ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enumctlemm GIF version

Theorem enumctlemm 7237
Description: Lemma for enumct 7238. The case where 𝑁 is greater than zero. (Contributed by Jim Kingdon, 13-Mar-2023.)
Hypotheses
Ref Expression
enumctlemm.f (𝜑𝐹:𝑁onto𝐴)
enumctlemm.n (𝜑𝑁 ∈ ω)
enumctlemm.n0 (𝜑 → ∅ ∈ 𝑁)
enumctlemm.g 𝐺 = (𝑘 ∈ ω ↦ if(𝑘𝑁, (𝐹𝑘), (𝐹‘∅)))
Assertion
Ref Expression
enumctlemm (𝜑𝐺:ω–onto𝐴)
Distinct variable groups:   𝐴,𝑘   𝑘,𝐹   𝑘,𝑁   𝜑,𝑘
Allowed substitution hint:   𝐺(𝑘)

Proof of Theorem enumctlemm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enumctlemm.f . . . . . . 7 (𝜑𝐹:𝑁onto𝐴)
2 fof 5515 . . . . . . 7 (𝐹:𝑁onto𝐴𝐹:𝑁𝐴)
31, 2syl 14 . . . . . 6 (𝜑𝐹:𝑁𝐴)
43ffvelcdmda 5733 . . . . 5 ((𝜑𝑘𝑁) → (𝐹𝑘) ∈ 𝐴)
54adantlr 477 . . . 4 (((𝜑𝑘 ∈ ω) ∧ 𝑘𝑁) → (𝐹𝑘) ∈ 𝐴)
6 enumctlemm.n0 . . . . . 6 (𝜑 → ∅ ∈ 𝑁)
73, 6ffvelcdmd 5734 . . . . 5 (𝜑 → (𝐹‘∅) ∈ 𝐴)
87ad2antrr 488 . . . 4 (((𝜑𝑘 ∈ ω) ∧ ¬ 𝑘𝑁) → (𝐹‘∅) ∈ 𝐴)
9 simpr 110 . . . . 5 ((𝜑𝑘 ∈ ω) → 𝑘 ∈ ω)
10 enumctlemm.n . . . . . 6 (𝜑𝑁 ∈ ω)
1110adantr 276 . . . . 5 ((𝜑𝑘 ∈ ω) → 𝑁 ∈ ω)
12 nndcel 6604 . . . . 5 ((𝑘 ∈ ω ∧ 𝑁 ∈ ω) → DECID 𝑘𝑁)
139, 11, 12syl2anc 411 . . . 4 ((𝜑𝑘 ∈ ω) → DECID 𝑘𝑁)
145, 8, 13ifcldadc 3605 . . 3 ((𝜑𝑘 ∈ ω) → if(𝑘𝑁, (𝐹𝑘), (𝐹‘∅)) ∈ 𝐴)
15 enumctlemm.g . . 3 𝐺 = (𝑘 ∈ ω ↦ if(𝑘𝑁, (𝐹𝑘), (𝐹‘∅)))
1614, 15fmptd 5752 . 2 (𝜑𝐺:ω⟶𝐴)
17 foelrn 5839 . . . . . 6 ((𝐹:𝑁onto𝐴𝑦𝐴) → ∃𝑥𝑁 𝑦 = (𝐹𝑥))
181, 17sylan 283 . . . . 5 ((𝜑𝑦𝐴) → ∃𝑥𝑁 𝑦 = (𝐹𝑥))
19 eleq1w 2267 . . . . . . . . . . 11 (𝑘 = 𝑥 → (𝑘𝑁𝑥𝑁))
20 fveq2 5594 . . . . . . . . . . 11 (𝑘 = 𝑥 → (𝐹𝑘) = (𝐹𝑥))
2119, 20ifbieq1d 3598 . . . . . . . . . 10 (𝑘 = 𝑥 → if(𝑘𝑁, (𝐹𝑘), (𝐹‘∅)) = if(𝑥𝑁, (𝐹𝑥), (𝐹‘∅)))
22 simpr 110 . . . . . . . . . . 11 ((𝜑𝑥𝑁) → 𝑥𝑁)
2310adantr 276 . . . . . . . . . . 11 ((𝜑𝑥𝑁) → 𝑁 ∈ ω)
24 elnn 4667 . . . . . . . . . . 11 ((𝑥𝑁𝑁 ∈ ω) → 𝑥 ∈ ω)
2522, 23, 24syl2anc 411 . . . . . . . . . 10 ((𝜑𝑥𝑁) → 𝑥 ∈ ω)
2622iftrued 3582 . . . . . . . . . . 11 ((𝜑𝑥𝑁) → if(𝑥𝑁, (𝐹𝑥), (𝐹‘∅)) = (𝐹𝑥))
273ffvelcdmda 5733 . . . . . . . . . . 11 ((𝜑𝑥𝑁) → (𝐹𝑥) ∈ 𝐴)
2826, 27eqeltrd 2283 . . . . . . . . . 10 ((𝜑𝑥𝑁) → if(𝑥𝑁, (𝐹𝑥), (𝐹‘∅)) ∈ 𝐴)
2915, 21, 25, 28fvmptd3 5691 . . . . . . . . 9 ((𝜑𝑥𝑁) → (𝐺𝑥) = if(𝑥𝑁, (𝐹𝑥), (𝐹‘∅)))
3029, 26eqtrd 2239 . . . . . . . 8 ((𝜑𝑥𝑁) → (𝐺𝑥) = (𝐹𝑥))
3130eqeq2d 2218 . . . . . . 7 ((𝜑𝑥𝑁) → (𝑦 = (𝐺𝑥) ↔ 𝑦 = (𝐹𝑥)))
3231rexbidva 2504 . . . . . 6 (𝜑 → (∃𝑥𝑁 𝑦 = (𝐺𝑥) ↔ ∃𝑥𝑁 𝑦 = (𝐹𝑥)))
3332adantr 276 . . . . 5 ((𝜑𝑦𝐴) → (∃𝑥𝑁 𝑦 = (𝐺𝑥) ↔ ∃𝑥𝑁 𝑦 = (𝐹𝑥)))
3418, 33mpbird 167 . . . 4 ((𝜑𝑦𝐴) → ∃𝑥𝑁 𝑦 = (𝐺𝑥))
35 omelon 4670 . . . . . . 7 ω ∈ On
3635onelssi 4489 . . . . . 6 (𝑁 ∈ ω → 𝑁 ⊆ ω)
37 ssrexv 3262 . . . . . 6 (𝑁 ⊆ ω → (∃𝑥𝑁 𝑦 = (𝐺𝑥) → ∃𝑥 ∈ ω 𝑦 = (𝐺𝑥)))
3810, 36, 373syl 17 . . . . 5 (𝜑 → (∃𝑥𝑁 𝑦 = (𝐺𝑥) → ∃𝑥 ∈ ω 𝑦 = (𝐺𝑥)))
3938adantr 276 . . . 4 ((𝜑𝑦𝐴) → (∃𝑥𝑁 𝑦 = (𝐺𝑥) → ∃𝑥 ∈ ω 𝑦 = (𝐺𝑥)))
4034, 39mpd 13 . . 3 ((𝜑𝑦𝐴) → ∃𝑥 ∈ ω 𝑦 = (𝐺𝑥))
4140ralrimiva 2580 . 2 (𝜑 → ∀𝑦𝐴𝑥 ∈ ω 𝑦 = (𝐺𝑥))
42 dffo3 5745 . 2 (𝐺:ω–onto𝐴 ↔ (𝐺:ω⟶𝐴 ∧ ∀𝑦𝐴𝑥 ∈ ω 𝑦 = (𝐺𝑥)))
4316, 41, 42sylanbrc 417 1 (𝜑𝐺:ω–onto𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  DECID wdc 836   = wceq 1373  wcel 2177  wral 2485  wrex 2486  wss 3170  c0 3464  ifcif 3575  cmpt 4116  ωcom 4651  wf 5281  ontowfo 5283  cfv 5285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-iord 4426  df-on 4428  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-fo 5291  df-fv 5293
This theorem is referenced by:  enumct  7238
  Copyright terms: Public domain W3C validator