Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opelxpi | GIF version |
Description: Ordered pair membership in a cross product (implication). (Contributed by NM, 28-May-1995.) |
Ref | Expression |
---|---|
opelxpi | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxp 4641 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
2 | 1 | biimpri 132 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2141 〈cop 3586 × cxp 4609 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-opab 4051 df-xp 4617 |
This theorem is referenced by: opelxpd 4644 opelvvg 4660 opelvv 4661 opbrop 4690 fliftrel 5771 fnotovb 5896 ovi3 5989 ovres 5992 fovrn 5995 fnovrn 6000 ovconst2 6004 oprab2co 6197 1stconst 6200 2ndconst 6201 f1od2 6214 brdifun 6540 ecopqsi 6568 brecop 6603 th3q 6618 xpcomco 6804 xpf1o 6822 xpmapenlem 6827 djulclr 7026 djurclr 7027 djulcl 7028 djurcl 7029 djuf1olem 7030 cc2lem 7228 addpiord 7278 mulpiord 7279 enqeceq 7321 1nq 7328 addpipqqslem 7331 mulpipq 7334 mulpipqqs 7335 addclnq 7337 mulclnq 7338 recexnq 7352 ltexnqq 7370 prarloclemarch 7380 prarloclemarch2 7381 nnnq 7384 enq0breq 7398 enq0eceq 7399 nqnq0 7403 addnnnq0 7411 mulnnnq0 7412 addclnq0 7413 mulclnq0 7414 nqpnq0nq 7415 prarloclemlt 7455 prarloclemlo 7456 prarloclemcalc 7464 genpelxp 7473 nqprm 7504 ltexprlempr 7570 recexprlempr 7594 cauappcvgprlemcl 7615 cauappcvgprlemladd 7620 caucvgprlemcl 7638 caucvgprprlemcl 7666 enreceq 7698 addsrpr 7707 mulsrpr 7708 0r 7712 1sr 7713 m1r 7714 addclsr 7715 mulclsr 7716 prsrcl 7746 mappsrprg 7766 addcnsr 7796 mulcnsr 7797 addcnsrec 7804 mulcnsrec 7805 pitonnlem2 7809 pitonn 7810 pitore 7812 recnnre 7813 axaddcl 7826 axmulcl 7828 xrlenlt 7984 frecuzrdgg 10372 frecuzrdgsuctlem 10379 seq3val 10414 cnrecnv 10874 eucalgf 12009 eucalg 12013 qredeu 12051 qnumdenbi 12146 crth 12178 phimullem 12179 setscom 12456 setsslid 12466 txbas 13052 upxp 13066 uptx 13068 txlm 13073 cnmpt21 13085 txswaphmeolem 13114 txswaphmeo 13115 comet 13293 qtopbasss 13315 cnmetdval 13323 remetdval 13333 tgqioo 13341 dvcnp2cntop 13457 dvef 13482 djucllem 13835 pwle2 14031 |
Copyright terms: Public domain | W3C validator |