Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > 2o01f | GIF version |
Description: Mapping zero and one between ω and ℕ0 style integers. (Contributed by Jim Kingdon, 28-Jun-2024.) |
Ref | Expression |
---|---|
012of.g | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
Ref | Expression |
---|---|
2o01f | ⊢ (𝐺 ↾ 2o):2o⟶{0, 1} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 012of.g | . . . . . 6 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
2 | 1 | frechashgf1o 10363 | . . . . 5 ⊢ 𝐺:ω–1-1-onto→ℕ0 |
3 | f1of 5432 | . . . . 5 ⊢ (𝐺:ω–1-1-onto→ℕ0 → 𝐺:ω⟶ℕ0) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ 𝐺:ω⟶ℕ0 |
5 | 2onn 6489 | . . . . 5 ⊢ 2o ∈ ω | |
6 | omelon 4586 | . . . . . 6 ⊢ ω ∈ On | |
7 | 6 | onelssi 4407 | . . . . 5 ⊢ (2o ∈ ω → 2o ⊆ ω) |
8 | 5, 7 | ax-mp 5 | . . . 4 ⊢ 2o ⊆ ω |
9 | fssres 5363 | . . . 4 ⊢ ((𝐺:ω⟶ℕ0 ∧ 2o ⊆ ω) → (𝐺 ↾ 2o):2o⟶ℕ0) | |
10 | 4, 8, 9 | mp2an 423 | . . 3 ⊢ (𝐺 ↾ 2o):2o⟶ℕ0 |
11 | ffn 5337 | . . 3 ⊢ ((𝐺 ↾ 2o):2o⟶ℕ0 → (𝐺 ↾ 2o) Fn 2o) | |
12 | 10, 11 | ax-mp 5 | . 2 ⊢ (𝐺 ↾ 2o) Fn 2o |
13 | fvres 5510 | . . . 4 ⊢ (𝑗 ∈ 2o → ((𝐺 ↾ 2o)‘𝑗) = (𝐺‘𝑗)) | |
14 | elpri 3599 | . . . . . 6 ⊢ (𝑗 ∈ {∅, 1o} → (𝑗 = ∅ ∨ 𝑗 = 1o)) | |
15 | df2o3 6398 | . . . . . 6 ⊢ 2o = {∅, 1o} | |
16 | 14, 15 | eleq2s 2261 | . . . . 5 ⊢ (𝑗 ∈ 2o → (𝑗 = ∅ ∨ 𝑗 = 1o)) |
17 | fveq2 5486 | . . . . . . 7 ⊢ (𝑗 = ∅ → (𝐺‘𝑗) = (𝐺‘∅)) | |
18 | 0zd 9203 | . . . . . . . . . 10 ⊢ (⊤ → 0 ∈ ℤ) | |
19 | 18, 1 | frec2uz0d 10334 | . . . . . . . . 9 ⊢ (⊤ → (𝐺‘∅) = 0) |
20 | 19 | mptru 1352 | . . . . . . . 8 ⊢ (𝐺‘∅) = 0 |
21 | c0ex 7893 | . . . . . . . . 9 ⊢ 0 ∈ V | |
22 | 21 | prid1 3682 | . . . . . . . 8 ⊢ 0 ∈ {0, 1} |
23 | 20, 22 | eqeltri 2239 | . . . . . . 7 ⊢ (𝐺‘∅) ∈ {0, 1} |
24 | 17, 23 | eqeltrdi 2257 | . . . . . 6 ⊢ (𝑗 = ∅ → (𝐺‘𝑗) ∈ {0, 1}) |
25 | fveq2 5486 | . . . . . . 7 ⊢ (𝑗 = 1o → (𝐺‘𝑗) = (𝐺‘1o)) | |
26 | df-1o 6384 | . . . . . . . . . 10 ⊢ 1o = suc ∅ | |
27 | 26 | fveq2i 5489 | . . . . . . . . 9 ⊢ (𝐺‘1o) = (𝐺‘suc ∅) |
28 | peano1 4571 | . . . . . . . . . . . 12 ⊢ ∅ ∈ ω | |
29 | 28 | a1i 9 | . . . . . . . . . . 11 ⊢ (⊤ → ∅ ∈ ω) |
30 | 18, 1, 29 | frec2uzsucd 10336 | . . . . . . . . . 10 ⊢ (⊤ → (𝐺‘suc ∅) = ((𝐺‘∅) + 1)) |
31 | 30 | mptru 1352 | . . . . . . . . 9 ⊢ (𝐺‘suc ∅) = ((𝐺‘∅) + 1) |
32 | 20 | oveq1i 5852 | . . . . . . . . . 10 ⊢ ((𝐺‘∅) + 1) = (0 + 1) |
33 | 0p1e1 8971 | . . . . . . . . . 10 ⊢ (0 + 1) = 1 | |
34 | 32, 33 | eqtri 2186 | . . . . . . . . 9 ⊢ ((𝐺‘∅) + 1) = 1 |
35 | 27, 31, 34 | 3eqtri 2190 | . . . . . . . 8 ⊢ (𝐺‘1o) = 1 |
36 | 1ex 7894 | . . . . . . . . 9 ⊢ 1 ∈ V | |
37 | 36 | prid2 3683 | . . . . . . . 8 ⊢ 1 ∈ {0, 1} |
38 | 35, 37 | eqeltri 2239 | . . . . . . 7 ⊢ (𝐺‘1o) ∈ {0, 1} |
39 | 25, 38 | eqeltrdi 2257 | . . . . . 6 ⊢ (𝑗 = 1o → (𝐺‘𝑗) ∈ {0, 1}) |
40 | 24, 39 | jaoi 706 | . . . . 5 ⊢ ((𝑗 = ∅ ∨ 𝑗 = 1o) → (𝐺‘𝑗) ∈ {0, 1}) |
41 | 16, 40 | syl 14 | . . . 4 ⊢ (𝑗 ∈ 2o → (𝐺‘𝑗) ∈ {0, 1}) |
42 | 13, 41 | eqeltrd 2243 | . . 3 ⊢ (𝑗 ∈ 2o → ((𝐺 ↾ 2o)‘𝑗) ∈ {0, 1}) |
43 | 42 | rgen 2519 | . 2 ⊢ ∀𝑗 ∈ 2o ((𝐺 ↾ 2o)‘𝑗) ∈ {0, 1} |
44 | ffnfv 5643 | . 2 ⊢ ((𝐺 ↾ 2o):2o⟶{0, 1} ↔ ((𝐺 ↾ 2o) Fn 2o ∧ ∀𝑗 ∈ 2o ((𝐺 ↾ 2o)‘𝑗) ∈ {0, 1})) | |
45 | 12, 43, 44 | mpbir2an 932 | 1 ⊢ (𝐺 ↾ 2o):2o⟶{0, 1} |
Colors of variables: wff set class |
Syntax hints: ∨ wo 698 = wceq 1343 ⊤wtru 1344 ∈ wcel 2136 ∀wral 2444 ⊆ wss 3116 ∅c0 3409 {cpr 3577 ↦ cmpt 4043 suc csuc 4343 ωcom 4567 ↾ cres 4606 Fn wfn 5183 ⟶wf 5184 –1-1-onto→wf1o 5187 ‘cfv 5188 (class class class)co 5842 freccfrec 6358 1oc1o 6377 2oc2o 6378 0cc0 7753 1c1 7754 + caddc 7756 ℕ0cn0 9114 ℤcz 9191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-recs 6273 df-frec 6359 df-1o 6384 df-2o 6385 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 |
This theorem is referenced by: isomninnlem 13909 iswomninnlem 13928 ismkvnnlem 13931 |
Copyright terms: Public domain | W3C validator |