| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > 2o01f | GIF version | ||
| Description: Mapping zero and one between ω and ℕ0 style integers. (Contributed by Jim Kingdon, 28-Jun-2024.) |
| Ref | Expression |
|---|---|
| 012of.g | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
| Ref | Expression |
|---|---|
| 2o01f | ⊢ (𝐺 ↾ 2o):2o⟶{0, 1} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 012of.g | . . . . . 6 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
| 2 | 1 | frechashgf1o 10571 | . . . . 5 ⊢ 𝐺:ω–1-1-onto→ℕ0 |
| 3 | f1of 5521 | . . . . 5 ⊢ (𝐺:ω–1-1-onto→ℕ0 → 𝐺:ω⟶ℕ0) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ 𝐺:ω⟶ℕ0 |
| 5 | 2onn 6606 | . . . . 5 ⊢ 2o ∈ ω | |
| 6 | omelon 4656 | . . . . . 6 ⊢ ω ∈ On | |
| 7 | 6 | onelssi 4475 | . . . . 5 ⊢ (2o ∈ ω → 2o ⊆ ω) |
| 8 | 5, 7 | ax-mp 5 | . . . 4 ⊢ 2o ⊆ ω |
| 9 | fssres 5450 | . . . 4 ⊢ ((𝐺:ω⟶ℕ0 ∧ 2o ⊆ ω) → (𝐺 ↾ 2o):2o⟶ℕ0) | |
| 10 | 4, 8, 9 | mp2an 426 | . . 3 ⊢ (𝐺 ↾ 2o):2o⟶ℕ0 |
| 11 | ffn 5424 | . . 3 ⊢ ((𝐺 ↾ 2o):2o⟶ℕ0 → (𝐺 ↾ 2o) Fn 2o) | |
| 12 | 10, 11 | ax-mp 5 | . 2 ⊢ (𝐺 ↾ 2o) Fn 2o |
| 13 | fvres 5599 | . . . 4 ⊢ (𝑗 ∈ 2o → ((𝐺 ↾ 2o)‘𝑗) = (𝐺‘𝑗)) | |
| 14 | elpri 3655 | . . . . . 6 ⊢ (𝑗 ∈ {∅, 1o} → (𝑗 = ∅ ∨ 𝑗 = 1o)) | |
| 15 | df2o3 6515 | . . . . . 6 ⊢ 2o = {∅, 1o} | |
| 16 | 14, 15 | eleq2s 2299 | . . . . 5 ⊢ (𝑗 ∈ 2o → (𝑗 = ∅ ∨ 𝑗 = 1o)) |
| 17 | fveq2 5575 | . . . . . . 7 ⊢ (𝑗 = ∅ → (𝐺‘𝑗) = (𝐺‘∅)) | |
| 18 | 0zd 9383 | . . . . . . . . . 10 ⊢ (⊤ → 0 ∈ ℤ) | |
| 19 | 18, 1 | frec2uz0d 10542 | . . . . . . . . 9 ⊢ (⊤ → (𝐺‘∅) = 0) |
| 20 | 19 | mptru 1381 | . . . . . . . 8 ⊢ (𝐺‘∅) = 0 |
| 21 | c0ex 8065 | . . . . . . . . 9 ⊢ 0 ∈ V | |
| 22 | 21 | prid1 3738 | . . . . . . . 8 ⊢ 0 ∈ {0, 1} |
| 23 | 20, 22 | eqeltri 2277 | . . . . . . 7 ⊢ (𝐺‘∅) ∈ {0, 1} |
| 24 | 17, 23 | eqeltrdi 2295 | . . . . . 6 ⊢ (𝑗 = ∅ → (𝐺‘𝑗) ∈ {0, 1}) |
| 25 | fveq2 5575 | . . . . . . 7 ⊢ (𝑗 = 1o → (𝐺‘𝑗) = (𝐺‘1o)) | |
| 26 | df-1o 6501 | . . . . . . . . . 10 ⊢ 1o = suc ∅ | |
| 27 | 26 | fveq2i 5578 | . . . . . . . . 9 ⊢ (𝐺‘1o) = (𝐺‘suc ∅) |
| 28 | peano1 4641 | . . . . . . . . . . . 12 ⊢ ∅ ∈ ω | |
| 29 | 28 | a1i 9 | . . . . . . . . . . 11 ⊢ (⊤ → ∅ ∈ ω) |
| 30 | 18, 1, 29 | frec2uzsucd 10544 | . . . . . . . . . 10 ⊢ (⊤ → (𝐺‘suc ∅) = ((𝐺‘∅) + 1)) |
| 31 | 30 | mptru 1381 | . . . . . . . . 9 ⊢ (𝐺‘suc ∅) = ((𝐺‘∅) + 1) |
| 32 | 20 | oveq1i 5953 | . . . . . . . . . 10 ⊢ ((𝐺‘∅) + 1) = (0 + 1) |
| 33 | 0p1e1 9149 | . . . . . . . . . 10 ⊢ (0 + 1) = 1 | |
| 34 | 32, 33 | eqtri 2225 | . . . . . . . . 9 ⊢ ((𝐺‘∅) + 1) = 1 |
| 35 | 27, 31, 34 | 3eqtri 2229 | . . . . . . . 8 ⊢ (𝐺‘1o) = 1 |
| 36 | 1ex 8066 | . . . . . . . . 9 ⊢ 1 ∈ V | |
| 37 | 36 | prid2 3739 | . . . . . . . 8 ⊢ 1 ∈ {0, 1} |
| 38 | 35, 37 | eqeltri 2277 | . . . . . . 7 ⊢ (𝐺‘1o) ∈ {0, 1} |
| 39 | 25, 38 | eqeltrdi 2295 | . . . . . 6 ⊢ (𝑗 = 1o → (𝐺‘𝑗) ∈ {0, 1}) |
| 40 | 24, 39 | jaoi 717 | . . . . 5 ⊢ ((𝑗 = ∅ ∨ 𝑗 = 1o) → (𝐺‘𝑗) ∈ {0, 1}) |
| 41 | 16, 40 | syl 14 | . . . 4 ⊢ (𝑗 ∈ 2o → (𝐺‘𝑗) ∈ {0, 1}) |
| 42 | 13, 41 | eqeltrd 2281 | . . 3 ⊢ (𝑗 ∈ 2o → ((𝐺 ↾ 2o)‘𝑗) ∈ {0, 1}) |
| 43 | 42 | rgen 2558 | . 2 ⊢ ∀𝑗 ∈ 2o ((𝐺 ↾ 2o)‘𝑗) ∈ {0, 1} |
| 44 | ffnfv 5737 | . 2 ⊢ ((𝐺 ↾ 2o):2o⟶{0, 1} ↔ ((𝐺 ↾ 2o) Fn 2o ∧ ∀𝑗 ∈ 2o ((𝐺 ↾ 2o)‘𝑗) ∈ {0, 1})) | |
| 45 | 12, 43, 44 | mpbir2an 944 | 1 ⊢ (𝐺 ↾ 2o):2o⟶{0, 1} |
| Colors of variables: wff set class |
| Syntax hints: ∨ wo 709 = wceq 1372 ⊤wtru 1373 ∈ wcel 2175 ∀wral 2483 ⊆ wss 3165 ∅c0 3459 {cpr 3633 ↦ cmpt 4104 suc csuc 4411 ωcom 4637 ↾ cres 4676 Fn wfn 5265 ⟶wf 5266 –1-1-onto→wf1o 5269 ‘cfv 5270 (class class class)co 5943 freccfrec 6475 1oc1o 6494 2oc2o 6495 0cc0 7924 1c1 7925 + caddc 7927 ℕ0cn0 9294 ℤcz 9371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-recs 6390 df-frec 6476 df-1o 6501 df-2o 6502 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-n0 9295 df-z 9372 df-uz 9648 |
| This theorem is referenced by: isomninnlem 15902 iswomninnlem 15921 ismkvnnlem 15924 |
| Copyright terms: Public domain | W3C validator |