ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enumctlemm GIF version

Theorem enumctlemm 7277
Description: Lemma for enumct 7278. The case where 𝑁 is greater than zero. (Contributed by Jim Kingdon, 13-Mar-2023.)
Hypotheses
Ref Expression
enumctlemm.f (𝜑𝐹:𝑁onto𝐴)
enumctlemm.n (𝜑𝑁 ∈ ω)
enumctlemm.n0 (𝜑 → ∅ ∈ 𝑁)
enumctlemm.g 𝐺 = (𝑘 ∈ ω ↦ if(𝑘𝑁, (𝐹𝑘), (𝐹‘∅)))
Assertion
Ref Expression
enumctlemm (𝜑𝐺:ω–onto𝐴)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝐺(𝑘)

Proof of Theorem enumctlemm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enumctlemm.f . . . . . . 7 (𝜑𝐹:𝑁onto𝐴)
2 fof 5547 . . . . . . 7 (𝐹:𝑁onto𝐴𝐹:𝑁𝐴)
31, 2syl 14 . . . . . 6 (𝜑𝐹:𝑁𝐴)
43ffvelcdmda 5769 . . . . 5 ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ 𝐴)
54adantlr 477 . . . 4 (((𝜑𝑘 ∈ ω) ∧ 𝑘𝑁) → (𝐹𝑘) ∈ 𝐴)
6 enumctlemm.n0 . . . . . 6 (𝜑 → ∅ ∈ 𝑁)
73, 6ffvelcdmd 5770 . . . . 5 (𝜑 → (𝐹‘∅) ∈ 𝐴)
87ad2antrr 488 . . . 4 (((𝜑𝑘 ∈ ω) ∧ ¬ 𝑘𝑁) → (𝐹‘∅) ∈ 𝐴)
9 simpr 110 . . . . 5 ((𝜑𝑘 ∈ ω) → 𝑘 ∈ ω)
10 enumctlemm.n . . . . . 6 (𝜑𝑁 ∈ ω)
1110adantr 276 . . . . 5 ((𝜑𝑘 ∈ ω) → 𝑁 ∈ ω)
12 nndcel 6644 . . . . 5 ((𝑘 ∈ ω ∧ 𝑁 ∈ ω) → DECID 𝑘𝑁)
139, 11, 12syl2anc 411 . . . 4 ((𝜑𝑘 ∈ ω) → DECID 𝑘𝑁)
145, 8, 13ifcldadc 3632 . . 3 ((𝜑𝑘 ∈ ω) → if(𝑘𝑁, (𝐹𝑘), (𝐹‘∅)) ∈ 𝐴)
15 enumctlemm.g . . 3 𝐺 = (𝑘 ∈ ω ↦ if(𝑘𝑁, (𝐹𝑘), (𝐹‘∅)))
1614, 15fmptd 5788 . 2 (𝜑𝐺:ω⟶𝐴)
17 foelrn 5875 . . . . . 6 ((𝐹:𝑁onto𝐴𝑦𝐴) → ∃𝑥𝑁 𝑦 = (𝐹𝑥))
181, 17sylan 283 . . . . 5 ((𝜑𝑦𝐴) → ∃𝑥𝑁 𝑦 = (𝐹𝑥))
19 eleq1w 2290 . . . . . . . . . . 11 (𝑘 = 𝑥 → (𝑘𝑁𝑥𝑁))
20 fveq2 5626 . . . . . . . . . . 11 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
2119, 20ifbieq1d 3625 . . . . . . . . . 10 (𝑘 = 𝑥 → if(𝑘𝑁, (𝐹𝑘), (𝐹‘∅)) = if(𝑥𝑁, (𝐹𝑥), (𝐹‘∅)))
22 simpr 110 . . . . . . . . . . 11 ((𝜑𝑥𝑁) → 𝑥𝑁)
2310adantr 276 . . . . . . . . . . 11 ((𝜑𝑥𝑁) → 𝑁 ∈ ω)
24 elnn 4697 . . . . . . . . . . 11 ((𝑥𝑁𝑁 ∈ ω) → 𝑥 ∈ ω)
2522, 23, 24syl2anc 411 . . . . . . . . . 10 ((𝜑𝑥𝑁) → 𝑥 ∈ ω)
2622iftrued 3609 . . . . . . . . . . 11 ((𝜑𝑥𝑁) → if(𝑥𝑁, (𝐹𝑥), (𝐹‘∅)) = (𝐹𝑥))
273ffvelcdmda 5769 . . . . . . . . . . 11 ((𝜑𝑥𝑁) → (𝐹𝑥) ∈ 𝐴)
2826, 27eqeltrd 2306 . . . . . . . . . 10 ((𝜑𝑥𝑁) → if(𝑥𝑁, (𝐹𝑥), (𝐹‘∅)) ∈ 𝐴)
2915, 21, 25, 28fvmptd3 5727 . . . . . . . . 9 ((𝜑𝑥𝑁) → (𝐺𝑥) = if(𝑥𝑁, (𝐹𝑥), (𝐹‘∅)))
3029, 26eqtrd 2262 . . . . . . . 8 ((𝜑𝑥𝑁) → (𝐺𝑥) = (𝐹𝑥))
3130eqeq2d 2241 . . . . . . 7 ((𝜑𝑥𝑁) → (𝑦 = (𝐺𝑥) ↔ 𝑦 = (𝐹𝑥)))
3231rexbidva 2527 . . . . . 6 (𝜑 → (∃𝑥𝑁 𝑦 = (𝐺𝑥) ↔ ∃𝑥𝑁 𝑦 = (𝐹𝑥)))
3332adantr 276 . . . . 5 ((𝜑𝑦𝐴) → (∃𝑥𝑁 𝑦 = (𝐺𝑥) ↔ ∃𝑥𝑁 𝑦 = (𝐹𝑥)))
3418, 33mpbird 167 . . . 4 ((𝜑𝑦𝐴) → ∃𝑥𝑁 𝑦 = (𝐺𝑥))
35 omelon 4700 . . . . . . 7 ω ∈ On
3635onelssi 4519 . . . . . 6 (𝑁 ∈ ω → 𝑁 ⊆ ω)
37 ssrexv 3289 . . . . . 6 (𝑁 ⊆ ω → (∃𝑥𝑁 𝑦 = (𝐺𝑥) → ∃𝑥 ∈ ω 𝑦 = (𝐺𝑥)))
3810, 36, 373syl 17 . . . . 5 (𝜑 → (∃𝑥𝑁 𝑦 = (𝐺𝑥) → ∃𝑥 ∈ ω 𝑦 = (𝐺𝑥)))
3938adantr 276 . . . 4 ((𝜑𝑦𝐴) → (∃𝑥𝑁 𝑦 = (𝐺𝑥) → ∃𝑥 ∈ ω 𝑦 = (𝐺𝑥)))
4034, 39mpd 13 . . 3 ((𝜑𝑦𝐴) → ∃𝑥 ∈ ω 𝑦 = (𝐺𝑥))
4140ralrimiva 2603 . 2 (𝜑 → ∀𝑦𝐴𝑥 ∈ ω 𝑦 = (𝐺𝑥))
42 dffo3 5781 . 2 (𝐺:ω–onto𝐴 ↔ (𝐺:ω⟶𝐴 ∧ ∀𝑦𝐴𝑥 ∈ ω 𝑦 = (𝐺𝑥)))
4316, 41, 42sylanbrc 417 1 (𝜑𝐺:ω–onto𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 839   = wceq 1395  wcel 2200  wral 2508  wrex 2509  wss 3197  c0 3491  ifcif 3602  cmpt 4144  ωcom 4681  wf 5313  ontowfo 5315  cfv 5317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fo 5323  df-fv 5325
This theorem is referenced by:  enumct  7278
  Copyright terms: Public domain W3C validator