Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  2o01f GIF version

Theorem 2o01f 16070
Description: Mapping zero and one between ω and 0 style integers. (Contributed by Jim Kingdon, 28-Jun-2024.)
Hypothesis
Ref Expression
012of.g 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
Assertion
Ref Expression
2o01f (𝐺 ↾ 2o):2o⟶{0, 1}

Proof of Theorem 2o01f
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 012of.g . . . . . 6 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
21frechashgf1o 10595 . . . . 5 𝐺:ω–1-1-onto→ℕ0
3 f1of 5534 . . . . 5 (𝐺:ω–1-1-onto→ℕ0𝐺:ω⟶ℕ0)
42, 3ax-mp 5 . . . 4 𝐺:ω⟶ℕ0
5 2onn 6620 . . . . 5 2o ∈ ω
6 omelon 4665 . . . . . 6 ω ∈ On
76onelssi 4484 . . . . 5 (2o ∈ ω → 2o ⊆ ω)
85, 7ax-mp 5 . . . 4 2o ⊆ ω
9 fssres 5463 . . . 4 ((𝐺:ω⟶ℕ0 ∧ 2o ⊆ ω) → (𝐺 ↾ 2o):2o⟶ℕ0)
104, 8, 9mp2an 426 . . 3 (𝐺 ↾ 2o):2o⟶ℕ0
11 ffn 5435 . . 3 ((𝐺 ↾ 2o):2o⟶ℕ0 → (𝐺 ↾ 2o) Fn 2o)
1210, 11ax-mp 5 . 2 (𝐺 ↾ 2o) Fn 2o
13 fvres 5613 . . . 4 (𝑗 ∈ 2o → ((𝐺 ↾ 2o)‘𝑗) = (𝐺𝑗))
14 elpri 3661 . . . . . 6 (𝑗 ∈ {∅, 1o} → (𝑗 = ∅ ∨ 𝑗 = 1o))
15 df2o3 6529 . . . . . 6 2o = {∅, 1o}
1614, 15eleq2s 2301 . . . . 5 (𝑗 ∈ 2o → (𝑗 = ∅ ∨ 𝑗 = 1o))
17 fveq2 5589 . . . . . . 7 (𝑗 = ∅ → (𝐺𝑗) = (𝐺‘∅))
18 0zd 9404 . . . . . . . . . 10 (⊤ → 0 ∈ ℤ)
1918, 1frec2uz0d 10566 . . . . . . . . 9 (⊤ → (𝐺‘∅) = 0)
2019mptru 1382 . . . . . . . 8 (𝐺‘∅) = 0
21 c0ex 8086 . . . . . . . . 9 0 ∈ V
2221prid1 3744 . . . . . . . 8 0 ∈ {0, 1}
2320, 22eqeltri 2279 . . . . . . 7 (𝐺‘∅) ∈ {0, 1}
2417, 23eqeltrdi 2297 . . . . . 6 (𝑗 = ∅ → (𝐺𝑗) ∈ {0, 1})
25 fveq2 5589 . . . . . . 7 (𝑗 = 1o → (𝐺𝑗) = (𝐺‘1o))
26 df-1o 6515 . . . . . . . . . 10 1o = suc ∅
2726fveq2i 5592 . . . . . . . . 9 (𝐺‘1o) = (𝐺‘suc ∅)
28 peano1 4650 . . . . . . . . . . . 12 ∅ ∈ ω
2928a1i 9 . . . . . . . . . . 11 (⊤ → ∅ ∈ ω)
3018, 1, 29frec2uzsucd 10568 . . . . . . . . . 10 (⊤ → (𝐺‘suc ∅) = ((𝐺‘∅) + 1))
3130mptru 1382 . . . . . . . . 9 (𝐺‘suc ∅) = ((𝐺‘∅) + 1)
3220oveq1i 5967 . . . . . . . . . 10 ((𝐺‘∅) + 1) = (0 + 1)
33 0p1e1 9170 . . . . . . . . . 10 (0 + 1) = 1
3432, 33eqtri 2227 . . . . . . . . 9 ((𝐺‘∅) + 1) = 1
3527, 31, 343eqtri 2231 . . . . . . . 8 (𝐺‘1o) = 1
36 1ex 8087 . . . . . . . . 9 1 ∈ V
3736prid2 3745 . . . . . . . 8 1 ∈ {0, 1}
3835, 37eqeltri 2279 . . . . . . 7 (𝐺‘1o) ∈ {0, 1}
3925, 38eqeltrdi 2297 . . . . . 6 (𝑗 = 1o → (𝐺𝑗) ∈ {0, 1})
4024, 39jaoi 718 . . . . 5 ((𝑗 = ∅ ∨ 𝑗 = 1o) → (𝐺𝑗) ∈ {0, 1})
4116, 40syl 14 . . . 4 (𝑗 ∈ 2o → (𝐺𝑗) ∈ {0, 1})
4213, 41eqeltrd 2283 . . 3 (𝑗 ∈ 2o → ((𝐺 ↾ 2o)‘𝑗) ∈ {0, 1})
4342rgen 2560 . 2 𝑗 ∈ 2o ((𝐺 ↾ 2o)‘𝑗) ∈ {0, 1}
44 ffnfv 5751 . 2 ((𝐺 ↾ 2o):2o⟶{0, 1} ↔ ((𝐺 ↾ 2o) Fn 2o ∧ ∀𝑗 ∈ 2o ((𝐺 ↾ 2o)‘𝑗) ∈ {0, 1}))
4512, 43, 44mpbir2an 945 1 (𝐺 ↾ 2o):2o⟶{0, 1}
Colors of variables: wff set class
Syntax hints:  wo 710   = wceq 1373  wtru 1374  wcel 2177  wral 2485  wss 3170  c0 3464  {cpr 3639  cmpt 4113  suc csuc 4420  ωcom 4646  cres 4685   Fn wfn 5275  wf 5276  1-1-ontowf1o 5279  cfv 5280  (class class class)co 5957  freccfrec 6489  1oc1o 6508  2oc2o 6509  0cc0 7945  1c1 7946   + caddc 7948  0cn0 9315  cz 9392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-recs 6404  df-frec 6490  df-1o 6515  df-2o 6516  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-inn 9057  df-n0 9316  df-z 9393  df-uz 9669
This theorem is referenced by:  isomninnlem  16110  iswomninnlem  16129  ismkvnnlem  16132
  Copyright terms: Public domain W3C validator