| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelxpi | GIF version | ||
| Description: Ordered pair membership in a cross product (implication). (Contributed by NM, 28-May-1995.) |
| Ref | Expression |
|---|---|
| opelxpi | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp 4723 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
| 2 | 1 | biimpri 133 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2178 〈cop 3646 × cxp 4691 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-opab 4122 df-xp 4699 |
| This theorem is referenced by: opelxpd 4726 opelvvg 4742 opelvv 4743 opbrop 4772 fliftrel 5884 fnotovb 6011 ovi3 6106 ovres 6109 fovcdm 6112 fnovrn 6117 ovconst2 6121 oprab2co 6327 1stconst 6330 2ndconst 6331 f1od2 6344 brdifun 6670 ecopqsi 6700 brecop 6735 th3q 6750 xpcomco 6946 xpf1o 6966 xpmapenlem 6971 djulclr 7177 djurclr 7178 djulcl 7179 djurcl 7180 djuf1olem 7181 cc2lem 7413 addpiord 7464 mulpiord 7465 enqeceq 7507 1nq 7514 addpipqqslem 7517 mulpipq 7520 mulpipqqs 7521 addclnq 7523 mulclnq 7524 recexnq 7538 ltexnqq 7556 prarloclemarch 7566 prarloclemarch2 7567 nnnq 7570 enq0breq 7584 enq0eceq 7585 nqnq0 7589 addnnnq0 7597 mulnnnq0 7598 addclnq0 7599 mulclnq0 7600 nqpnq0nq 7601 prarloclemlt 7641 prarloclemlo 7642 prarloclemcalc 7650 genpelxp 7659 nqprm 7690 ltexprlempr 7756 recexprlempr 7780 cauappcvgprlemcl 7801 cauappcvgprlemladd 7806 caucvgprlemcl 7824 caucvgprprlemcl 7852 enreceq 7884 addsrpr 7893 mulsrpr 7894 0r 7898 1sr 7899 m1r 7900 addclsr 7901 mulclsr 7902 prsrcl 7932 mappsrprg 7952 addcnsr 7982 mulcnsr 7983 addcnsrec 7990 mulcnsrec 7991 pitonnlem2 7995 pitonn 7996 pitore 7998 recnnre 7999 axaddcl 8012 axmulcl 8014 xrlenlt 8172 frecuzrdgg 10598 frecuzrdgsuctlem 10605 seq3val 10642 swrdval 11139 cnrecnv 11336 eucalgf 12492 eucalg 12496 qredeu 12534 qnumdenbi 12629 crth 12661 phimullem 12662 setscom 12987 setsslid 12998 imasaddfnlemg 13261 imasaddflemg 13263 txbas 14845 upxp 14859 uptx 14861 txlm 14866 cnmpt21 14878 txswaphmeolem 14907 txswaphmeo 14908 comet 15086 qtopbasss 15108 cnmetdval 15116 remetdval 15134 tgqioo 15142 dvcnp2cntop 15286 dvef 15314 djucllem 15936 pwle2 16137 |
| Copyright terms: Public domain | W3C validator |