| Mathbox for Jim Kingdon | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > 2o01f | GIF version | ||
| Description: Mapping zero and one between ω and ℕ0 style integers. (Contributed by Jim Kingdon, 28-Jun-2024.) | 
| Ref | Expression | 
|---|---|
| 012of.g | ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | 
| Ref | Expression | 
|---|---|
| 2o01f | ⊢ (𝐺 ↾ 2o):2o⟶{0, 1} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 012of.g | . . . . . 6 ⊢ 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0) | |
| 2 | 1 | frechashgf1o 10520 | . . . . 5 ⊢ 𝐺:ω–1-1-onto→ℕ0 | 
| 3 | f1of 5504 | . . . . 5 ⊢ (𝐺:ω–1-1-onto→ℕ0 → 𝐺:ω⟶ℕ0) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ 𝐺:ω⟶ℕ0 | 
| 5 | 2onn 6579 | . . . . 5 ⊢ 2o ∈ ω | |
| 6 | omelon 4645 | . . . . . 6 ⊢ ω ∈ On | |
| 7 | 6 | onelssi 4464 | . . . . 5 ⊢ (2o ∈ ω → 2o ⊆ ω) | 
| 8 | 5, 7 | ax-mp 5 | . . . 4 ⊢ 2o ⊆ ω | 
| 9 | fssres 5433 | . . . 4 ⊢ ((𝐺:ω⟶ℕ0 ∧ 2o ⊆ ω) → (𝐺 ↾ 2o):2o⟶ℕ0) | |
| 10 | 4, 8, 9 | mp2an 426 | . . 3 ⊢ (𝐺 ↾ 2o):2o⟶ℕ0 | 
| 11 | ffn 5407 | . . 3 ⊢ ((𝐺 ↾ 2o):2o⟶ℕ0 → (𝐺 ↾ 2o) Fn 2o) | |
| 12 | 10, 11 | ax-mp 5 | . 2 ⊢ (𝐺 ↾ 2o) Fn 2o | 
| 13 | fvres 5582 | . . . 4 ⊢ (𝑗 ∈ 2o → ((𝐺 ↾ 2o)‘𝑗) = (𝐺‘𝑗)) | |
| 14 | elpri 3645 | . . . . . 6 ⊢ (𝑗 ∈ {∅, 1o} → (𝑗 = ∅ ∨ 𝑗 = 1o)) | |
| 15 | df2o3 6488 | . . . . . 6 ⊢ 2o = {∅, 1o} | |
| 16 | 14, 15 | eleq2s 2291 | . . . . 5 ⊢ (𝑗 ∈ 2o → (𝑗 = ∅ ∨ 𝑗 = 1o)) | 
| 17 | fveq2 5558 | . . . . . . 7 ⊢ (𝑗 = ∅ → (𝐺‘𝑗) = (𝐺‘∅)) | |
| 18 | 0zd 9338 | . . . . . . . . . 10 ⊢ (⊤ → 0 ∈ ℤ) | |
| 19 | 18, 1 | frec2uz0d 10491 | . . . . . . . . 9 ⊢ (⊤ → (𝐺‘∅) = 0) | 
| 20 | 19 | mptru 1373 | . . . . . . . 8 ⊢ (𝐺‘∅) = 0 | 
| 21 | c0ex 8020 | . . . . . . . . 9 ⊢ 0 ∈ V | |
| 22 | 21 | prid1 3728 | . . . . . . . 8 ⊢ 0 ∈ {0, 1} | 
| 23 | 20, 22 | eqeltri 2269 | . . . . . . 7 ⊢ (𝐺‘∅) ∈ {0, 1} | 
| 24 | 17, 23 | eqeltrdi 2287 | . . . . . 6 ⊢ (𝑗 = ∅ → (𝐺‘𝑗) ∈ {0, 1}) | 
| 25 | fveq2 5558 | . . . . . . 7 ⊢ (𝑗 = 1o → (𝐺‘𝑗) = (𝐺‘1o)) | |
| 26 | df-1o 6474 | . . . . . . . . . 10 ⊢ 1o = suc ∅ | |
| 27 | 26 | fveq2i 5561 | . . . . . . . . 9 ⊢ (𝐺‘1o) = (𝐺‘suc ∅) | 
| 28 | peano1 4630 | . . . . . . . . . . . 12 ⊢ ∅ ∈ ω | |
| 29 | 28 | a1i 9 | . . . . . . . . . . 11 ⊢ (⊤ → ∅ ∈ ω) | 
| 30 | 18, 1, 29 | frec2uzsucd 10493 | . . . . . . . . . 10 ⊢ (⊤ → (𝐺‘suc ∅) = ((𝐺‘∅) + 1)) | 
| 31 | 30 | mptru 1373 | . . . . . . . . 9 ⊢ (𝐺‘suc ∅) = ((𝐺‘∅) + 1) | 
| 32 | 20 | oveq1i 5932 | . . . . . . . . . 10 ⊢ ((𝐺‘∅) + 1) = (0 + 1) | 
| 33 | 0p1e1 9104 | . . . . . . . . . 10 ⊢ (0 + 1) = 1 | |
| 34 | 32, 33 | eqtri 2217 | . . . . . . . . 9 ⊢ ((𝐺‘∅) + 1) = 1 | 
| 35 | 27, 31, 34 | 3eqtri 2221 | . . . . . . . 8 ⊢ (𝐺‘1o) = 1 | 
| 36 | 1ex 8021 | . . . . . . . . 9 ⊢ 1 ∈ V | |
| 37 | 36 | prid2 3729 | . . . . . . . 8 ⊢ 1 ∈ {0, 1} | 
| 38 | 35, 37 | eqeltri 2269 | . . . . . . 7 ⊢ (𝐺‘1o) ∈ {0, 1} | 
| 39 | 25, 38 | eqeltrdi 2287 | . . . . . 6 ⊢ (𝑗 = 1o → (𝐺‘𝑗) ∈ {0, 1}) | 
| 40 | 24, 39 | jaoi 717 | . . . . 5 ⊢ ((𝑗 = ∅ ∨ 𝑗 = 1o) → (𝐺‘𝑗) ∈ {0, 1}) | 
| 41 | 16, 40 | syl 14 | . . . 4 ⊢ (𝑗 ∈ 2o → (𝐺‘𝑗) ∈ {0, 1}) | 
| 42 | 13, 41 | eqeltrd 2273 | . . 3 ⊢ (𝑗 ∈ 2o → ((𝐺 ↾ 2o)‘𝑗) ∈ {0, 1}) | 
| 43 | 42 | rgen 2550 | . 2 ⊢ ∀𝑗 ∈ 2o ((𝐺 ↾ 2o)‘𝑗) ∈ {0, 1} | 
| 44 | ffnfv 5720 | . 2 ⊢ ((𝐺 ↾ 2o):2o⟶{0, 1} ↔ ((𝐺 ↾ 2o) Fn 2o ∧ ∀𝑗 ∈ 2o ((𝐺 ↾ 2o)‘𝑗) ∈ {0, 1})) | |
| 45 | 12, 43, 44 | mpbir2an 944 | 1 ⊢ (𝐺 ↾ 2o):2o⟶{0, 1} | 
| Colors of variables: wff set class | 
| Syntax hints: ∨ wo 709 = wceq 1364 ⊤wtru 1365 ∈ wcel 2167 ∀wral 2475 ⊆ wss 3157 ∅c0 3450 {cpr 3623 ↦ cmpt 4094 suc csuc 4400 ωcom 4626 ↾ cres 4665 Fn wfn 5253 ⟶wf 5254 –1-1-onto→wf1o 5257 ‘cfv 5258 (class class class)co 5922 freccfrec 6448 1oc1o 6467 2oc2o 6468 0cc0 7879 1c1 7880 + caddc 7882 ℕ0cn0 9249 ℤcz 9326 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-ilim 4404 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-recs 6363 df-frec 6449 df-1o 6474 df-2o 6475 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-n0 9250 df-z 9327 df-uz 9602 | 
| This theorem is referenced by: isomninnlem 15674 iswomninnlem 15693 ismkvnnlem 15696 | 
| Copyright terms: Public domain | W3C validator |