Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > 2o01f | GIF version |
Description: Mapping zero and one between ω and ℕ0 style integers. (Contributed by Jim Kingdon, 28-Jun-2024.) |
Ref | Expression |
---|---|
012of.g | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
Ref | Expression |
---|---|
2o01f | ⊢ (𝐺 ↾ 2o):2o⟶{0, 1} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 012of.g | . . . . . 6 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
2 | 1 | frechashgf1o 10384 | . . . . 5 ⊢ 𝐺:ω–1-1-onto→ℕ0 |
3 | f1of 5442 | . . . . 5 ⊢ (𝐺:ω–1-1-onto→ℕ0 → 𝐺:ω⟶ℕ0) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ 𝐺:ω⟶ℕ0 |
5 | 2onn 6500 | . . . . 5 ⊢ 2o ∈ ω | |
6 | omelon 4593 | . . . . . 6 ⊢ ω ∈ On | |
7 | 6 | onelssi 4414 | . . . . 5 ⊢ (2o ∈ ω → 2o ⊆ ω) |
8 | 5, 7 | ax-mp 5 | . . . 4 ⊢ 2o ⊆ ω |
9 | fssres 5373 | . . . 4 ⊢ ((𝐺:ω⟶ℕ0 ∧ 2o ⊆ ω) → (𝐺 ↾ 2o):2o⟶ℕ0) | |
10 | 4, 8, 9 | mp2an 424 | . . 3 ⊢ (𝐺 ↾ 2o):2o⟶ℕ0 |
11 | ffn 5347 | . . 3 ⊢ ((𝐺 ↾ 2o):2o⟶ℕ0 → (𝐺 ↾ 2o) Fn 2o) | |
12 | 10, 11 | ax-mp 5 | . 2 ⊢ (𝐺 ↾ 2o) Fn 2o |
13 | fvres 5520 | . . . 4 ⊢ (𝑗 ∈ 2o → ((𝐺 ↾ 2o)‘𝑗) = (𝐺‘𝑗)) | |
14 | elpri 3606 | . . . . . 6 ⊢ (𝑗 ∈ {∅, 1o} → (𝑗 = ∅ ∨ 𝑗 = 1o)) | |
15 | df2o3 6409 | . . . . . 6 ⊢ 2o = {∅, 1o} | |
16 | 14, 15 | eleq2s 2265 | . . . . 5 ⊢ (𝑗 ∈ 2o → (𝑗 = ∅ ∨ 𝑗 = 1o)) |
17 | fveq2 5496 | . . . . . . 7 ⊢ (𝑗 = ∅ → (𝐺‘𝑗) = (𝐺‘∅)) | |
18 | 0zd 9224 | . . . . . . . . . 10 ⊢ (⊤ → 0 ∈ ℤ) | |
19 | 18, 1 | frec2uz0d 10355 | . . . . . . . . 9 ⊢ (⊤ → (𝐺‘∅) = 0) |
20 | 19 | mptru 1357 | . . . . . . . 8 ⊢ (𝐺‘∅) = 0 |
21 | c0ex 7914 | . . . . . . . . 9 ⊢ 0 ∈ V | |
22 | 21 | prid1 3689 | . . . . . . . 8 ⊢ 0 ∈ {0, 1} |
23 | 20, 22 | eqeltri 2243 | . . . . . . 7 ⊢ (𝐺‘∅) ∈ {0, 1} |
24 | 17, 23 | eqeltrdi 2261 | . . . . . 6 ⊢ (𝑗 = ∅ → (𝐺‘𝑗) ∈ {0, 1}) |
25 | fveq2 5496 | . . . . . . 7 ⊢ (𝑗 = 1o → (𝐺‘𝑗) = (𝐺‘1o)) | |
26 | df-1o 6395 | . . . . . . . . . 10 ⊢ 1o = suc ∅ | |
27 | 26 | fveq2i 5499 | . . . . . . . . 9 ⊢ (𝐺‘1o) = (𝐺‘suc ∅) |
28 | peano1 4578 | . . . . . . . . . . . 12 ⊢ ∅ ∈ ω | |
29 | 28 | a1i 9 | . . . . . . . . . . 11 ⊢ (⊤ → ∅ ∈ ω) |
30 | 18, 1, 29 | frec2uzsucd 10357 | . . . . . . . . . 10 ⊢ (⊤ → (𝐺‘suc ∅) = ((𝐺‘∅) + 1)) |
31 | 30 | mptru 1357 | . . . . . . . . 9 ⊢ (𝐺‘suc ∅) = ((𝐺‘∅) + 1) |
32 | 20 | oveq1i 5863 | . . . . . . . . . 10 ⊢ ((𝐺‘∅) + 1) = (0 + 1) |
33 | 0p1e1 8992 | . . . . . . . . . 10 ⊢ (0 + 1) = 1 | |
34 | 32, 33 | eqtri 2191 | . . . . . . . . 9 ⊢ ((𝐺‘∅) + 1) = 1 |
35 | 27, 31, 34 | 3eqtri 2195 | . . . . . . . 8 ⊢ (𝐺‘1o) = 1 |
36 | 1ex 7915 | . . . . . . . . 9 ⊢ 1 ∈ V | |
37 | 36 | prid2 3690 | . . . . . . . 8 ⊢ 1 ∈ {0, 1} |
38 | 35, 37 | eqeltri 2243 | . . . . . . 7 ⊢ (𝐺‘1o) ∈ {0, 1} |
39 | 25, 38 | eqeltrdi 2261 | . . . . . 6 ⊢ (𝑗 = 1o → (𝐺‘𝑗) ∈ {0, 1}) |
40 | 24, 39 | jaoi 711 | . . . . 5 ⊢ ((𝑗 = ∅ ∨ 𝑗 = 1o) → (𝐺‘𝑗) ∈ {0, 1}) |
41 | 16, 40 | syl 14 | . . . 4 ⊢ (𝑗 ∈ 2o → (𝐺‘𝑗) ∈ {0, 1}) |
42 | 13, 41 | eqeltrd 2247 | . . 3 ⊢ (𝑗 ∈ 2o → ((𝐺 ↾ 2o)‘𝑗) ∈ {0, 1}) |
43 | 42 | rgen 2523 | . 2 ⊢ ∀𝑗 ∈ 2o ((𝐺 ↾ 2o)‘𝑗) ∈ {0, 1} |
44 | ffnfv 5654 | . 2 ⊢ ((𝐺 ↾ 2o):2o⟶{0, 1} ↔ ((𝐺 ↾ 2o) Fn 2o ∧ ∀𝑗 ∈ 2o ((𝐺 ↾ 2o)‘𝑗) ∈ {0, 1})) | |
45 | 12, 43, 44 | mpbir2an 937 | 1 ⊢ (𝐺 ↾ 2o):2o⟶{0, 1} |
Colors of variables: wff set class |
Syntax hints: ∨ wo 703 = wceq 1348 ⊤wtru 1349 ∈ wcel 2141 ∀wral 2448 ⊆ wss 3121 ∅c0 3414 {cpr 3584 ↦ cmpt 4050 suc csuc 4350 ωcom 4574 ↾ cres 4613 Fn wfn 5193 ⟶wf 5194 –1-1-onto→wf1o 5197 ‘cfv 5198 (class class class)co 5853 freccfrec 6369 1oc1o 6388 2oc2o 6389 0cc0 7774 1c1 7775 + caddc 7777 ℕ0cn0 9135 ℤcz 9212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-recs 6284 df-frec 6370 df-1o 6395 df-2o 6396 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 |
This theorem is referenced by: isomninnlem 14062 iswomninnlem 14081 ismkvnnlem 14084 |
Copyright terms: Public domain | W3C validator |