ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enumctlemm GIF version

Theorem enumctlemm 7106
Description: Lemma for enumct 7107. The case where 𝑁 is greater than zero. (Contributed by Jim Kingdon, 13-Mar-2023.)
Hypotheses
Ref Expression
enumctlemm.f (𝜑𝐹:𝑁onto𝐴)
enumctlemm.n (𝜑𝑁 ∈ ω)
enumctlemm.n0 (𝜑 → ∅ ∈ 𝑁)
enumctlemm.g 𝐺 = (𝑘 ∈ ω ↦ if(𝑘𝑁, (𝐹𝑘), (𝐹‘∅)))
Assertion
Ref Expression
enumctlemm (𝜑𝐺:ω–onto𝐴)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝐺(𝑘)

Proof of Theorem enumctlemm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enumctlemm.f . . . . . . 7 (𝜑𝐹:𝑁onto𝐴)
2 fof 5433 . . . . . . 7 (𝐹:𝑁onto𝐴𝐹:𝑁𝐴)
31, 2syl 14 . . . . . 6 (𝜑𝐹:𝑁𝐴)
43ffvelcdmda 5646 . . . . 5 ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ 𝐴)
54adantlr 477 . . . 4 (((𝜑𝑘 ∈ ω) ∧ 𝑘𝑁) → (𝐹𝑘) ∈ 𝐴)
6 enumctlemm.n0 . . . . . 6 (𝜑 → ∅ ∈ 𝑁)
73, 6ffvelcdmd 5647 . . . . 5 (𝜑 → (𝐹‘∅) ∈ 𝐴)
87ad2antrr 488 . . . 4 (((𝜑𝑘 ∈ ω) ∧ ¬ 𝑘𝑁) → (𝐹‘∅) ∈ 𝐴)
9 simpr 110 . . . . 5 ((𝜑𝑘 ∈ ω) → 𝑘 ∈ ω)
10 enumctlemm.n . . . . . 6 (𝜑𝑁 ∈ ω)
1110adantr 276 . . . . 5 ((𝜑𝑘 ∈ ω) → 𝑁 ∈ ω)
12 nndcel 6494 . . . . 5 ((𝑘 ∈ ω ∧ 𝑁 ∈ ω) → DECID 𝑘𝑁)
139, 11, 12syl2anc 411 . . . 4 ((𝜑𝑘 ∈ ω) → DECID 𝑘𝑁)
145, 8, 13ifcldadc 3563 . . 3 ((𝜑𝑘 ∈ ω) → if(𝑘𝑁, (𝐹𝑘), (𝐹‘∅)) ∈ 𝐴)
15 enumctlemm.g . . 3 𝐺 = (𝑘 ∈ ω ↦ if(𝑘𝑁, (𝐹𝑘), (𝐹‘∅)))
1614, 15fmptd 5665 . 2 (𝜑𝐺:ω⟶𝐴)
17 foelrn 5747 . . . . . 6 ((𝐹:𝑁onto𝐴𝑦𝐴) → ∃𝑥𝑁 𝑦 = (𝐹𝑥))
181, 17sylan 283 . . . . 5 ((𝜑𝑦𝐴) → ∃𝑥𝑁 𝑦 = (𝐹𝑥))
19 eleq1w 2238 . . . . . . . . . . 11 (𝑘 = 𝑥 → (𝑘𝑁𝑥𝑁))
20 fveq2 5510 . . . . . . . . . . 11 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
2119, 20ifbieq1d 3556 . . . . . . . . . 10 (𝑘 = 𝑥 → if(𝑘𝑁, (𝐹𝑘), (𝐹‘∅)) = if(𝑥𝑁, (𝐹𝑥), (𝐹‘∅)))
22 simpr 110 . . . . . . . . . . 11 ((𝜑𝑥𝑁) → 𝑥𝑁)
2310adantr 276 . . . . . . . . . . 11 ((𝜑𝑥𝑁) → 𝑁 ∈ ω)
24 elnn 4601 . . . . . . . . . . 11 ((𝑥𝑁𝑁 ∈ ω) → 𝑥 ∈ ω)
2522, 23, 24syl2anc 411 . . . . . . . . . 10 ((𝜑𝑥𝑁) → 𝑥 ∈ ω)
2622iftrued 3541 . . . . . . . . . . 11 ((𝜑𝑥𝑁) → if(𝑥𝑁, (𝐹𝑥), (𝐹‘∅)) = (𝐹𝑥))
273ffvelcdmda 5646 . . . . . . . . . . 11 ((𝜑𝑥𝑁) → (𝐹𝑥) ∈ 𝐴)
2826, 27eqeltrd 2254 . . . . . . . . . 10 ((𝜑𝑥𝑁) → if(𝑥𝑁, (𝐹𝑥), (𝐹‘∅)) ∈ 𝐴)
2915, 21, 25, 28fvmptd3 5604 . . . . . . . . 9 ((𝜑𝑥𝑁) → (𝐺𝑥) = if(𝑥𝑁, (𝐹𝑥), (𝐹‘∅)))
3029, 26eqtrd 2210 . . . . . . . 8 ((𝜑𝑥𝑁) → (𝐺𝑥) = (𝐹𝑥))
3130eqeq2d 2189 . . . . . . 7 ((𝜑𝑥𝑁) → (𝑦 = (𝐺𝑥) ↔ 𝑦 = (𝐹𝑥)))
3231rexbidva 2474 . . . . . 6 (𝜑 → (∃𝑥𝑁 𝑦 = (𝐺𝑥) ↔ ∃𝑥𝑁 𝑦 = (𝐹𝑥)))
3332adantr 276 . . . . 5 ((𝜑𝑦𝐴) → (∃𝑥𝑁 𝑦 = (𝐺𝑥) ↔ ∃𝑥𝑁 𝑦 = (𝐹𝑥)))
3418, 33mpbird 167 . . . 4 ((𝜑𝑦𝐴) → ∃𝑥𝑁 𝑦 = (𝐺𝑥))
35 omelon 4604 . . . . . . 7 ω ∈ On
3635onelssi 4425 . . . . . 6 (𝑁 ∈ ω → 𝑁 ⊆ ω)
37 ssrexv 3220 . . . . . 6 (𝑁 ⊆ ω → (∃𝑥𝑁 𝑦 = (𝐺𝑥) → ∃𝑥 ∈ ω 𝑦 = (𝐺𝑥)))
3810, 36, 373syl 17 . . . . 5 (𝜑 → (∃𝑥𝑁 𝑦 = (𝐺𝑥) → ∃𝑥 ∈ ω 𝑦 = (𝐺𝑥)))
3938adantr 276 . . . 4 ((𝜑𝑦𝐴) → (∃𝑥𝑁 𝑦 = (𝐺𝑥) → ∃𝑥 ∈ ω 𝑦 = (𝐺𝑥)))
4034, 39mpd 13 . . 3 ((𝜑𝑦𝐴) → ∃𝑥 ∈ ω 𝑦 = (𝐺𝑥))
4140ralrimiva 2550 . 2 (𝜑 → ∀𝑦𝐴𝑥 ∈ ω 𝑦 = (𝐺𝑥))
42 dffo3 5658 . 2 (𝐺:ω–onto𝐴 ↔ (𝐺:ω⟶𝐴 ∧ ∀𝑦𝐴𝑥 ∈ ω 𝑦 = (𝐺𝑥)))
4316, 41, 42sylanbrc 417 1 (𝜑𝐺:ω–onto𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 834   = wceq 1353  wcel 2148  wral 2455  wrex 2456  wss 3129  c0 3422  ifcif 3534  cmpt 4061  ωcom 4585  wf 5207  ontowfo 5209  cfv 5211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4205  ax-un 4429  ax-setind 4532  ax-iinf 4583
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4289  df-iord 4362  df-on 4364  df-suc 4367  df-iom 4586  df-xp 4628  df-rel 4629  df-cnv 4630  df-co 4631  df-dm 4632  df-rn 4633  df-res 4634  df-ima 4635  df-iota 5173  df-fun 5213  df-fn 5214  df-f 5215  df-fo 5217  df-fv 5219
This theorem is referenced by:  enumct  7107
  Copyright terms: Public domain W3C validator