![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ennnfonelemdc | GIF version |
Description: Lemma for ennnfone 12428. A direct consequence of fidcenumlemrk 6955. (Contributed by Jim Kingdon, 15-Jul-2023.) |
Ref | Expression |
---|---|
ennnfonelemdc.dceq | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) |
ennnfonelemdc.f | ⊢ (𝜑 → 𝐹:ω–onto→𝐴) |
ennnfonelemdc.p | ⊢ (𝜑 → 𝑃 ∈ ω) |
Ref | Expression |
---|---|
ennnfonelemdc | ⊢ (𝜑 → DECID (𝐹‘𝑃) ∈ (𝐹 “ 𝑃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ennnfonelemdc.dceq | . . 3 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 DECID 𝑥 = 𝑦) | |
2 | ennnfonelemdc.f | . . 3 ⊢ (𝜑 → 𝐹:ω–onto→𝐴) | |
3 | ennnfonelemdc.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ ω) | |
4 | omelon 4610 | . . . . 5 ⊢ ω ∈ On | |
5 | 4 | onelssi 4431 | . . . 4 ⊢ (𝑃 ∈ ω → 𝑃 ⊆ ω) |
6 | 3, 5 | syl 14 | . . 3 ⊢ (𝜑 → 𝑃 ⊆ ω) |
7 | fof 5440 | . . . . 5 ⊢ (𝐹:ω–onto→𝐴 → 𝐹:ω⟶𝐴) | |
8 | 2, 7 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐹:ω⟶𝐴) |
9 | 8, 3 | ffvelcdmd 5654 | . . 3 ⊢ (𝜑 → (𝐹‘𝑃) ∈ 𝐴) |
10 | 1, 2, 3, 6, 9 | fidcenumlemrk 6955 | . 2 ⊢ (𝜑 → ((𝐹‘𝑃) ∈ (𝐹 “ 𝑃) ∨ ¬ (𝐹‘𝑃) ∈ (𝐹 “ 𝑃))) |
11 | df-dc 835 | . 2 ⊢ (DECID (𝐹‘𝑃) ∈ (𝐹 “ 𝑃) ↔ ((𝐹‘𝑃) ∈ (𝐹 “ 𝑃) ∨ ¬ (𝐹‘𝑃) ∈ (𝐹 “ 𝑃))) | |
12 | 10, 11 | sylibr 134 | 1 ⊢ (𝜑 → DECID (𝐹‘𝑃) ∈ (𝐹 “ 𝑃)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 708 DECID wdc 834 ∈ wcel 2148 ∀wral 2455 ⊆ wss 3131 ωcom 4591 “ cima 4631 ⟶wf 5214 –onto→wfo 5216 ‘cfv 5218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-iinf 4589 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-tr 4104 df-id 4295 df-iord 4368 df-on 4370 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fo 5224 df-fv 5226 |
This theorem is referenced by: ennnfonelemg 12406 ennnfonelemp1 12409 ennnfonelemss 12413 ennnfonelemkh 12415 ennnfonelemhf1o 12416 |
Copyright terms: Public domain | W3C validator |