| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelxpi | GIF version | ||
| Description: Ordered pair membership in a cross product (implication). (Contributed by NM, 28-May-1995.) |
| Ref | Expression |
|---|---|
| opelxpi | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp 4694 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
| 2 | 1 | biimpri 133 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 〈cop 3626 × cxp 4662 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-opab 4096 df-xp 4670 |
| This theorem is referenced by: opelxpd 4697 opelvvg 4713 opelvv 4714 opbrop 4743 fliftrel 5842 fnotovb 5969 ovi3 6064 ovres 6067 fovcdm 6070 fnovrn 6075 ovconst2 6079 oprab2co 6285 1stconst 6288 2ndconst 6289 f1od2 6302 brdifun 6628 ecopqsi 6658 brecop 6693 th3q 6708 xpcomco 6894 xpf1o 6914 xpmapenlem 6919 djulclr 7124 djurclr 7125 djulcl 7126 djurcl 7127 djuf1olem 7128 cc2lem 7351 addpiord 7402 mulpiord 7403 enqeceq 7445 1nq 7452 addpipqqslem 7455 mulpipq 7458 mulpipqqs 7459 addclnq 7461 mulclnq 7462 recexnq 7476 ltexnqq 7494 prarloclemarch 7504 prarloclemarch2 7505 nnnq 7508 enq0breq 7522 enq0eceq 7523 nqnq0 7527 addnnnq0 7535 mulnnnq0 7536 addclnq0 7537 mulclnq0 7538 nqpnq0nq 7539 prarloclemlt 7579 prarloclemlo 7580 prarloclemcalc 7588 genpelxp 7597 nqprm 7628 ltexprlempr 7694 recexprlempr 7718 cauappcvgprlemcl 7739 cauappcvgprlemladd 7744 caucvgprlemcl 7762 caucvgprprlemcl 7790 enreceq 7822 addsrpr 7831 mulsrpr 7832 0r 7836 1sr 7837 m1r 7838 addclsr 7839 mulclsr 7840 prsrcl 7870 mappsrprg 7890 addcnsr 7920 mulcnsr 7921 addcnsrec 7928 mulcnsrec 7929 pitonnlem2 7933 pitonn 7934 pitore 7936 recnnre 7937 axaddcl 7950 axmulcl 7952 xrlenlt 8110 frecuzrdgg 10527 frecuzrdgsuctlem 10534 seq3val 10571 cnrecnv 11094 eucalgf 12250 eucalg 12254 qredeu 12292 qnumdenbi 12387 crth 12419 phimullem 12420 setscom 12745 setsslid 12756 imasaddfnlemg 13018 imasaddflemg 13020 txbas 14602 upxp 14616 uptx 14618 txlm 14623 cnmpt21 14635 txswaphmeolem 14664 txswaphmeo 14665 comet 14843 qtopbasss 14865 cnmetdval 14873 remetdval 14891 tgqioo 14899 dvcnp2cntop 15043 dvef 15071 djucllem 15554 pwle2 15753 |
| Copyright terms: Public domain | W3C validator |