| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelxpi | GIF version | ||
| Description: Ordered pair membership in a cross product (implication). (Contributed by NM, 28-May-1995.) |
| Ref | Expression |
|---|---|
| opelxpi | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp 4749 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
| 2 | 1 | biimpri 133 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2200 〈cop 3669 × cxp 4717 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-opab 4146 df-xp 4725 |
| This theorem is referenced by: opelxpd 4752 opelvvg 4768 opelvv 4769 opbrop 4798 fnbrfvb2 5676 fliftrel 5916 fnotovb 6047 ovi3 6142 ovres 6145 fovcdm 6148 fnovrn 6153 ovconst2 6157 oprab2co 6364 1stconst 6367 2ndconst 6368 f1od2 6381 brdifun 6707 ecopqsi 6737 brecop 6772 th3q 6787 xpcomco 6985 xpf1o 7005 xpmapenlem 7010 djulclr 7216 djurclr 7217 djulcl 7218 djurcl 7219 djuf1olem 7220 cc2lem 7452 addpiord 7503 mulpiord 7504 enqeceq 7546 1nq 7553 addpipqqslem 7556 mulpipq 7559 mulpipqqs 7560 addclnq 7562 mulclnq 7563 recexnq 7577 ltexnqq 7595 prarloclemarch 7605 prarloclemarch2 7606 nnnq 7609 enq0breq 7623 enq0eceq 7624 nqnq0 7628 addnnnq0 7636 mulnnnq0 7637 addclnq0 7638 mulclnq0 7639 nqpnq0nq 7640 prarloclemlt 7680 prarloclemlo 7681 prarloclemcalc 7689 genpelxp 7698 nqprm 7729 ltexprlempr 7795 recexprlempr 7819 cauappcvgprlemcl 7840 cauappcvgprlemladd 7845 caucvgprlemcl 7863 caucvgprprlemcl 7891 enreceq 7923 addsrpr 7932 mulsrpr 7933 0r 7937 1sr 7938 m1r 7939 addclsr 7940 mulclsr 7941 prsrcl 7971 mappsrprg 7991 addcnsr 8021 mulcnsr 8022 addcnsrec 8029 mulcnsrec 8030 pitonnlem2 8034 pitonn 8035 pitore 8037 recnnre 8038 axaddcl 8051 axmulcl 8053 xrlenlt 8211 frecuzrdgg 10638 frecuzrdgsuctlem 10645 seq3val 10682 swrdval 11180 cnrecnv 11421 eucalgf 12577 eucalg 12581 qredeu 12619 qnumdenbi 12714 crth 12746 phimullem 12747 setscom 13072 setsslid 13083 imasaddfnlemg 13347 imasaddflemg 13349 txbas 14932 upxp 14946 uptx 14948 txlm 14953 cnmpt21 14965 txswaphmeolem 14994 txswaphmeo 14995 comet 15173 qtopbasss 15195 cnmetdval 15203 remetdval 15221 tgqioo 15229 dvcnp2cntop 15373 dvef 15401 djucllem 16164 pwle2 16364 |
| Copyright terms: Public domain | W3C validator |