Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opelxpi | GIF version |
Description: Ordered pair membership in a cross product (implication). (Contributed by NM, 28-May-1995.) |
Ref | Expression |
---|---|
opelxpi | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxp 4650 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
2 | 1 | biimpri 133 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2146 〈cop 3592 × cxp 4618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-opab 4060 df-xp 4626 |
This theorem is referenced by: opelxpd 4653 opelvvg 4669 opelvv 4670 opbrop 4699 fliftrel 5783 fnotovb 5908 ovi3 6001 ovres 6004 fovcdm 6007 fnovrn 6012 ovconst2 6016 oprab2co 6209 1stconst 6212 2ndconst 6213 f1od2 6226 brdifun 6552 ecopqsi 6580 brecop 6615 th3q 6630 xpcomco 6816 xpf1o 6834 xpmapenlem 6839 djulclr 7038 djurclr 7039 djulcl 7040 djurcl 7041 djuf1olem 7042 cc2lem 7240 addpiord 7290 mulpiord 7291 enqeceq 7333 1nq 7340 addpipqqslem 7343 mulpipq 7346 mulpipqqs 7347 addclnq 7349 mulclnq 7350 recexnq 7364 ltexnqq 7382 prarloclemarch 7392 prarloclemarch2 7393 nnnq 7396 enq0breq 7410 enq0eceq 7411 nqnq0 7415 addnnnq0 7423 mulnnnq0 7424 addclnq0 7425 mulclnq0 7426 nqpnq0nq 7427 prarloclemlt 7467 prarloclemlo 7468 prarloclemcalc 7476 genpelxp 7485 nqprm 7516 ltexprlempr 7582 recexprlempr 7606 cauappcvgprlemcl 7627 cauappcvgprlemladd 7632 caucvgprlemcl 7650 caucvgprprlemcl 7678 enreceq 7710 addsrpr 7719 mulsrpr 7720 0r 7724 1sr 7725 m1r 7726 addclsr 7727 mulclsr 7728 prsrcl 7758 mappsrprg 7778 addcnsr 7808 mulcnsr 7809 addcnsrec 7816 mulcnsrec 7817 pitonnlem2 7821 pitonn 7822 pitore 7824 recnnre 7825 axaddcl 7838 axmulcl 7840 xrlenlt 7996 frecuzrdgg 10386 frecuzrdgsuctlem 10393 seq3val 10428 cnrecnv 10887 eucalgf 12022 eucalg 12026 qredeu 12064 qnumdenbi 12159 crth 12191 phimullem 12192 setscom 12469 setsslid 12479 txbas 13338 upxp 13352 uptx 13354 txlm 13359 cnmpt21 13371 txswaphmeolem 13400 txswaphmeo 13401 comet 13579 qtopbasss 13601 cnmetdval 13609 remetdval 13619 tgqioo 13627 dvcnp2cntop 13743 dvef 13768 djucllem 14121 pwle2 14317 |
Copyright terms: Public domain | W3C validator |