| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opelxpi | GIF version | ||
| Description: Ordered pair membership in a cross product (implication). (Contributed by NM, 28-May-1995.) |
| Ref | Expression |
|---|---|
| opelxpi | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelxp 4693 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
| 2 | 1 | biimpri 133 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∈ wcel 2167 〈cop 3625 × cxp 4661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-opab 4095 df-xp 4669 |
| This theorem is referenced by: opelxpd 4696 opelvvg 4712 opelvv 4713 opbrop 4742 fliftrel 5839 fnotovb 5965 ovi3 6060 ovres 6063 fovcdm 6066 fnovrn 6071 ovconst2 6075 oprab2co 6276 1stconst 6279 2ndconst 6280 f1od2 6293 brdifun 6619 ecopqsi 6649 brecop 6684 th3q 6699 xpcomco 6885 xpf1o 6905 xpmapenlem 6910 djulclr 7115 djurclr 7116 djulcl 7117 djurcl 7118 djuf1olem 7119 cc2lem 7333 addpiord 7383 mulpiord 7384 enqeceq 7426 1nq 7433 addpipqqslem 7436 mulpipq 7439 mulpipqqs 7440 addclnq 7442 mulclnq 7443 recexnq 7457 ltexnqq 7475 prarloclemarch 7485 prarloclemarch2 7486 nnnq 7489 enq0breq 7503 enq0eceq 7504 nqnq0 7508 addnnnq0 7516 mulnnnq0 7517 addclnq0 7518 mulclnq0 7519 nqpnq0nq 7520 prarloclemlt 7560 prarloclemlo 7561 prarloclemcalc 7569 genpelxp 7578 nqprm 7609 ltexprlempr 7675 recexprlempr 7699 cauappcvgprlemcl 7720 cauappcvgprlemladd 7725 caucvgprlemcl 7743 caucvgprprlemcl 7771 enreceq 7803 addsrpr 7812 mulsrpr 7813 0r 7817 1sr 7818 m1r 7819 addclsr 7820 mulclsr 7821 prsrcl 7851 mappsrprg 7871 addcnsr 7901 mulcnsr 7902 addcnsrec 7909 mulcnsrec 7910 pitonnlem2 7914 pitonn 7915 pitore 7917 recnnre 7918 axaddcl 7931 axmulcl 7933 xrlenlt 8091 frecuzrdgg 10508 frecuzrdgsuctlem 10515 seq3val 10552 cnrecnv 11075 eucalgf 12223 eucalg 12227 qredeu 12265 qnumdenbi 12360 crth 12392 phimullem 12393 setscom 12718 setsslid 12729 imasaddfnlemg 12957 imasaddflemg 12959 txbas 14494 upxp 14508 uptx 14510 txlm 14515 cnmpt21 14527 txswaphmeolem 14556 txswaphmeo 14557 comet 14735 qtopbasss 14757 cnmetdval 14765 remetdval 14783 tgqioo 14791 dvcnp2cntop 14935 dvef 14963 djucllem 15446 pwle2 15643 |
| Copyright terms: Public domain | W3C validator |