| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > 2o01f | GIF version | ||
| Description: Mapping zero and one between ω and ℕ0 style integers. (Contributed by Jim Kingdon, 28-Jun-2024.) |
| Ref | Expression |
|---|---|
| 012of.g | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
| Ref | Expression |
|---|---|
| 2o01f | ⊢ (𝐺 ↾ 2o):2o⟶{0, 1} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 012of.g | . . . . . 6 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
| 2 | 1 | frechashgf1o 10645 | . . . . 5 ⊢ 𝐺:ω–1-1-onto→ℕ0 |
| 3 | f1of 5571 | . . . . 5 ⊢ (𝐺:ω–1-1-onto→ℕ0 → 𝐺:ω⟶ℕ0) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ 𝐺:ω⟶ℕ0 |
| 5 | 2onn 6665 | . . . . 5 ⊢ 2o ∈ ω | |
| 6 | omelon 4700 | . . . . . 6 ⊢ ω ∈ On | |
| 7 | 6 | onelssi 4519 | . . . . 5 ⊢ (2o ∈ ω → 2o ⊆ ω) |
| 8 | 5, 7 | ax-mp 5 | . . . 4 ⊢ 2o ⊆ ω |
| 9 | fssres 5500 | . . . 4 ⊢ ((𝐺:ω⟶ℕ0 ∧ 2o ⊆ ω) → (𝐺 ↾ 2o):2o⟶ℕ0) | |
| 10 | 4, 8, 9 | mp2an 426 | . . 3 ⊢ (𝐺 ↾ 2o):2o⟶ℕ0 |
| 11 | ffn 5472 | . . 3 ⊢ ((𝐺 ↾ 2o):2o⟶ℕ0 → (𝐺 ↾ 2o) Fn 2o) | |
| 12 | 10, 11 | ax-mp 5 | . 2 ⊢ (𝐺 ↾ 2o) Fn 2o |
| 13 | fvres 5650 | . . . 4 ⊢ (𝑗 ∈ 2o → ((𝐺 ↾ 2o)‘𝑗) = (𝐺‘𝑗)) | |
| 14 | elpri 3689 | . . . . . 6 ⊢ (𝑗 ∈ {∅, 1o} → (𝑗 = ∅ ∨ 𝑗 = 1o)) | |
| 15 | df2o3 6574 | . . . . . 6 ⊢ 2o = {∅, 1o} | |
| 16 | 14, 15 | eleq2s 2324 | . . . . 5 ⊢ (𝑗 ∈ 2o → (𝑗 = ∅ ∨ 𝑗 = 1o)) |
| 17 | fveq2 5626 | . . . . . . 7 ⊢ (𝑗 = ∅ → (𝐺‘𝑗) = (𝐺‘∅)) | |
| 18 | 0zd 9454 | . . . . . . . . . 10 ⊢ (⊤ → 0 ∈ ℤ) | |
| 19 | 18, 1 | frec2uz0d 10616 | . . . . . . . . 9 ⊢ (⊤ → (𝐺‘∅) = 0) |
| 20 | 19 | mptru 1404 | . . . . . . . 8 ⊢ (𝐺‘∅) = 0 |
| 21 | c0ex 8136 | . . . . . . . . 9 ⊢ 0 ∈ V | |
| 22 | 21 | prid1 3772 | . . . . . . . 8 ⊢ 0 ∈ {0, 1} |
| 23 | 20, 22 | eqeltri 2302 | . . . . . . 7 ⊢ (𝐺‘∅) ∈ {0, 1} |
| 24 | 17, 23 | eqeltrdi 2320 | . . . . . 6 ⊢ (𝑗 = ∅ → (𝐺‘𝑗) ∈ {0, 1}) |
| 25 | fveq2 5626 | . . . . . . 7 ⊢ (𝑗 = 1o → (𝐺‘𝑗) = (𝐺‘1o)) | |
| 26 | df-1o 6560 | . . . . . . . . . 10 ⊢ 1o = suc ∅ | |
| 27 | 26 | fveq2i 5629 | . . . . . . . . 9 ⊢ (𝐺‘1o) = (𝐺‘suc ∅) |
| 28 | peano1 4685 | . . . . . . . . . . . 12 ⊢ ∅ ∈ ω | |
| 29 | 28 | a1i 9 | . . . . . . . . . . 11 ⊢ (⊤ → ∅ ∈ ω) |
| 30 | 18, 1, 29 | frec2uzsucd 10618 | . . . . . . . . . 10 ⊢ (⊤ → (𝐺‘suc ∅) = ((𝐺‘∅) + 1)) |
| 31 | 30 | mptru 1404 | . . . . . . . . 9 ⊢ (𝐺‘suc ∅) = ((𝐺‘∅) + 1) |
| 32 | 20 | oveq1i 6010 | . . . . . . . . . 10 ⊢ ((𝐺‘∅) + 1) = (0 + 1) |
| 33 | 0p1e1 9220 | . . . . . . . . . 10 ⊢ (0 + 1) = 1 | |
| 34 | 32, 33 | eqtri 2250 | . . . . . . . . 9 ⊢ ((𝐺‘∅) + 1) = 1 |
| 35 | 27, 31, 34 | 3eqtri 2254 | . . . . . . . 8 ⊢ (𝐺‘1o) = 1 |
| 36 | 1ex 8137 | . . . . . . . . 9 ⊢ 1 ∈ V | |
| 37 | 36 | prid2 3773 | . . . . . . . 8 ⊢ 1 ∈ {0, 1} |
| 38 | 35, 37 | eqeltri 2302 | . . . . . . 7 ⊢ (𝐺‘1o) ∈ {0, 1} |
| 39 | 25, 38 | eqeltrdi 2320 | . . . . . 6 ⊢ (𝑗 = 1o → (𝐺‘𝑗) ∈ {0, 1}) |
| 40 | 24, 39 | jaoi 721 | . . . . 5 ⊢ ((𝑗 = ∅ ∨ 𝑗 = 1o) → (𝐺‘𝑗) ∈ {0, 1}) |
| 41 | 16, 40 | syl 14 | . . . 4 ⊢ (𝑗 ∈ 2o → (𝐺‘𝑗) ∈ {0, 1}) |
| 42 | 13, 41 | eqeltrd 2306 | . . 3 ⊢ (𝑗 ∈ 2o → ((𝐺 ↾ 2o)‘𝑗) ∈ {0, 1}) |
| 43 | 42 | rgen 2583 | . 2 ⊢ ∀𝑗 ∈ 2o ((𝐺 ↾ 2o)‘𝑗) ∈ {0, 1} |
| 44 | ffnfv 5792 | . 2 ⊢ ((𝐺 ↾ 2o):2o⟶{0, 1} ↔ ((𝐺 ↾ 2o) Fn 2o ∧ ∀𝑗 ∈ 2o ((𝐺 ↾ 2o)‘𝑗) ∈ {0, 1})) | |
| 45 | 12, 43, 44 | mpbir2an 948 | 1 ⊢ (𝐺 ↾ 2o):2o⟶{0, 1} |
| Colors of variables: wff set class |
| Syntax hints: ∨ wo 713 = wceq 1395 ⊤wtru 1396 ∈ wcel 2200 ∀wral 2508 ⊆ wss 3197 ∅c0 3491 {cpr 3667 ↦ cmpt 4144 suc csuc 4455 ωcom 4681 ↾ cres 4720 Fn wfn 5312 ⟶wf 5313 –1-1-onto→wf1o 5316 ‘cfv 5317 (class class class)co 6000 freccfrec 6534 1oc1o 6553 2oc2o 6554 0cc0 7995 1c1 7996 + caddc 7998 ℕ0cn0 9365 ℤcz 9442 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-ilim 4459 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-recs 6449 df-frec 6535 df-1o 6560 df-2o 6561 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-n0 9366 df-z 9443 df-uz 9719 |
| This theorem is referenced by: isomninnlem 16357 iswomninnlem 16376 ismkvnnlem 16379 |
| Copyright terms: Public domain | W3C validator |