![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > 2o01f | GIF version |
Description: Mapping zero and one between ω and ℕ0 style integers. (Contributed by Jim Kingdon, 28-Jun-2024.) |
Ref | Expression |
---|---|
012of.g | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) |
Ref | Expression |
---|---|
2o01f | ⊢ (𝐺 ↾ 2o):2o⟶{0, 1} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 012of.g | . . . . . 6 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
2 | 1 | frechashgf1o 10499 | . . . . 5 ⊢ 𝐺:ω–1-1-onto→ℕ0 |
3 | f1of 5500 | . . . . 5 ⊢ (𝐺:ω–1-1-onto→ℕ0 → 𝐺:ω⟶ℕ0) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ 𝐺:ω⟶ℕ0 |
5 | 2onn 6574 | . . . . 5 ⊢ 2o ∈ ω | |
6 | omelon 4641 | . . . . . 6 ⊢ ω ∈ On | |
7 | 6 | onelssi 4460 | . . . . 5 ⊢ (2o ∈ ω → 2o ⊆ ω) |
8 | 5, 7 | ax-mp 5 | . . . 4 ⊢ 2o ⊆ ω |
9 | fssres 5429 | . . . 4 ⊢ ((𝐺:ω⟶ℕ0 ∧ 2o ⊆ ω) → (𝐺 ↾ 2o):2o⟶ℕ0) | |
10 | 4, 8, 9 | mp2an 426 | . . 3 ⊢ (𝐺 ↾ 2o):2o⟶ℕ0 |
11 | ffn 5403 | . . 3 ⊢ ((𝐺 ↾ 2o):2o⟶ℕ0 → (𝐺 ↾ 2o) Fn 2o) | |
12 | 10, 11 | ax-mp 5 | . 2 ⊢ (𝐺 ↾ 2o) Fn 2o |
13 | fvres 5578 | . . . 4 ⊢ (𝑗 ∈ 2o → ((𝐺 ↾ 2o)‘𝑗) = (𝐺‘𝑗)) | |
14 | elpri 3641 | . . . . . 6 ⊢ (𝑗 ∈ {∅, 1o} → (𝑗 = ∅ ∨ 𝑗 = 1o)) | |
15 | df2o3 6483 | . . . . . 6 ⊢ 2o = {∅, 1o} | |
16 | 14, 15 | eleq2s 2288 | . . . . 5 ⊢ (𝑗 ∈ 2o → (𝑗 = ∅ ∨ 𝑗 = 1o)) |
17 | fveq2 5554 | . . . . . . 7 ⊢ (𝑗 = ∅ → (𝐺‘𝑗) = (𝐺‘∅)) | |
18 | 0zd 9329 | . . . . . . . . . 10 ⊢ (⊤ → 0 ∈ ℤ) | |
19 | 18, 1 | frec2uz0d 10470 | . . . . . . . . 9 ⊢ (⊤ → (𝐺‘∅) = 0) |
20 | 19 | mptru 1373 | . . . . . . . 8 ⊢ (𝐺‘∅) = 0 |
21 | c0ex 8013 | . . . . . . . . 9 ⊢ 0 ∈ V | |
22 | 21 | prid1 3724 | . . . . . . . 8 ⊢ 0 ∈ {0, 1} |
23 | 20, 22 | eqeltri 2266 | . . . . . . 7 ⊢ (𝐺‘∅) ∈ {0, 1} |
24 | 17, 23 | eqeltrdi 2284 | . . . . . 6 ⊢ (𝑗 = ∅ → (𝐺‘𝑗) ∈ {0, 1}) |
25 | fveq2 5554 | . . . . . . 7 ⊢ (𝑗 = 1o → (𝐺‘𝑗) = (𝐺‘1o)) | |
26 | df-1o 6469 | . . . . . . . . . 10 ⊢ 1o = suc ∅ | |
27 | 26 | fveq2i 5557 | . . . . . . . . 9 ⊢ (𝐺‘1o) = (𝐺‘suc ∅) |
28 | peano1 4626 | . . . . . . . . . . . 12 ⊢ ∅ ∈ ω | |
29 | 28 | a1i 9 | . . . . . . . . . . 11 ⊢ (⊤ → ∅ ∈ ω) |
30 | 18, 1, 29 | frec2uzsucd 10472 | . . . . . . . . . 10 ⊢ (⊤ → (𝐺‘suc ∅) = ((𝐺‘∅) + 1)) |
31 | 30 | mptru 1373 | . . . . . . . . 9 ⊢ (𝐺‘suc ∅) = ((𝐺‘∅) + 1) |
32 | 20 | oveq1i 5928 | . . . . . . . . . 10 ⊢ ((𝐺‘∅) + 1) = (0 + 1) |
33 | 0p1e1 9096 | . . . . . . . . . 10 ⊢ (0 + 1) = 1 | |
34 | 32, 33 | eqtri 2214 | . . . . . . . . 9 ⊢ ((𝐺‘∅) + 1) = 1 |
35 | 27, 31, 34 | 3eqtri 2218 | . . . . . . . 8 ⊢ (𝐺‘1o) = 1 |
36 | 1ex 8014 | . . . . . . . . 9 ⊢ 1 ∈ V | |
37 | 36 | prid2 3725 | . . . . . . . 8 ⊢ 1 ∈ {0, 1} |
38 | 35, 37 | eqeltri 2266 | . . . . . . 7 ⊢ (𝐺‘1o) ∈ {0, 1} |
39 | 25, 38 | eqeltrdi 2284 | . . . . . 6 ⊢ (𝑗 = 1o → (𝐺‘𝑗) ∈ {0, 1}) |
40 | 24, 39 | jaoi 717 | . . . . 5 ⊢ ((𝑗 = ∅ ∨ 𝑗 = 1o) → (𝐺‘𝑗) ∈ {0, 1}) |
41 | 16, 40 | syl 14 | . . . 4 ⊢ (𝑗 ∈ 2o → (𝐺‘𝑗) ∈ {0, 1}) |
42 | 13, 41 | eqeltrd 2270 | . . 3 ⊢ (𝑗 ∈ 2o → ((𝐺 ↾ 2o)‘𝑗) ∈ {0, 1}) |
43 | 42 | rgen 2547 | . 2 ⊢ ∀𝑗 ∈ 2o ((𝐺 ↾ 2o)‘𝑗) ∈ {0, 1} |
44 | ffnfv 5716 | . 2 ⊢ ((𝐺 ↾ 2o):2o⟶{0, 1} ↔ ((𝐺 ↾ 2o) Fn 2o ∧ ∀𝑗 ∈ 2o ((𝐺 ↾ 2o)‘𝑗) ∈ {0, 1})) | |
45 | 12, 43, 44 | mpbir2an 944 | 1 ⊢ (𝐺 ↾ 2o):2o⟶{0, 1} |
Colors of variables: wff set class |
Syntax hints: ∨ wo 709 = wceq 1364 ⊤wtru 1365 ∈ wcel 2164 ∀wral 2472 ⊆ wss 3153 ∅c0 3446 {cpr 3619 ↦ cmpt 4090 suc csuc 4396 ωcom 4622 ↾ cres 4661 Fn wfn 5249 ⟶wf 5250 –1-1-onto→wf1o 5253 ‘cfv 5254 (class class class)co 5918 freccfrec 6443 1oc1o 6462 2oc2o 6463 0cc0 7872 1c1 7873 + caddc 7875 ℕ0cn0 9240 ℤcz 9317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-id 4324 df-iord 4397 df-on 4399 df-ilim 4400 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-recs 6358 df-frec 6444 df-1o 6469 df-2o 6470 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-inn 8983 df-n0 9241 df-z 9318 df-uz 9593 |
This theorem is referenced by: isomninnlem 15520 iswomninnlem 15539 ismkvnnlem 15542 |
Copyright terms: Public domain | W3C validator |