| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > 2o01f | GIF version | ||
| Description: Mapping zero and one between ω and ℕ0 style integers. (Contributed by Jim Kingdon, 28-Jun-2024.) |
| Ref | Expression |
|---|---|
| 012of.g | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
| Ref | Expression |
|---|---|
| 2o01f | ⊢ (𝐺 ↾ 2o):2o⟶{0, 1} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 012of.g | . . . . . 6 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
| 2 | 1 | frechashgf1o 10595 | . . . . 5 ⊢ 𝐺:ω–1-1-onto→ℕ0 |
| 3 | f1of 5534 | . . . . 5 ⊢ (𝐺:ω–1-1-onto→ℕ0 → 𝐺:ω⟶ℕ0) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ 𝐺:ω⟶ℕ0 |
| 5 | 2onn 6620 | . . . . 5 ⊢ 2o ∈ ω | |
| 6 | omelon 4665 | . . . . . 6 ⊢ ω ∈ On | |
| 7 | 6 | onelssi 4484 | . . . . 5 ⊢ (2o ∈ ω → 2o ⊆ ω) |
| 8 | 5, 7 | ax-mp 5 | . . . 4 ⊢ 2o ⊆ ω |
| 9 | fssres 5463 | . . . 4 ⊢ ((𝐺:ω⟶ℕ0 ∧ 2o ⊆ ω) → (𝐺 ↾ 2o):2o⟶ℕ0) | |
| 10 | 4, 8, 9 | mp2an 426 | . . 3 ⊢ (𝐺 ↾ 2o):2o⟶ℕ0 |
| 11 | ffn 5435 | . . 3 ⊢ ((𝐺 ↾ 2o):2o⟶ℕ0 → (𝐺 ↾ 2o) Fn 2o) | |
| 12 | 10, 11 | ax-mp 5 | . 2 ⊢ (𝐺 ↾ 2o) Fn 2o |
| 13 | fvres 5613 | . . . 4 ⊢ (𝑗 ∈ 2o → ((𝐺 ↾ 2o)‘𝑗) = (𝐺‘𝑗)) | |
| 14 | elpri 3661 | . . . . . 6 ⊢ (𝑗 ∈ {∅, 1o} → (𝑗 = ∅ ∨ 𝑗 = 1o)) | |
| 15 | df2o3 6529 | . . . . . 6 ⊢ 2o = {∅, 1o} | |
| 16 | 14, 15 | eleq2s 2301 | . . . . 5 ⊢ (𝑗 ∈ 2o → (𝑗 = ∅ ∨ 𝑗 = 1o)) |
| 17 | fveq2 5589 | . . . . . . 7 ⊢ (𝑗 = ∅ → (𝐺‘𝑗) = (𝐺‘∅)) | |
| 18 | 0zd 9404 | . . . . . . . . . 10 ⊢ (⊤ → 0 ∈ ℤ) | |
| 19 | 18, 1 | frec2uz0d 10566 | . . . . . . . . 9 ⊢ (⊤ → (𝐺‘∅) = 0) |
| 20 | 19 | mptru 1382 | . . . . . . . 8 ⊢ (𝐺‘∅) = 0 |
| 21 | c0ex 8086 | . . . . . . . . 9 ⊢ 0 ∈ V | |
| 22 | 21 | prid1 3744 | . . . . . . . 8 ⊢ 0 ∈ {0, 1} |
| 23 | 20, 22 | eqeltri 2279 | . . . . . . 7 ⊢ (𝐺‘∅) ∈ {0, 1} |
| 24 | 17, 23 | eqeltrdi 2297 | . . . . . 6 ⊢ (𝑗 = ∅ → (𝐺‘𝑗) ∈ {0, 1}) |
| 25 | fveq2 5589 | . . . . . . 7 ⊢ (𝑗 = 1o → (𝐺‘𝑗) = (𝐺‘1o)) | |
| 26 | df-1o 6515 | . . . . . . . . . 10 ⊢ 1o = suc ∅ | |
| 27 | 26 | fveq2i 5592 | . . . . . . . . 9 ⊢ (𝐺‘1o) = (𝐺‘suc ∅) |
| 28 | peano1 4650 | . . . . . . . . . . . 12 ⊢ ∅ ∈ ω | |
| 29 | 28 | a1i 9 | . . . . . . . . . . 11 ⊢ (⊤ → ∅ ∈ ω) |
| 30 | 18, 1, 29 | frec2uzsucd 10568 | . . . . . . . . . 10 ⊢ (⊤ → (𝐺‘suc ∅) = ((𝐺‘∅) + 1)) |
| 31 | 30 | mptru 1382 | . . . . . . . . 9 ⊢ (𝐺‘suc ∅) = ((𝐺‘∅) + 1) |
| 32 | 20 | oveq1i 5967 | . . . . . . . . . 10 ⊢ ((𝐺‘∅) + 1) = (0 + 1) |
| 33 | 0p1e1 9170 | . . . . . . . . . 10 ⊢ (0 + 1) = 1 | |
| 34 | 32, 33 | eqtri 2227 | . . . . . . . . 9 ⊢ ((𝐺‘∅) + 1) = 1 |
| 35 | 27, 31, 34 | 3eqtri 2231 | . . . . . . . 8 ⊢ (𝐺‘1o) = 1 |
| 36 | 1ex 8087 | . . . . . . . . 9 ⊢ 1 ∈ V | |
| 37 | 36 | prid2 3745 | . . . . . . . 8 ⊢ 1 ∈ {0, 1} |
| 38 | 35, 37 | eqeltri 2279 | . . . . . . 7 ⊢ (𝐺‘1o) ∈ {0, 1} |
| 39 | 25, 38 | eqeltrdi 2297 | . . . . . 6 ⊢ (𝑗 = 1o → (𝐺‘𝑗) ∈ {0, 1}) |
| 40 | 24, 39 | jaoi 718 | . . . . 5 ⊢ ((𝑗 = ∅ ∨ 𝑗 = 1o) → (𝐺‘𝑗) ∈ {0, 1}) |
| 41 | 16, 40 | syl 14 | . . . 4 ⊢ (𝑗 ∈ 2o → (𝐺‘𝑗) ∈ {0, 1}) |
| 42 | 13, 41 | eqeltrd 2283 | . . 3 ⊢ (𝑗 ∈ 2o → ((𝐺 ↾ 2o)‘𝑗) ∈ {0, 1}) |
| 43 | 42 | rgen 2560 | . 2 ⊢ ∀𝑗 ∈ 2o ((𝐺 ↾ 2o)‘𝑗) ∈ {0, 1} |
| 44 | ffnfv 5751 | . 2 ⊢ ((𝐺 ↾ 2o):2o⟶{0, 1} ↔ ((𝐺 ↾ 2o) Fn 2o ∧ ∀𝑗 ∈ 2o ((𝐺 ↾ 2o)‘𝑗) ∈ {0, 1})) | |
| 45 | 12, 43, 44 | mpbir2an 945 | 1 ⊢ (𝐺 ↾ 2o):2o⟶{0, 1} |
| Colors of variables: wff set class |
| Syntax hints: ∨ wo 710 = wceq 1373 ⊤wtru 1374 ∈ wcel 2177 ∀wral 2485 ⊆ wss 3170 ∅c0 3464 {cpr 3639 ↦ cmpt 4113 suc csuc 4420 ωcom 4646 ↾ cres 4685 Fn wfn 5275 ⟶wf 5276 –1-1-onto→wf1o 5279 ‘cfv 5280 (class class class)co 5957 freccfrec 6489 1oc1o 6508 2oc2o 6509 0cc0 7945 1c1 7946 + caddc 7948 ℕ0cn0 9315 ℤcz 9392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-recs 6404 df-frec 6490 df-1o 6515 df-2o 6516 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-inn 9057 df-n0 9316 df-z 9393 df-uz 9669 |
| This theorem is referenced by: isomninnlem 16110 iswomninnlem 16129 ismkvnnlem 16132 |
| Copyright terms: Public domain | W3C validator |