| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelxpi | GIF version | ||
| Description: Ordered pair membership in a cross product (implication). (Contributed by NM, 28-May-1995.) |
| Ref | Expression |
|---|---|
| opelxpi | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp 4705 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
| 2 | 1 | biimpri 133 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2176 〈cop 3636 × cxp 4673 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-opab 4106 df-xp 4681 |
| This theorem is referenced by: opelxpd 4708 opelvvg 4724 opelvv 4725 opbrop 4754 fliftrel 5861 fnotovb 5988 ovi3 6083 ovres 6086 fovcdm 6089 fnovrn 6094 ovconst2 6098 oprab2co 6304 1stconst 6307 2ndconst 6308 f1od2 6321 brdifun 6647 ecopqsi 6677 brecop 6712 th3q 6727 xpcomco 6921 xpf1o 6941 xpmapenlem 6946 djulclr 7151 djurclr 7152 djulcl 7153 djurcl 7154 djuf1olem 7155 cc2lem 7378 addpiord 7429 mulpiord 7430 enqeceq 7472 1nq 7479 addpipqqslem 7482 mulpipq 7485 mulpipqqs 7486 addclnq 7488 mulclnq 7489 recexnq 7503 ltexnqq 7521 prarloclemarch 7531 prarloclemarch2 7532 nnnq 7535 enq0breq 7549 enq0eceq 7550 nqnq0 7554 addnnnq0 7562 mulnnnq0 7563 addclnq0 7564 mulclnq0 7565 nqpnq0nq 7566 prarloclemlt 7606 prarloclemlo 7607 prarloclemcalc 7615 genpelxp 7624 nqprm 7655 ltexprlempr 7721 recexprlempr 7745 cauappcvgprlemcl 7766 cauappcvgprlemladd 7771 caucvgprlemcl 7789 caucvgprprlemcl 7817 enreceq 7849 addsrpr 7858 mulsrpr 7859 0r 7863 1sr 7864 m1r 7865 addclsr 7866 mulclsr 7867 prsrcl 7897 mappsrprg 7917 addcnsr 7947 mulcnsr 7948 addcnsrec 7955 mulcnsrec 7956 pitonnlem2 7960 pitonn 7961 pitore 7963 recnnre 7964 axaddcl 7977 axmulcl 7979 xrlenlt 8137 frecuzrdgg 10561 frecuzrdgsuctlem 10568 seq3val 10605 swrdval 11101 cnrecnv 11221 eucalgf 12377 eucalg 12381 qredeu 12419 qnumdenbi 12514 crth 12546 phimullem 12547 setscom 12872 setsslid 12883 imasaddfnlemg 13146 imasaddflemg 13148 txbas 14730 upxp 14744 uptx 14746 txlm 14751 cnmpt21 14763 txswaphmeolem 14792 txswaphmeo 14793 comet 14971 qtopbasss 14993 cnmetdval 15001 remetdval 15019 tgqioo 15027 dvcnp2cntop 15171 dvef 15199 djucllem 15736 pwle2 15935 |
| Copyright terms: Public domain | W3C validator |