![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > opelxpi | GIF version |
Description: Ordered pair membership in a cross product (implication). (Contributed by NM, 28-May-1995.) |
Ref | Expression |
---|---|
opelxpi | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxp 4690 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
2 | 1 | biimpri 133 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2164 〈cop 3622 × cxp 4658 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-opab 4092 df-xp 4666 |
This theorem is referenced by: opelxpd 4693 opelvvg 4709 opelvv 4710 opbrop 4739 fliftrel 5836 fnotovb 5962 ovi3 6057 ovres 6060 fovcdm 6063 fnovrn 6068 ovconst2 6072 oprab2co 6273 1stconst 6276 2ndconst 6277 f1od2 6290 brdifun 6616 ecopqsi 6646 brecop 6681 th3q 6696 xpcomco 6882 xpf1o 6902 xpmapenlem 6907 djulclr 7110 djurclr 7111 djulcl 7112 djurcl 7113 djuf1olem 7114 cc2lem 7328 addpiord 7378 mulpiord 7379 enqeceq 7421 1nq 7428 addpipqqslem 7431 mulpipq 7434 mulpipqqs 7435 addclnq 7437 mulclnq 7438 recexnq 7452 ltexnqq 7470 prarloclemarch 7480 prarloclemarch2 7481 nnnq 7484 enq0breq 7498 enq0eceq 7499 nqnq0 7503 addnnnq0 7511 mulnnnq0 7512 addclnq0 7513 mulclnq0 7514 nqpnq0nq 7515 prarloclemlt 7555 prarloclemlo 7556 prarloclemcalc 7564 genpelxp 7573 nqprm 7604 ltexprlempr 7670 recexprlempr 7694 cauappcvgprlemcl 7715 cauappcvgprlemladd 7720 caucvgprlemcl 7738 caucvgprprlemcl 7766 enreceq 7798 addsrpr 7807 mulsrpr 7808 0r 7812 1sr 7813 m1r 7814 addclsr 7815 mulclsr 7816 prsrcl 7846 mappsrprg 7866 addcnsr 7896 mulcnsr 7897 addcnsrec 7904 mulcnsrec 7905 pitonnlem2 7909 pitonn 7910 pitore 7912 recnnre 7913 axaddcl 7926 axmulcl 7928 xrlenlt 8086 frecuzrdgg 10490 frecuzrdgsuctlem 10497 seq3val 10534 cnrecnv 11057 eucalgf 12196 eucalg 12200 qredeu 12238 qnumdenbi 12333 crth 12365 phimullem 12366 setscom 12661 setsslid 12672 imasaddfnlemg 12900 imasaddflemg 12902 txbas 14437 upxp 14451 uptx 14453 txlm 14458 cnmpt21 14470 txswaphmeolem 14499 txswaphmeo 14500 comet 14678 qtopbasss 14700 cnmetdval 14708 remetdval 14726 tgqioo 14734 dvcnp2cntop 14878 dvef 14906 djucllem 15362 pwle2 15559 |
Copyright terms: Public domain | W3C validator |