![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ennnfonelemdc | GIF version |
Description: Lemma for ennnfone 12440. A direct consequence of fidcenumlemrk 6967. (Contributed by Jim Kingdon, 15-Jul-2023.) |
Ref | Expression |
---|---|
ennnfonelemdc.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
ennnfonelemdc.f | ⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
ennnfonelemdc.p | ⊢ (𝜑 → 𝑃 ∈ ω) |
Ref | Expression |
---|---|
ennnfonelemdc | ⊢ (𝜑 → DECID (𝐹‘𝑃) ∈ (𝐹 “ 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ennnfonelemdc.dceq | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | |
2 | ennnfonelemdc.f | . . 3 ⊢ (𝜑 → 𝐹:ω–onto→𝐴) | |
3 | ennnfonelemdc.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ ω) | |
4 | omelon 4620 | . . . . 5 ⊢ ω ∈ On | |
5 | 4 | onelssi 4441 | . . . 4 ⊢ (𝑃 ∈ ω → 𝑃 ⊆ ω) |
6 | 3, 5 | syl 14 | . . 3 ⊢ (𝜑 → 𝑃 ⊆ ω) |
7 | fof 5450 | . . . . 5 ⊢ (𝐹:ω–onto→𝐴 → 𝐹:ω⟶𝐴) | |
8 | 2, 7 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐹:ω⟶𝐴) |
9 | 8, 3 | ffvelcdmd 5665 | . . 3 ⊢ (𝜑 → (𝐹‘𝑃) ∈ 𝐴) |
10 | 1, 2, 3, 6, 9 | fidcenumlemrk 6967 | . 2 ⊢ (𝜑 → ((𝐹‘𝑃) ∈ (𝐹 “ 𝑃) ∨ ¬ (𝐹‘𝑃) ∈ (𝐹 “ 𝑃))) |
11 | df-dc 836 | . 2 ⊢ (DECID (𝐹‘𝑃) ∈ (𝐹 “ 𝑃) ↔ ((𝐹‘𝑃) ∈ (𝐹 “ 𝑃) ∨ ¬ (𝐹‘𝑃) ∈ (𝐹 “ 𝑃))) | |
12 | 10, 11 | sylibr 134 | 1 ⊢ (𝜑 → DECID (𝐹‘𝑃) ∈ (𝐹 “ 𝑃)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 DECID wdc 835 ∈ wcel 2158 ∀wral 2465 ⊆ wss 3141 ωcom 4601 “ cima 4641 ⟶wf 5224 –onto→wfo 5226 ‘cfv 5228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-iinf 4599 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ral 2470 df-rex 2471 df-v 2751 df-sbc 2975 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-br 4016 df-opab 4077 df-tr 4114 df-id 4305 df-iord 4378 df-on 4380 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-fo 5234 df-fv 5236 |
This theorem is referenced by: ennnfonelemg 12418 ennnfonelemp1 12421 ennnfonelemss 12425 ennnfonelemkh 12427 ennnfonelemhf1o 12428 |
Copyright terms: Public domain | W3C validator |