onelssi 4461 | . . . 4 ⊢ (𝑃 ∈ ω → 𝑃 ⊆ ω) |
6 | 3, 5 | syl 14 | . . 3 ⊢ (𝜑 → 𝑃 ⊆ ω) |
7 | fof 5477 | . . . . 5 ⊢ (𝐹:ω–onto→𝐴 → 𝐹:ω⟶𝐴) | |
8 | 2, 7 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐹:ω⟶𝐴) |
9 | 8, 3 | ffvelcdmd 5695 | . . 3 ⊢ (𝜑 → (𝐹‘𝑃) ∈ 𝐴) |
10 | 1, 2, 3, 6, 9 | fidcenumlemrk 7015 | . 2 ⊢ (𝜑 → ((𝐹‘𝑃) ∈ (𝐹 “ 𝑃) ∨ ¬ (𝐹‘𝑃) ∈ (𝐹 “ 𝑃))) |
11 | df-dc 836 | . 2 ⊢ (DECID (𝐹‘𝑃) ∈ (𝐹 “ 𝑃) ↔ ((𝐹‘𝑃) ∈ (𝐹 “ 𝑃) ∨ ¬ (𝐹‘𝑃) ∈ (𝐹 “ 𝑃))) | |
12 | 10, 11 | sylibr 134 | 1 ⊢ (𝜑 → DECID (𝐹‘𝑃) ∈ (𝐹 “ 𝑃)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 DECID wdc 835 ∈ wcel 2164 ∀wral 2472 ⊆ wss 3154 ωcom 4623 “ cima 4663 ⟶wf 5251 –onto→wfo 5253 ‘cfv 5255 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-iinf 4621 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-br 4031 df-opab 4092 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fo 5261 df-fv 5263 |
This theorem is referenced by: ennnfonelemg 12563 ennnfonelemp1 12566 ennnfonelemss 12570 ennnfonelemkh 12572 ennnfonelemhf1o 12573 |
Copyright terms: Public domain | W3C validator |