ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ennnfonelemdc GIF version

Theorem ennnfonelemdc 12855
Description: Lemma for ennnfone 12881. A direct consequence of fidcenumlemrk 7077. (Contributed by Jim Kingdon, 15-Jul-2023.)
Hypotheses
Ref Expression
ennnfonelemdc.dceq (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
ennnfonelemdc.f (𝜑𝐹:ω–onto𝐴)
ennnfonelemdc.p (𝜑𝑃 ∈ ω)
Assertion
Ref Expression
ennnfonelemdc (𝜑DECID (𝐹𝑃) ∈ (𝐹𝑃))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐹,𝑦   𝑥,𝑃,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem ennnfonelemdc
StepHypRef Expression
1 ennnfonelemdc.dceq . . 3 (𝜑 → ∀𝑥𝐴𝑦𝐴 DECID 𝑥 = 𝑦)
2 ennnfonelemdc.f . . 3 (𝜑𝐹:ω–onto𝐴)
3 ennnfonelemdc.p . . 3 (𝜑𝑃 ∈ ω)
4 omelon 4670 . . . . 5 ω ∈ On
54onelssi 4489 . . . 4 (𝑃 ∈ ω → 𝑃 ⊆ ω)
63, 5syl 14 . . 3 (𝜑𝑃 ⊆ ω)
7 fof 5515 . . . . 5 (𝐹:ω–onto𝐴𝐹:ω⟶𝐴)
82, 7syl 14 . . . 4 (𝜑𝐹:ω⟶𝐴)
98, 3ffvelcdmd 5734 . . 3 (𝜑 → (𝐹𝑃) ∈ 𝐴)
101, 2, 3, 6, 9fidcenumlemrk 7077 . 2 (𝜑 → ((𝐹𝑃) ∈ (𝐹𝑃) ∨ ¬ (𝐹𝑃) ∈ (𝐹𝑃)))
11 df-dc 837 . 2 (DECID (𝐹𝑃) ∈ (𝐹𝑃) ↔ ((𝐹𝑃) ∈ (𝐹𝑃) ∨ ¬ (𝐹𝑃) ∈ (𝐹𝑃)))
1210, 11sylibr 134 1 (𝜑DECID (𝐹𝑃) ∈ (𝐹𝑃))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wo 710  DECID wdc 836  wcel 2177  wral 2485  wss 3170  ωcom 4651  cima 4691  wf 5281  ontowfo 5283  cfv 5285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-iinf 4649
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-tr 4154  df-id 4353  df-iord 4426  df-on 4428  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-fo 5291  df-fv 5293
This theorem is referenced by:  ennnfonelemg  12859  ennnfonelemp1  12862  ennnfonelemss  12866  ennnfonelemkh  12868  ennnfonelemhf1o  12869
  Copyright terms: Public domain W3C validator