Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opelxpi | GIF version |
Description: Ordered pair membership in a cross product (implication). (Contributed by NM, 28-May-1995.) |
Ref | Expression |
---|---|
opelxpi | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelxp 4634 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷) ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷)) | |
2 | 1 | biimpri 132 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 〈𝐴, 𝐵〉 ∈ (𝐶 × 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∈ wcel 2136 〈cop 3579 × cxp 4602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-opab 4044 df-xp 4610 |
This theorem is referenced by: opelxpd 4637 opelvvg 4653 opelvv 4654 opbrop 4683 fliftrel 5760 fnotovb 5885 ovi3 5978 ovres 5981 fovrn 5984 fnovrn 5989 ovconst2 5993 oprab2co 6186 1stconst 6189 2ndconst 6190 f1od2 6203 brdifun 6528 ecopqsi 6556 brecop 6591 th3q 6606 xpcomco 6792 xpf1o 6810 xpmapenlem 6815 djulclr 7014 djurclr 7015 djulcl 7016 djurcl 7017 djuf1olem 7018 cc2lem 7207 addpiord 7257 mulpiord 7258 enqeceq 7300 1nq 7307 addpipqqslem 7310 mulpipq 7313 mulpipqqs 7314 addclnq 7316 mulclnq 7317 recexnq 7331 ltexnqq 7349 prarloclemarch 7359 prarloclemarch2 7360 nnnq 7363 enq0breq 7377 enq0eceq 7378 nqnq0 7382 addnnnq0 7390 mulnnnq0 7391 addclnq0 7392 mulclnq0 7393 nqpnq0nq 7394 prarloclemlt 7434 prarloclemlo 7435 prarloclemcalc 7443 genpelxp 7452 nqprm 7483 ltexprlempr 7549 recexprlempr 7573 cauappcvgprlemcl 7594 cauappcvgprlemladd 7599 caucvgprlemcl 7617 caucvgprprlemcl 7645 enreceq 7677 addsrpr 7686 mulsrpr 7687 0r 7691 1sr 7692 m1r 7693 addclsr 7694 mulclsr 7695 prsrcl 7725 mappsrprg 7745 addcnsr 7775 mulcnsr 7776 addcnsrec 7783 mulcnsrec 7784 pitonnlem2 7788 pitonn 7789 pitore 7791 recnnre 7792 axaddcl 7805 axmulcl 7807 xrlenlt 7963 frecuzrdgg 10351 frecuzrdgsuctlem 10358 seq3val 10393 cnrecnv 10852 eucalgf 11987 eucalg 11991 qredeu 12029 qnumdenbi 12124 crth 12156 phimullem 12157 setscom 12434 setsslid 12444 txbas 12908 upxp 12922 uptx 12924 txlm 12929 cnmpt21 12941 txswaphmeolem 12970 txswaphmeo 12971 comet 13149 qtopbasss 13171 cnmetdval 13179 remetdval 13189 tgqioo 13197 dvcnp2cntop 13313 dvef 13338 djucllem 13691 pwle2 13888 |
Copyright terms: Public domain | W3C validator |