![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > 2o01f | GIF version |
Description: Mapping zero and one between ω and ℕ0 style integers. (Contributed by Jim Kingdon, 28-Jun-2024.) |
Ref | Expression |
---|---|
012of.g | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
Ref | Expression |
---|---|
2o01f | ⊢ (𝐺 ↾ 2o):2o⟶{0, 1} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 012of.g | . . . . . 6 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
2 | 1 | frechashgf1o 10502 | . . . . 5 ⊢ 𝐺:ω–1-1-onto→ℕ0 |
3 | f1of 5501 | . . . . 5 ⊢ (𝐺:ω–1-1-onto→ℕ0 → 𝐺:ω⟶ℕ0) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ 𝐺:ω⟶ℕ0 |
5 | 2onn 6576 | . . . . 5 ⊢ 2o ∈ ω | |
6 | omelon 4642 | . . . . . 6 ⊢ ω ∈ On | |
7 | 6 | onelssi 4461 | . . . . 5 ⊢ (2o ∈ ω → 2o ⊆ ω) |
8 | 5, 7 | ax-mp 5 | . . . 4 ⊢ 2o ⊆ ω |
9 | fssres 5430 | . . . 4 ⊢ ((𝐺:ω⟶ℕ0 ∧ 2o ⊆ ω) → (𝐺 ↾ 2o):2o⟶ℕ0) | |
10 | 4, 8, 9 | mp2an 426 | . . 3 ⊢ (𝐺 ↾ 2o):2o⟶ℕ0 |
11 | ffn 5404 | . . 3 ⊢ ((𝐺 ↾ 2o):2o⟶ℕ0 → (𝐺 ↾ 2o) Fn 2o) | |
12 | 10, 11 | ax-mp 5 | . 2 ⊢ (𝐺 ↾ 2o) Fn 2o |
13 | fvres 5579 | . . . 4 ⊢ (𝑗 ∈ 2o → ((𝐺 ↾ 2o)‘𝑗) = (𝐺‘𝑗)) | |
14 | elpri 3642 | . . . . . 6 ⊢ (𝑗 ∈ {∅, 1o} → (𝑗 = ∅ ∨ 𝑗 = 1o)) | |
15 | df2o3 6485 | . . . . . 6 ⊢ 2o = {∅, 1o} | |
16 | 14, 15 | eleq2s 2288 | . . . . 5 ⊢ (𝑗 ∈ 2o → (𝑗 = ∅ ∨ 𝑗 = 1o)) |
17 | fveq2 5555 | . . . . . . 7 ⊢ (𝑗 = ∅ → (𝐺‘𝑗) = (𝐺‘∅)) | |
18 | 0zd 9332 | . . . . . . . . . 10 ⊢ (⊤ → 0 ∈ ℤ) | |
19 | 18, 1 | frec2uz0d 10473 | . . . . . . . . 9 ⊢ (⊤ → (𝐺‘∅) = 0) |
20 | 19 | mptru 1373 | . . . . . . . 8 ⊢ (𝐺‘∅) = 0 |
21 | c0ex 8015 | . . . . . . . . 9 ⊢ 0 ∈ V | |
22 | 21 | prid1 3725 | . . . . . . . 8 ⊢ 0 ∈ {0, 1} |
23 | 20, 22 | eqeltri 2266 | . . . . . . 7 ⊢ (𝐺‘∅) ∈ {0, 1} |
24 | 17, 23 | eqeltrdi 2284 | . . . . . 6 ⊢ (𝑗 = ∅ → (𝐺‘𝑗) ∈ {0, 1}) |
25 | fveq2 5555 | . . . . . . 7 ⊢ (𝑗 = 1o → (𝐺‘𝑗) = (𝐺‘1o)) | |
26 | df-1o 6471 | . . . . . . . . . 10 ⊢ 1o = suc ∅ | |
27 | 26 | fveq2i 5558 | . . . . . . . . 9 ⊢ (𝐺‘1o) = (𝐺‘suc ∅) |
28 | peano1 4627 | . . . . . . . . . . . 12 ⊢ ∅ ∈ ω | |
29 | 28 | a1i 9 | . . . . . . . . . . 11 ⊢ (⊤ → ∅ ∈ ω) |
30 | 18, 1, 29 | frec2uzsucd 10475 | . . . . . . . . . 10 ⊢ (⊤ → (𝐺‘suc ∅) = ((𝐺‘∅) + 1)) |
31 | 30 | mptru 1373 | . . . . . . . . 9 ⊢ (𝐺‘suc ∅) = ((𝐺‘∅) + 1) |
32 | 20 | oveq1i 5929 | . . . . . . . . . 10 ⊢ ((𝐺‘∅) + 1) = (0 + 1) |
33 | 0p1e1 9098 | . . . . . . . . . 10 ⊢ (0 + 1) = 1 | |
34 | 32, 33 | eqtri 2214 | . . . . . . . . 9 ⊢ ((𝐺‘∅) + 1) = 1 |
35 | 27, 31, 34 | 3eqtri 2218 | . . . . . . . 8 ⊢ (𝐺‘1o) = 1 |
36 | 1ex 8016 | . . . . . . . . 9 ⊢ 1 ∈ V | |
37 | 36 | prid2 3726 | . . . . . . . 8 ⊢ 1 ∈ {0, 1} |
38 | 35, 37 | eqeltri 2266 | . . . . . . 7 ⊢ (𝐺‘1o) ∈ {0, 1} |
39 | 25, 38 | eqeltrdi 2284 | . . . . . 6 ⊢ (𝑗 = 1o → (𝐺‘𝑗) ∈ {0, 1}) |
40 | 24, 39 | jaoi 717 | . . . . 5 ⊢ ((𝑗 = ∅ ∨ 𝑗 = 1o) → (𝐺‘𝑗) ∈ {0, 1}) |
41 | 16, 40 | syl 14 | . . . 4 ⊢ (𝑗 ∈ 2o → (𝐺‘𝑗) ∈ {0, 1}) |
42 | 13, 41 | eqeltrd 2270 | . . 3 ⊢ (𝑗 ∈ 2o → ((𝐺 ↾ 2o)‘𝑗) ∈ {0, 1}) |
43 | 42 | rgen 2547 | . 2 ⊢ ∀𝑗 ∈ 2o ((𝐺 ↾ 2o)‘𝑗) ∈ {0, 1} |
44 | ffnfv 5717 | . 2 ⊢ ((𝐺 ↾ 2o):2o⟶{0, 1} ↔ ((𝐺 ↾ 2o) Fn 2o ∧ ∀𝑗 ∈ 2o ((𝐺 ↾ 2o)‘𝑗) ∈ {0, 1})) | |
45 | 12, 43, 44 | mpbir2an 944 | 1 ⊢ (𝐺 ↾ 2o):2o⟶{0, 1} |
Colors of variables: wff set class |
Syntax hints: ∨ wo 709 = wceq 1364 ⊤wtru 1365 ∈ wcel 2164 ∀wral 2472 ⊆ wss 3154 ∅c0 3447 {cpr 3620 ↦ cmpt 4091 suc csuc 4397 ωcom 4623 ↾ cres 4662 Fn wfn 5250 ⟶wf 5251 –1-1-onto→wf1o 5254 ‘cfv 5255 (class class class)co 5919 freccfrec 6445 1oc1o 6464 2oc2o 6465 0cc0 7874 1c1 7875 + caddc 7877 ℕ0cn0 9243 ℤcz 9320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4145 ax-sep 4148 ax-nul 4156 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-iinf 4621 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-addcom 7974 ax-addass 7976 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-0id 7982 ax-rnegex 7983 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-ltadd 7990 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-tr 4129 df-id 4325 df-iord 4398 df-on 4400 df-ilim 4401 df-suc 4403 df-iom 4624 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-recs 6360 df-frec 6446 df-1o 6471 df-2o 6472 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-inn 8985 df-n0 9244 df-z 9321 df-uz 9596 |
This theorem is referenced by: isomninnlem 15590 iswomninnlem 15609 ismkvnnlem 15612 |
Copyright terms: Public domain | W3C validator |