Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  2o01f GIF version

Theorem 2o01f 15557
Description: Mapping zero and one between ω and 0 style integers. (Contributed by Jim Kingdon, 28-Jun-2024.)
Hypothesis
Ref Expression
012of.g 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
Assertion
Ref Expression
2o01f (𝐺 ↾ 2o):2o⟶{0, 1}

Proof of Theorem 2o01f
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 012of.g . . . . . 6 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
21frechashgf1o 10502 . . . . 5 𝐺:ω–1-1-onto→ℕ0
3 f1of 5501 . . . . 5 (𝐺:ω–1-1-onto→ℕ0𝐺:ω⟶ℕ0)
42, 3ax-mp 5 . . . 4 𝐺:ω⟶ℕ0
5 2onn 6576 . . . . 5 2o ∈ ω
6 omelon 4642 . . . . . 6 ω ∈ On
76onelssi 4461 . . . . 5 (2o ∈ ω → 2o ⊆ ω)
85, 7ax-mp 5 . . . 4 2o ⊆ ω
9 fssres 5430 . . . 4 ((𝐺:ω⟶ℕ0 ∧ 2o ⊆ ω) → (𝐺 ↾ 2o):2o⟶ℕ0)
104, 8, 9mp2an 426 . . 3 (𝐺 ↾ 2o):2o⟶ℕ0
11 ffn 5404 . . 3 ((𝐺 ↾ 2o):2o⟶ℕ0 → (𝐺 ↾ 2o) Fn 2o)
1210, 11ax-mp 5 . 2 (𝐺 ↾ 2o) Fn 2o
13 fvres 5579 . . . 4 (𝑗 ∈ 2o → ((𝐺 ↾ 2o)‘𝑗) = (𝐺𝑗))
14 elpri 3642 . . . . . 6 (𝑗 ∈ {∅, 1o} → (𝑗 = ∅ ∨ 𝑗 = 1o))
15 df2o3 6485 . . . . . 6 2o = {∅, 1o}
1614, 15eleq2s 2288 . . . . 5 (𝑗 ∈ 2o → (𝑗 = ∅ ∨ 𝑗 = 1o))
17 fveq2 5555 . . . . . . 7 (𝑗 = ∅ → (𝐺𝑗) = (𝐺‘∅))
18 0zd 9332 . . . . . . . . . 10 (⊤ → 0 ∈ ℤ)
1918, 1frec2uz0d 10473 . . . . . . . . 9 (⊤ → (𝐺‘∅) = 0)
2019mptru 1373 . . . . . . . 8 (𝐺‘∅) = 0
21 c0ex 8015 . . . . . . . . 9 0 ∈ V
2221prid1 3725 . . . . . . . 8 0 ∈ {0, 1}
2320, 22eqeltri 2266 . . . . . . 7 (𝐺‘∅) ∈ {0, 1}
2417, 23eqeltrdi 2284 . . . . . 6 (𝑗 = ∅ → (𝐺𝑗) ∈ {0, 1})
25 fveq2 5555 . . . . . . 7 (𝑗 = 1o → (𝐺𝑗) = (𝐺‘1o))
26 df-1o 6471 . . . . . . . . . 10 1o = suc ∅
2726fveq2i 5558 . . . . . . . . 9 (𝐺‘1o) = (𝐺‘suc ∅)
28 peano1 4627 . . . . . . . . . . . 12 ∅ ∈ ω
2928a1i 9 . . . . . . . . . . 11 (⊤ → ∅ ∈ ω)
3018, 1, 29frec2uzsucd 10475 . . . . . . . . . 10 (⊤ → (𝐺‘suc ∅) = ((𝐺‘∅) + 1))
3130mptru 1373 . . . . . . . . 9 (𝐺‘suc ∅) = ((𝐺‘∅) + 1)
3220oveq1i 5929 . . . . . . . . . 10 ((𝐺‘∅) + 1) = (0 + 1)
33 0p1e1 9098 . . . . . . . . . 10 (0 + 1) = 1
3432, 33eqtri 2214 . . . . . . . . 9 ((𝐺‘∅) + 1) = 1
3527, 31, 343eqtri 2218 . . . . . . . 8 (𝐺‘1o) = 1
36 1ex 8016 . . . . . . . . 9 1 ∈ V
3736prid2 3726 . . . . . . . 8 1 ∈ {0, 1}
3835, 37eqeltri 2266 . . . . . . 7 (𝐺‘1o) ∈ {0, 1}
3925, 38eqeltrdi 2284 . . . . . 6 (𝑗 = 1o → (𝐺𝑗) ∈ {0, 1})
4024, 39jaoi 717 . . . . 5 ((𝑗 = ∅ ∨ 𝑗 = 1o) → (𝐺𝑗) ∈ {0, 1})
4116, 40syl 14 . . . 4 (𝑗 ∈ 2o → (𝐺𝑗) ∈ {0, 1})
4213, 41eqeltrd 2270 . . 3 (𝑗 ∈ 2o → ((𝐺 ↾ 2o)‘𝑗) ∈ {0, 1})
4342rgen 2547 . 2 𝑗 ∈ 2o ((𝐺 ↾ 2o)‘𝑗) ∈ {0, 1}
44 ffnfv 5717 . 2 ((𝐺 ↾ 2o):2o⟶{0, 1} ↔ ((𝐺 ↾ 2o) Fn 2o ∧ ∀𝑗 ∈ 2o ((𝐺 ↾ 2o)‘𝑗) ∈ {0, 1}))
4512, 43, 44mpbir2an 944 1 (𝐺 ↾ 2o):2o⟶{0, 1}
Colors of variables: wff set class
Syntax hints:  wo 709   = wceq 1364  wtru 1365  wcel 2164  wral 2472  wss 3154  c0 3447  {cpr 3620  cmpt 4091  suc csuc 4397  ωcom 4623  cres 4662   Fn wfn 5250  wf 5251  1-1-ontowf1o 5254  cfv 5255  (class class class)co 5919  freccfrec 6445  1oc1o 6464  2oc2o 6465  0cc0 7874  1c1 7875   + caddc 7877  0cn0 9243  cz 9320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-recs 6360  df-frec 6446  df-1o 6471  df-2o 6472  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596
This theorem is referenced by:  isomninnlem  15590  iswomninnlem  15609  ismkvnnlem  15612
  Copyright terms: Public domain W3C validator