Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  2o01f GIF version

Theorem 2o01f 15795
Description: Mapping zero and one between ω and 0 style integers. (Contributed by Jim Kingdon, 28-Jun-2024.)
Hypothesis
Ref Expression
012of.g 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
Assertion
Ref Expression
2o01f (𝐺 ↾ 2o):2o⟶{0, 1}

Proof of Theorem 2o01f
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 012of.g . . . . . 6 𝐺 = frec((𝑥 ∈ ℤ ↦ (𝑥 + 1)), 0)
21frechashgf1o 10554 . . . . 5 𝐺:ω–1-1-onto→ℕ0
3 f1of 5516 . . . . 5 (𝐺:ω–1-1-onto→ℕ0𝐺:ω⟶ℕ0)
42, 3ax-mp 5 . . . 4 𝐺:ω⟶ℕ0
5 2onn 6597 . . . . 5 2o ∈ ω
6 omelon 4655 . . . . . 6 ω ∈ On
76onelssi 4474 . . . . 5 (2o ∈ ω → 2o ⊆ ω)
85, 7ax-mp 5 . . . 4 2o ⊆ ω
9 fssres 5445 . . . 4 ((𝐺:ω⟶ℕ0 ∧ 2o ⊆ ω) → (𝐺 ↾ 2o):2o⟶ℕ0)
104, 8, 9mp2an 426 . . 3 (𝐺 ↾ 2o):2o⟶ℕ0
11 ffn 5419 . . 3 ((𝐺 ↾ 2o):2o⟶ℕ0 → (𝐺 ↾ 2o) Fn 2o)
1210, 11ax-mp 5 . 2 (𝐺 ↾ 2o) Fn 2o
13 fvres 5594 . . . 4 (𝑗 ∈ 2o → ((𝐺 ↾ 2o)‘𝑗) = (𝐺𝑗))
14 elpri 3655 . . . . . 6 (𝑗 ∈ {∅, 1o} → (𝑗 = ∅ ∨ 𝑗 = 1o))
15 df2o3 6506 . . . . . 6 2o = {∅, 1o}
1614, 15eleq2s 2299 . . . . 5 (𝑗 ∈ 2o → (𝑗 = ∅ ∨ 𝑗 = 1o))
17 fveq2 5570 . . . . . . 7 (𝑗 = ∅ → (𝐺𝑗) = (𝐺‘∅))
18 0zd 9366 . . . . . . . . . 10 (⊤ → 0 ∈ ℤ)
1918, 1frec2uz0d 10525 . . . . . . . . 9 (⊤ → (𝐺‘∅) = 0)
2019mptru 1381 . . . . . . . 8 (𝐺‘∅) = 0
21 c0ex 8048 . . . . . . . . 9 0 ∈ V
2221prid1 3738 . . . . . . . 8 0 ∈ {0, 1}
2320, 22eqeltri 2277 . . . . . . 7 (𝐺‘∅) ∈ {0, 1}
2417, 23eqeltrdi 2295 . . . . . 6 (𝑗 = ∅ → (𝐺𝑗) ∈ {0, 1})
25 fveq2 5570 . . . . . . 7 (𝑗 = 1o → (𝐺𝑗) = (𝐺‘1o))
26 df-1o 6492 . . . . . . . . . 10 1o = suc ∅
2726fveq2i 5573 . . . . . . . . 9 (𝐺‘1o) = (𝐺‘suc ∅)
28 peano1 4640 . . . . . . . . . . . 12 ∅ ∈ ω
2928a1i 9 . . . . . . . . . . 11 (⊤ → ∅ ∈ ω)
3018, 1, 29frec2uzsucd 10527 . . . . . . . . . 10 (⊤ → (𝐺‘suc ∅) = ((𝐺‘∅) + 1))
3130mptru 1381 . . . . . . . . 9 (𝐺‘suc ∅) = ((𝐺‘∅) + 1)
3220oveq1i 5944 . . . . . . . . . 10 ((𝐺‘∅) + 1) = (0 + 1)
33 0p1e1 9132 . . . . . . . . . 10 (0 + 1) = 1
3432, 33eqtri 2225 . . . . . . . . 9 ((𝐺‘∅) + 1) = 1
3527, 31, 343eqtri 2229 . . . . . . . 8 (𝐺‘1o) = 1
36 1ex 8049 . . . . . . . . 9 1 ∈ V
3736prid2 3739 . . . . . . . 8 1 ∈ {0, 1}
3835, 37eqeltri 2277 . . . . . . 7 (𝐺‘1o) ∈ {0, 1}
3925, 38eqeltrdi 2295 . . . . . 6 (𝑗 = 1o → (𝐺𝑗) ∈ {0, 1})
4024, 39jaoi 717 . . . . 5 ((𝑗 = ∅ ∨ 𝑗 = 1o) → (𝐺𝑗) ∈ {0, 1})
4116, 40syl 14 . . . 4 (𝑗 ∈ 2o → (𝐺𝑗) ∈ {0, 1})
4213, 41eqeltrd 2281 . . 3 (𝑗 ∈ 2o → ((𝐺 ↾ 2o)‘𝑗) ∈ {0, 1})
4342rgen 2558 . 2 𝑗 ∈ 2o ((𝐺 ↾ 2o)‘𝑗) ∈ {0, 1}
44 ffnfv 5732 . 2 ((𝐺 ↾ 2o):2o⟶{0, 1} ↔ ((𝐺 ↾ 2o) Fn 2o ∧ ∀𝑗 ∈ 2o ((𝐺 ↾ 2o)‘𝑗) ∈ {0, 1}))
4512, 43, 44mpbir2an 944 1 (𝐺 ↾ 2o):2o⟶{0, 1}
Colors of variables: wff set class
Syntax hints:  wo 709   = wceq 1372  wtru 1373  wcel 2175  wral 2483  wss 3165  c0 3459  {cpr 3633  cmpt 4104  suc csuc 4410  ωcom 4636  cres 4675   Fn wfn 5263  wf 5264  1-1-ontowf1o 5267  cfv 5268  (class class class)co 5934  freccfrec 6466  1oc1o 6485  2oc2o 6486  0cc0 7907  1c1 7908   + caddc 7910  0cn0 9277  cz 9354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-distr 8011  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-cnre 8018  ax-pre-ltirr 8019  ax-pre-ltwlin 8020  ax-pre-lttrn 8021  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4338  df-iord 4411  df-on 4413  df-ilim 4414  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-recs 6381  df-frec 6467  df-1o 6492  df-2o 6493  df-pnf 8091  df-mnf 8092  df-xr 8093  df-ltxr 8094  df-le 8095  df-sub 8227  df-neg 8228  df-inn 9019  df-n0 9278  df-z 9355  df-uz 9631
This theorem is referenced by:  isomninnlem  15833  iswomninnlem  15852  ismkvnnlem  15855
  Copyright terms: Public domain W3C validator