Step | Hyp | Ref
| Expression |
1 | | 012of.g |
. . . . . 6
β’ πΊ = frec((π₯ β β€ β¦ (π₯ + 1)), 0) |
2 | 1 | frechashgf1o 10430 |
. . . . 5
β’ πΊ:Οβ1-1-ontoββ0 |
3 | | f1of 5463 |
. . . . 5
β’ (πΊ:Οβ1-1-ontoββ0 β πΊ:ΟβΆβ0) |
4 | 2, 3 | ax-mp 5 |
. . . 4
β’ πΊ:ΟβΆβ0 |
5 | | 2onn 6524 |
. . . . 5
β’
2o β Ο |
6 | | omelon 4610 |
. . . . . 6
β’ Ο
β On |
7 | 6 | onelssi 4431 |
. . . . 5
β’
(2o β Ο β 2o β
Ο) |
8 | 5, 7 | ax-mp 5 |
. . . 4
β’
2o β Ο |
9 | | fssres 5393 |
. . . 4
β’ ((πΊ:ΟβΆβ0 β§
2o β Ο) β (πΊ βΎ
2o):2oβΆβ0) |
10 | 4, 8, 9 | mp2an 426 |
. . 3
β’ (πΊ βΎ
2o):2oβΆβ0 |
11 | | ffn 5367 |
. . 3
β’ ((πΊ βΎ
2o):2oβΆβ0 β (πΊ βΎ 2o) Fn
2o) |
12 | 10, 11 | ax-mp 5 |
. 2
β’ (πΊ βΎ 2o) Fn
2o |
13 | | fvres 5541 |
. . . 4
β’ (π β 2o β
((πΊ βΎ
2o)βπ) =
(πΊβπ)) |
14 | | elpri 3617 |
. . . . . 6
β’ (π β {β
, 1o}
β (π = β
β¨
π =
1o)) |
15 | | df2o3 6433 |
. . . . . 6
β’
2o = {β
, 1o} |
16 | 14, 15 | eleq2s 2272 |
. . . . 5
β’ (π β 2o β
(π = β
β¨ π =
1o)) |
17 | | fveq2 5517 |
. . . . . . 7
β’ (π = β
β (πΊβπ) = (πΊββ
)) |
18 | | 0zd 9267 |
. . . . . . . . . 10
β’ (β€
β 0 β β€) |
19 | 18, 1 | frec2uz0d 10401 |
. . . . . . . . 9
β’ (β€
β (πΊββ
) =
0) |
20 | 19 | mptru 1362 |
. . . . . . . 8
β’ (πΊββ
) =
0 |
21 | | c0ex 7953 |
. . . . . . . . 9
β’ 0 β
V |
22 | 21 | prid1 3700 |
. . . . . . . 8
β’ 0 β
{0, 1} |
23 | 20, 22 | eqeltri 2250 |
. . . . . . 7
β’ (πΊββ
) β {0,
1} |
24 | 17, 23 | eqeltrdi 2268 |
. . . . . 6
β’ (π = β
β (πΊβπ) β {0, 1}) |
25 | | fveq2 5517 |
. . . . . . 7
β’ (π = 1o β (πΊβπ) = (πΊβ1o)) |
26 | | df-1o 6419 |
. . . . . . . . . 10
β’
1o = suc β
|
27 | 26 | fveq2i 5520 |
. . . . . . . . 9
β’ (πΊβ1o) = (πΊβsuc
β
) |
28 | | peano1 4595 |
. . . . . . . . . . . 12
β’ β
β Ο |
29 | 28 | a1i 9 |
. . . . . . . . . . 11
β’ (β€
β β
β Ο) |
30 | 18, 1, 29 | frec2uzsucd 10403 |
. . . . . . . . . 10
β’ (β€
β (πΊβsuc
β
) = ((πΊββ
) + 1)) |
31 | 30 | mptru 1362 |
. . . . . . . . 9
β’ (πΊβsuc β
) = ((πΊββ
) +
1) |
32 | 20 | oveq1i 5887 |
. . . . . . . . . 10
β’ ((πΊββ
) + 1) = (0 +
1) |
33 | | 0p1e1 9035 |
. . . . . . . . . 10
β’ (0 + 1) =
1 |
34 | 32, 33 | eqtri 2198 |
. . . . . . . . 9
β’ ((πΊββ
) + 1) =
1 |
35 | 27, 31, 34 | 3eqtri 2202 |
. . . . . . . 8
β’ (πΊβ1o) =
1 |
36 | | 1ex 7954 |
. . . . . . . . 9
β’ 1 β
V |
37 | 36 | prid2 3701 |
. . . . . . . 8
β’ 1 β
{0, 1} |
38 | 35, 37 | eqeltri 2250 |
. . . . . . 7
β’ (πΊβ1o) β {0,
1} |
39 | 25, 38 | eqeltrdi 2268 |
. . . . . 6
β’ (π = 1o β (πΊβπ) β {0, 1}) |
40 | 24, 39 | jaoi 716 |
. . . . 5
β’ ((π = β
β¨ π = 1o) β (πΊβπ) β {0, 1}) |
41 | 16, 40 | syl 14 |
. . . 4
β’ (π β 2o β
(πΊβπ) β {0, 1}) |
42 | 13, 41 | eqeltrd 2254 |
. . 3
β’ (π β 2o β
((πΊ βΎ
2o)βπ)
β {0, 1}) |
43 | 42 | rgen 2530 |
. 2
β’
βπ β
2o ((πΊ βΎ
2o)βπ)
β {0, 1} |
44 | | ffnfv 5676 |
. 2
β’ ((πΊ βΎ
2o):2oβΆ{0, 1} β ((πΊ βΎ 2o) Fn 2o
β§ βπ β
2o ((πΊ βΎ
2o)βπ)
β {0, 1})) |
45 | 12, 43, 44 | mpbir2an 942 |
1
β’ (πΊ βΎ
2o):2oβΆ{0, 1} |